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Hash functions were first used in computer systems for one-way encryption of passwords since the 
early 1960s. Although they have a long history, hash functions remained the least-understood 
cryptographic primitives, much less developed than encryption techniques, and over time only several 
dozen have been designed in total. Moreover, many of these cryptographic functions are difficult to 
implement in new programming languages. This paper presents an alternative proposal to some of the 
widely used hashing functions, such as MD5, MD2, MD4 or SHA. GHDNA hash function converts a 
large and variable-sized amount of DNA data into an unique integer value in order to be used for 
various bioinformatic analyzes. A series of tests were conducted on artificially generated DNA 
sequences and biological DNA sequences from NCBI website. Experimental results show that our 
method is efficient in generating unique keys without collisions. We used GHDNA for repetative 
sequence search, motif search, segment-based aligments and database implementations. 

Key words: hash functions; sequence alignment; database engine; motif search; dynamic DNA block 
allocation. 

INTRODUCTION  

Informal definitions  state that cryptographic 
hash functions are divided in two main classes, 
Message Authentication Code or MAC, for a hash 
function that uses a secret key, and Manipulation 
Detection Code or MDC, that does not make use 
of a secret key1,2. MDC functions can be divided 
in two main categories, one-way hash functions 
(OWHF), concept introduced by Diffe and 
Hellman and collision resistant hash functions 
(CRHF), concept introduced by Damgard3,4. 
CRHF hash functions widely used for their speed, 
include MD25-7 and its derivatives MD58, SHA9, 
RIPEMD10, and HAVAL 11, N-hash 12, FFT-Hash 
I and II13, Snefru14. Designed in the late 1980s, 
MD or “message digest” family of hash functions, 
took shape from a proprietary algorithm named 
MD1, which was the precursor of other MDC 
hashing functions, such as MD2 and MD4. Other 
four algorithms based on MD4 design appeared 
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shortly after, namely MD5, SHA, and RIPEMD, 
while HAVAL, started as an extension of MD5 
function. The attack models on MD5 by Bert den 
Boer and Antoon Bosselaers, led to the 
development of Secure Hash Algorithm (SHA), 
proposed by National Institute for Standards and 
Technology, USA, in 199215. 

A hash function is said to be attacked when a 
collision pattern is found, thus a collision pattern 
can lead to a security key falsification in computer 
security, or a flaw in a database engine. 
Nevertheless, collisions are unavoidable for large 
sets that are mapped to short strings or small 
integers. A desirable quality for a hash function 
seems to be a wide domain range and a uniform 
distribution of hash values. 

The most successful approach to find a collision 
seems to be a differential cryptanalysis16. The goal 
of differential cryptanalysis method is to induce 
changes in the input sequence which do not affect 
the output value. 
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In the late 1990s, with the exponential increase 
in the number of DNA sequences, and their 
variants, coming from different research institutes, 
researchers began to design and use specialized 
hashing functions in bioinformatics, both MAC-
like, and MDC-like functions. 

Other algorithms that resemble GHDNA and 
its features are ACMES (Advanced Content 
Matching Engine for Sequences)17 and SSAHA 
(Sequence Search and Alignment by Hashing 
Algorithm)18,19, implemented for repetitive 
sequence searches and genomic localization20, 21. 

The operation mode of GHDNA is different 
from other MAC functions - CRC-like used in 
sequence alignments algorithms, such as LSH-
ALL-PAIRS22. However, this deliberate imperfection 
of a MAC hash function makes it ideal only for 
sequence alignment algorithms, and less desirable 
for segment-based aligments.  

Cryptographic hash functions can provide 
integrity guarantees in that they do not rely on 
specific error pattern assumptions. Accordingly, 
GHDNA may be used for segmental alignments 
of whole genomes and perhaps with better results 
than other hash functions considering the small 
size of the hash key.  

The GHDNA key size seems to be important, 
both for computer memory and the speed of 
search. For instance, the overall size of human 
genome files (FASTA format assemblies) can 
reach up to 2-3 Gb. A direct search for text inside 
these large files is highly complicated and time 
consuming. A more direct approach consists of 
using short-length hash values. Initially, these files 
are divided into smaller sequences (i.e. between 
500 b and 10 Kb). For each sequence a hash key is 
generated and stored in an array file. A search for 
a certain DNA sequence or even a segmental 
alignment of two sequences can be accomplished 
by comparing a hash key to the array file (or a 
comparison between two array files). 

GHDNA is a well-defined function that returns 
a single integer from an output range of 1014 
posible hash values. The aim of GHDNA design 
was to obtain uniformly distributed output values 
in the function output range, for any DNA 
sequence. Like any other hash function of this 
type23,24, GHDNA is not reversible. Consequently, 
the same inputs always lead to the same outputs 

but the relation between the similarity of two inputs 
is unpredictable. In this regard, two DNA sequences 
that differ by even a single nucleotide must always 
lead to different hash values. 

RESULTS 

In order to measure the effectiveness of the 
proposed hash function, we divided three groups of 
experiments in which we considered the output 
range, the uniformity of hash values and data block 
processing (more in the methods section). For 
terminology, we defined all possible values that can 
be returned by GHDNA function as a “domain 
range”. Furthermore, a “collision” is a situation that 
occurs when two distinct pieces of data exhibit the 
same hash value.  

The first experiment established the domain 
range of GHDNA function at 1014 posible hash 
values. In the initial phase PHash (Pre-Hash) 
values are calculated for 9920 random DNA 
sequences (Figure 2). Each sequence was generated 
approximately in the following manner: the set of 
all strings over ∑ of length n  is denoted  

 ∑n
, ∑ = },,,{ GCTA , ∪ Nn

n

∈ ∑∑ =
*

 

 in which, for our experiments, n =1000, 
corresponding to each point on the x-axis.  

In order to avoid a congestion on the y-axis 
(Figures 2-5), we generated only 10 random 
samples for each n (ie. similar to the first steps of 
Kleene closure applied to set of characters25-27).  

Comparative Analysis 

A comparative speed analysis conducted against 
other three hashing functions, MD5, SHA1 and 
SHA256, showed substantial qualities of GHDNA 
function, namely the speed and the output size 
(Figure 1). 

In order to obtain a real and balanced result, all 
functions have been implemented in the same 
programming language (Visual Basic) and were 
tested on a computer featuring a 2.8 GHz processor. 
Each hash function generated 1000 hash values for 
the same sequence (a short DNA sequence of 20b), 
after wich the response time was measured (Figure 1). 
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Repeated generation of hash values for the 
same DNA sequence proved to be a balanced test, 
allowing for an accurate measurement of 
processing time for every function separately 
(Figure 1). The processing time for each function 
can be reduced even further by using other 
programming languages such as assembly or C++. 
Nevertheless, the differences between measurements 
remain constant. As shown in Figure 1, GHDNA 
function produces the smallest key (14 digits) but 
the speed performance is comparable to SHA256 
and SHA512. 

Collision analysis 

Initially, PHash  values 6 are not equally 
distributed in the output range of the function at 
this stage (Figure 2). In order to obtain equally 
distributed hash values we have used a technique 
whose name is chosen by the type of string 
operation performed, namely digit shift. 

Digit shift method consists in transforming an 
integer number into a string data type, and thus 
applying a string concatenation. A reverse 
function that transforms a string into an integer 
can provide the new hash value for further 
processing (this method is described in the 
methods section). In the second experiment we 
tested if GHDNA hash values are uniformly 
distributed after digit shift method was applied.  

As shown in Figure 3, digit shift method 
ensures the uniformity of hash values over the 
output range of the function. However, after 
applying this method, digit number eight becomes 
constant, and a domain range stabilization 
tendency appears (Figure 2). During this stage, we 
concluded that the constancy of digit number 
eight produces clusters of hash values, which 
cover approximately 1,000,000 hash values at 
every 10,000,000 possible hash values. In other 
words, if digit eight is equal to two, then the 
function output should be only between 2,000,000 
and 2,999,999 real hash values at every 
10,000,000 from the 1014 scale. 

In order to avoid a domain range stabilization 
tendency, we apply a method by which the digit 
number eight is replaced from the hash value with  

another one-digit number (i.e. 0 to 9). The value of 
the new digit is calculated through modulo 
operation, 10modL , where L  represents the 
length of the input sequence. The expression 

10modL  can ensure a result between 0 and 9. The 
name for the second method is chosen due to a 
sequence length dependence, namely digit 
uncertainty, as we can not know which will be the 
digit value without knowing the length of the input 
sequence. If digit shift method ensures the 
uniformity over the output range of the function, 
digit uncertainty method ensures the avoidance of 
collisions by making the hash values even more 
randomized28.  

In the third set of experiments, we tested 
whether GHDNA function can work with DNA 
data blocks in order to avoid collisions even more. 
GHDNA function can not receive input sequences 
less than 3 nucleotides, and a fixed block division 
may lead to a non-equivalent splitting of the input 
sequence. For instance, we can meet a particular 
case in which, for predetermined fixed size DNA 
blocks, the last DNA block may contain less than 
three nucleotides. In order to avoid such situations 
we implemented a dynamic DNA block allocation, 
in which the length of DNA blocks is calculated in 
advance according to the length of the input 
sequence.  

Avalanche test 

Our approach on differential cryptanalysis 
consisted of an avalanche effect measurement. The 
avalanche test was described by Horst Feistel29 for 
the first time in 1973 and measures the output 
changes of a cryptographic function. Any change in 
the input area should have a drastic change in the 
output value in order to avoid a predictable pattern.  

Our implementation was based on a progressive 
hashing of eighty DNA sequences which differ 
from each other by a single nucleotide (eighty 
progressive insertions or replacements). Next, the 
results have been plotted on a graph (Figure 4) 
which shows that the hash values exhibit a random 
distribution without collisions between similar 
inputs.  
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Figure 1. Comparisons made between known hashing functions. Red triangles show the response time for GHDNA, MD5, SHA1, 

SHA256 and blue bars show the length of hash values for GHDNA, MD4, MD5, Haval-128, RIPEMD-160, SHA1,  
SHA256 and SHA512. 

 
Figure 2. PHash  values distribution. PHash  values represent the first step for calculating the final hash value of GHDNA function. 

Each point in the figure represents a PHash  value (9920 points in total). On x-axis we represent a gradual increase  
in length for the artificial generated sequences, on y-axis we represent the output values. 
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Figure 3. GHDNA domain range of hash values after digit shift. X-axis, Y-axis and each of the 9920 points have the same meaning 

as they have in Figure 2. Here we can observe the uniformity of hash values over the output range of the function after digit shift 
method was applied. 

Initial avalanche tests also showed that 
GHDNA function operates within normal 
parameters only if an input sequence (of any size) 
exhibits an Index of Coincidence below 99%, i.e. 
sequence “AAAAAAAA” will generate an IC  of 
100%, while a sequence “AAATAAAA” will 
generate an IC  of 81.87%. 

General approach towards the Index of 
Coincidence, as described by William F. Friedman30 
in 1935, for two aligned texts, is  

CN
BA

IC
N

i ii

/
][

1∑ =
=

=   

where sequences A  and B  have the same length 
N . Only if an iA  nucleotide from sequence A  

matches the iB  correspondent from sequence B , 

then ∑ is incremented by 1. 
Function KIC(A) 
N = lenght(A) - 1 
for u = 1 to N 

B = A[u + 1] … A[N] 
for i = 1 to length(B) 

If A[i]= B[i]  then C = C + 1 
next i 

T = T + (C / lenght (B) × 100) 
C = 0 

next u 
IC = Round((T / N), 2) 
end function 
 
With small changes, the same method for 

measuring the Index of Coincidence was applied 
for only one sequence, in which the sequence was 
actually compared with itself, as shown above in 
the source code implementation for Visual Basic 
family of languages31.  

Speed test 

The speed test implementation for GHDNA 
function consisted of three modules: a random 
sequence generator, the algorithm for GHDNA 
function, and the main loop which progressively 
increases the input sequence length and measures 
the response time of the function. 
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Speed tests were made on a 2.8 GHz processor, 
both for GHDNA function in a linear fashion and 
for GHDNA function based on dynamic DNA 
block allocation. Without dynamic DNA block 
allocation method, GHDNA function processed on 

average 100 Kb/250 ms (Figure 5). For DNA 
blocks with a minimum length of 300 nucleotides, 
dynamic DNA block allocation method used about 
125 ms at every 100 Kb. 

 

 
Figure 4. GHDNA avalanche test. In silico, thymine nucleotide is gradually inserted into a random DNA sequence, from nucleotide 
number one to nucleotide number eighty. On X-axis we represent thymine position, on Y-axis we represent GHDNA output values. 

Red bars show a random positioning of hash values. 

 
Figure 5. GHDNA processing time. On the x-axis we represent the DNA sequence length (from 1 to 100 Kb), on Y-axis we represent 

the response time in milliseconds, from 0 ms to 500 ms. Line 1 - shows the response time for GHDNA function without the use  
of dynamic DNA block allocation method. Line 2 - shows the response time for GHDNA function based on dynamic  

DNA block allocation. 
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GHDNA function takes into account all the 
elements from the input sequence. Nevertheless, as 
can be observed in equation (3) and (5), the 
algorithm optimization reaches approximately 50% 
since the function performs only )2/(L  cycles. 

METHODS 

A vast majority of hash functions are deterministic 
procedures that take arbitrary blocks of data and return strings 
of fixed lengths. GHDNA function can operate in two modes. 
In a first version, makes a continuous calculation of the 
elements from the input sequence, thereby gaining speed 
ahead of other types of hash functions. In a second version, 
which represents a continuation of the first, we use a new 
method which we call “dynamic DNA block allocation”. 
Although this method takes longer to compute is intended to 
provide a collision free result.  
 
Notation 

Let f  be a function, Let L  be the length of the input 

sequence. We call any string made of L  characters from a set 
{ , , , }A T C G  a L string− . Letting  1 LS N N= … , 
( { , , , }iN A T C G∈ , 

1, ,i L= … ), be a L string− . In terms of computer science, we 
will redefine ∑ as a specialized construct for iterating a 
specific number of times, often called in programming 
languages a “for each loop”. Therefore, considering ∑ an 
overloaded symbol, we declare variables i  and u  as 
iterators. Usually, C  variable contains an irrational number, 
representing the preliminary value for building the final hash 
and is directly used to calculate equation (6). The result of 
equation (6) is an integer which we will call a “ PHash ” 
value. 

Implementation 

A numerical sequence representation of DNA sequences is 
introduced. There exists a one-to-one correspondence between 
a DNA sequence and its numerical sequence representation as 
Yu et al. proposed32. We provide a numeric value to each 
nucleotide molecule as follows, Adenine is associated with the 
number 3, Thymine is associated with the number 5, Cytosine 
is associated with the number 7, Guanine is associated with 
the number 11. The preliminary calculation of C  value, for 
each 3-tuple in the DNA input sequence, is made according to 
the numeric values associated to the next two elements in front 
of the first element. The final result for C  variable is made by 
summing all the results from each 3-tuples calculation, as can 
be seen in the first part of expression (5). Before continuing, 

we first define the association of values with the elements 
from the set, using a function f  

 

3
5
7
11

A
T

f
C
G

⎧
⎪
⎪= ⎨
⎪
⎪⎩

6
6
6
6

 (1) 

Function f  returns the value of the non-numerical 

element in the DNA sequence. The value of iN  is calculated 

according to 1iN +  and 2iN + (Figure 6). Consequently, the 
minimum length (n≥3) of an input sequence is dictated by the 
3-tuple computation method. Equation (2) ensures that t  is 
the largest integer less than or equal to L  that is divisible by 
2. Variables β  and t  are particularly important because they 
provide a calculation on 3-tuples, step two, as shown in Figure 6 
and equation (5). If L  is divisible by two, then t  will be 
equal to L  and the equation (4) will have zero iterations, ie. 
for a DNA sequence of 32 nucleotides, 32L = , ( mod 2)L  
equals 0, and ( 0)L −  equals 32. We know now that 
( ( mod 2))L L−  equals also 32, which is divisible by two. 

To reach a two step calculation, we divide 32 by 2, which 
will reveal the final value of 16 1 15β = − = , therefore in 
equation (5) we have 15 iterations. 

 ( ( mod 2))t L L= −  (2) 

 1
2
tβ ⎛ ⎞= −⎜ ⎟

⎝ ⎠
 (3) 

 ( ( ) ( ))
( )

L
u

u t u

f N L uR
f N=

− −
= ∑  (4) 

The relationship (4) has the task of calculating the 
elements which are not in the range of β  variable. Variable 
R  is the smallest time-consuming variable, R can only make 
one or two iterations, because ( mod 2)L  can not take a value 
greater than 1, for any given number. Variable R  is valuable 
for generating hash values for sequences of the same size, that 
exceed the range of β  variable. Relation ( )L t−  will provide 
the number of iterations for R . 

 2 1 2

1 2 1

( ( ) ( mod 2) 1) ( ( ) ( mod3) 1)
( )

i i

i i

f N i f N i
C R

f N

β
−

= +

⎛ ⎞− + × + +
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (5) 
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The C  variable is the core of GHDNA function, is 
designed to generate a number according to the order in which 
elements are arranged in the DNA sequence, ie. if we consider 
the sequence “AGTTAGGACG” shown in Figure 6, whose 
length is equal to 10, we can illustrate step by step the method 
of calculation for equation (5). We see in equation (5) that i  
can take a value from 1 up to β . To find β , we must first 
solve equation (3). 

( ( mod 2)) 1
2

L Lβ −⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

(10 (10mod 2)) 1
2

β −⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

4β =  

Knowing the value of β  and the values taken by  

i  = 1 to 4, we can show how equation (5) unfolds, by 
following expressions below. 

⎪
⎩

⎪
⎨

⎧

==+×=+
==×=
==−×=−

1]3[]112[]12[
1]2[]12[]2[
1]1[]112[]12[

iNNiN
iNNiN
iNNiN

 

⎪
⎩

⎪
⎨

⎧
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2]5[]122[]12[
2]4[]22[]2[
2]3[]122[]12[

iNNiN
iNNiN
iNNiN

 

⎪
⎩

⎪
⎨

⎧

==+×=+
==×=
==−×=−

3]7[]132[]12[
3]6[]32[]2[
3]5[]132[]12[

iNNiN
iNNiN
iNNiN

 

⎪
⎩

⎪
⎨

⎧

==+×=+
==×=
==−×=−

4]9[]142[]12[
4]8[]42[]2[
4]7[]142[]12[

iNNiN
iNNiN
iNNiN

 

At each iteration of i , we obtain three values that identify 
a 3-tuple in the DNA sequence. Each of these three values are 
identifiers for N  in the DNA sequence. When the 
corresponding non-numerical element from the DNA 
sequence is passing through function f , at each iteration of 

i , is returning the corresponding number of this non-
numerical element (section c. from Figure 6). A calculation on 
more than 3-tuples slows down the function. Using less than  
3-tuples prevents equation (5) from generating a collision-free 
identifier for the hash value. 

 
Figure 6. GHDNA calculation method. a. shows the analyzed 
DNA sequence and the location of interest for each iteration  

of i  in equation (5). b. describes a 3-tuples calculation,  
in step two. c. shows the prime numbers associated  

by function f with each nucleotide molecule. 

After processing C  variable, the PHash  value that 
produces the data shown in Figure 2 is 

 L
C
LPHash −⎥

⎦

⎤
⎢
⎣

⎡
×⎟

⎠
⎞

⎜
⎝
⎛= 1410  (6) 

In the equation above (6), the bracketed term stands for a 
rounding function, negative L  stands for an error correction 
variable and )/( CL  represents an identifier value for the 
input sequence.  

String operations 

As shown in Figure 2, PHash  values are not evenly 
distributed at this stage and must be processed by two other 
methods to achieve uniformity. For further processing we 
convert PHash  integers into a string data type in order to 
perform digit shift and digit uncertainty methods through 
string operations. In digit shift method, we permute the first 
seven digits with the last seven digits, ie. after digit shift the 
PHash  value “24583480330876” becomes 
“03308762458348”. 

After digit shift method was applied, digit number eight 
tends to stabilize more quickly than other digits. By using digit 
uncertainty method we replace this digit from the hash value. 
For instance, the hash value for “G G A T A A T A G T G G 
G G A A G G G A” sequence will be 03308762458348. After 
digit replacement the new hash value will be 
0330876X458348, where “X” is equal to )10mod(L . In 

the case above, L  is equal to 20, therefore the value of the 
new digit is zero. At choice, the new string can be converted 
into an integer data type, or can be used directly as a string 
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data type. However, if converted to an integer, the 
constant number of digits can not be guaranteed by the 
GHDNA function, due to digit shift implications. 

With gradual increase of the sequence length, 
eventually all digits tend to stabilize. For increasingly 
large amounts of information, digit uncertainty method 
gradually loses the properties. However, is the last 
method to stand even after digit stabilization. 

Block calculus 

As we previously specified, GHDNA function performs a 
continuous calculation for the entire input sequence. To avoid 
digit stabilization, as mentioned in the previous chapter, a 
calculation on data blocks33,34 will offer a series of hash 
values, which can be reduced to a single hash value.  

We can not choose fixed data blocks, ie. fixed data blocks 
of 16-tuples for instance, will split a DNA sequence of 64 
nucleotides in 4 blocks of data. GHDNA function will 
generate a hash value for each block of data. If this DNA 
sequence would contain 65 nucleotides, fixed data blocks of 
16-tuples will split this new DNA sequence in five data 
blocks. The last block of data would contain only a single 
nucleotide, which makes it incompatible with the 3-tuple 
calculation from GHDNA function. The solution to this 
problem was a dynamic DNA block allocation, where the 
length of DNA blocks varies from input sequence to input 
sequence.  

To reduce two hash values, A  and B , to a single one, 
A  is positioned above B  to create a 2-by-14 matrix. We 

resorted again to modulo operation in order to reduce each 
column to a single integer, lower than 10.  

∑
=

+
14

1
10mod)(

i
ii BA  

For each of the fourteen columns we obtain a new number 
between 0 and 9, which will build the new vector B . A new 
hash value A , for another block of data, will be positioned 
above B  to make a new reduction. The reduction of multiple 
one-block messages ends for the last block of data. Thus, 
collisions between hash values resulting from the reduction of 
data blocks are negligible in the final hash value. 

Dynamic DNA block allocation 

GHDNA function can not receive input sequences smaller 
than 3 nucleotides. For fixed data blocks, we can meet a 
particular case in which, sequences are not divided exactly in 
fixed blocks. Moreover, the number of nucleotides that remain 
after this division may be less than three, which is not 
desirable. Notwithstanding the notation used so far, first we 
ask a “Block Alocation” function to search for a remainder t , 
larger than three, from the division of L  by a  variable. 

Expression )( tL −  ensures a number divisible by 2, thus 

avoiding a prime number. If t  variable is greater than three 

and r  is a number divisible by two, t  and r  variables meet 
the imposed conditions, allowing a subsequent search for a 
number m , greater than ten, which divides r  into an integer.  

 
Function Block_Alocation(ByVal L As Variant) 

As Integer 
Dim a, t, b, m As Integer 

 
 a = 1 
 t = 1 
 b = 1 
 m = 10 
 
Do Until t > 3 And v = 0 
 a = a + 1 
 t = (L Mod a) 
 r = (L - t) 
 v = r Mod 2 
Loop 
 
Do Until b = 0 Or m >= 999 
 m = m + 1 
 b = r Mod m 
Loop 
 
Block_Alocation = m 
End Function 

 
Above we show the source code of Block Alocation 

function, syntactically compatible with VBA, VBScript, 
Visual Basic 4,5,6, Visual Basic NET and Visual Basic 2005. 
Number ten is a starting point for the size of a DNA block. 
Once found, m  will contain the length of a DNA block. In 
the source code for “GHDNA DATA BLOCK” function, the 
initial hash value is “12345678912345”. This initial hash 
value can be any 14 digit number, converted into a string data 
type. 

 
Function GHDNA(ByVal sequence As String) 

As String 
    Dim correction As Variant 
    Dim N(1 To 3) As String 
    Dim Prehash As Variant 
    Dim hash As Variant 
    Dim alfa As Variant 
    Dim beta As Variant 
    Dim C As Variant 
    Dim x As Integer 
    Dim i As Integer 
    Dim u As Integer 
 
t = (Len(sequence) - (Len(sequence) Mod 2)) 
beta = ((Len(sequence) - (Len(sequence) Mod 

2)) / 2) - 1 
 
    For i = 1 To beta 
        N(1) = Mid(sequence, 2 * i - 1, 1) 
        N(2) = Mid(sequence, 2 * i, 1) 
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        N(3) = Mid(sequence, 2 * i + 1, 1) 
        C1 = (f(N(1)) - Sqr((i Mod 2) + 1)) 
        C2 = ((f(N(2)))) - Sqr((i Mod 3) + 1) 
        C3 = f(N(3)) 
        C = C + ((C1 * C2) / C3)      
    Next i 
 
For u = t To Len(sequence) 

N(1) = Mid(sequence, u, 1) 
C = C + (f(N(1)) - (Len(sequence) - Sqr(u))) / 

f(N(1)) 
 
Next u 
 
ID = Len(sequence) / C 
Prehash = Round(ID * 10 ^ 14) - 

Len(sequence) 
DS = Mid(Prehash, 8, 7) & Mid(Prehash, 1, 7) 
x = Len(sequence) Mod 10 
DU = Mid(DS, 1, 7) & x & Mid(DS, 9, 6) 
 
GHDNA = DU 
End Function 
 
Function f(ByVal nucleotide As String) As 

Integer 
 
        If nucleotide = "A" Then f = 3 
        If nucleotide = "T" Then f = 5 
        If nucleotide = "C" Then f = 7 
        If nucleotide = "G" Then f = 11 
 
End Function 
 
Function GHDNA_DATA_BLOCK(ByVal 

sequence _ 
As String) As Variant 
Dim a, b, C As String 
Dim i, BlockSize As Long 
Dim EA, EB, u As Integer 
 
BlockSize = Block_Alocation(Len(sequence)) 
b = "12345678912345" 
 
For i = 1 To Len(sequence) Step BlockSize 
    a = GHDNA(Mid(sequence, i, BlockSize)) 
    For u = 1 To 14 
        EA = Val(Mid(a, u, 1)) 
        EB = Val(Mid(b, u, 1)) 
        C = C & (Val(EA + EB) Mod 10) 
    Next u 
    b = C 
    C = "" 
Next i 
 
GHDNA_DATA_BLOCK = b 
End Function 
 

Above we show the source code of GHDNA function, and 
its extension, “GHDNA DATA BLOCK” function, 
syntactically compatible with VBA, VBScript, Visual Basic 
4,5,6, Visual Basic NET and Visual Basic 2005. Actual source 
code implementation of GHDNA function is made in the 
integrated design environment of Visual Basic 6.0. 

DISCUSSION 

Real DNA sequences are far from random. 
Nevertheless, GHDNA function treats any DNA 
sequence without discrimination. Therefore using 
random DNA sequences for testing can be 
sufficient. Given the small number of component 
letters for a DNA sequence (i.e. A,T,C,G), the 
probability of collision is small. A regular 
cryptographic function must digest normal text 
which is composed of 255 possible character types. 
In conclusion, the set of all possible texts arising 
from the combination of 255 characters, provides a 
higher probability of collision while the set of all 
texts derived from the combination of only 4 
characters is much smaller. Therefore, GHDNA 
hash key can be smaller than that of other 
functions, without any collisions. 

We also tested some simpler methods (i.e. 
MOD or XOR operators). For instance, we 
performed a modulo by prime operation. 
Nevertheless, we concluded that such methods 
generate frequent collisions and can not be reliable.  

Digit shift and digit uncertainty methods may 
be modified for a more optimal domain range 
distribution. However, using digit shift or digit 
uncertainty methods for an alternative hash 
function will certainly exhibit an undesirable 
outcome in most cases.  

The 3-tuple limitation of GHDNA function may 
be overcome by padding the sequence with three or 
more fixed characters (i.e. “AAA”). However, by 
padding different characters for two GHDNA 
implementations, we obtain different hash values. 
In order to preserve a compatibility between 
different GHDNA implementations we used 
dynamic DNA block allocation method. 

Initially, during design the “avalanche test” 
showed that for two DNA sequences containing 
only one difference, a constant length and a large 
Index of Coincidence, GHDNA function 
sometimes generated the same hash value, 
presenting a subtle pattern. Our solution consisted 
of two additional expressions introduced inside 
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equation (5), namely 1)2mod( +i  and 

1)3mod( +i . These two expressions can 
provide a small number, which does not exceed the 
lowest number provided by the f  function for a 
nucleotide molecule, as for example is Adenine, 
whose value is three. The value of 2modi  will 
generate for the entire process (6), at each iteration 
of i , a repeated sequence of numbers 1,0,1,0, … 
,1,0, whereas the value of 3modi  will provide a 
repeated sequence of numbers such as 1,2,0,1,2,0, 
… ,1,2,0. When processed by GHDNA function, 
this imbalance ensures a unique value for a DNA 
sequence. Furthermore, to highlight the 
relationship between sequence length )(L , t , β  
and the number of iterations for R , we show the 
following source code implementation for Visual 
Basic family of languages. 

 
Function Relationship() 
 For L = 1 To 100 
  t = (L - (L Mod 2)) 
  b = (t / 2) - 1 
  Print "L=" & L & ", t=" & t & ", b=" & b 
  Print "R iterations" & L - t 
 Next L 
End Function 
 
The algorithm presented above reveals the 

relationship between t , β , L  and the number of 
iterations of R , for each number from 1 to 100. 

GHDNA function can be used through two 
separate methods. The first method involves a 
direct call of GHDNA function while the second 
method uses an indirect call of “GHDNA DATA 
BLOCK” function. Nevertheless, “GHDNA 
DATA BLOCK” function is the final deliverable 
mode for GHDNA algorithm. 

Database implementation 

While the details will differ in other database 
engines, the fundamental principles are usually 
unanimous regardless of the configuration used. 
Database design seems to be one of many critical 
parts of an application. In bioinformatics, 
databases often contain large amounts of 
information, such as DNA motifs, repeated 
sequences, palindrome sequences and other DNA 
sequences with important biological role. 

Hashing is an effective method for accessing 
data using a key value. For instance, we considered 
a database engine that uses text files to store data. 

To provide an example, we used a list of 814 
hexamers identified by FGA [35] for acceptor 
splice-site prediction and donor splice-site 
prediction. Our simple database example is 
composed of a series of records, which are 
seperated by double colon delimeters, whose 
structure consists in a hash value followed by a 
DNA sequence from which the hash value was 
originaly calculated. While entering new sequences 
in the database, repetative sequences will have the 
same hash value, and they will be mapped to a 
single record, for a fast and optimal search. 

In our implementation, a search for hexamers 
within a DNA sequence (i.e. whole genome files), 
is made by using sliding windows across the DNA 
sequence. The sliding window step may vary. 
However, for segmental alignment of sequences 
the sliding window step should be equal to the 
sliding window size. 

GHDNA function calculates a hash value for 
each sliding window, as shown in Figure 7. 
Multiple sliding windows with the same content, 
will have the same hash value. Each content 
derived from the sliding window, is then passed 
through a restriction filter, to avoid searching the 
same hash value inside the database. If the hash 
value has not been searched previously, then 
passes the restriction filter, and the search takes 
place in memory on a array structure, filled in 
advance with hash values from the database text 
file. The database engine can easily be changed for 
searching repeated sequences. However, in the 
current implementation, repeated sequences are 
filtered. 

CONCLUSIONS 

There is a fifty years history of cryptographic 
hash functions in which only a few have been built. 
GHDNA is a different and reliable approach, 
dedicated for hashing DNA sequences. In this 
manuscript we described the operating mode and 
the optimal parameters of GHDNA function. In 
order to avoid collisions, we established the 
domain range at 1014 hash values and we obtained 
a uniform distribution of these values across the 
domain range of the function. Although written in 
a high-level language, the algorithm for GHDNA 
obtained a good speed and low memory 
requirements, due to its relative simplicity and 
dedicated purpose. The issue in using a more 
complex hashing algorithm over a simpler and 
dedicated one remains the hash size and the 
additional time it takes to compute. 
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Figure 7. Database structure. A database structure composed of (a) records stored in a text file and (b) the restriction filter linked to 
GHDNA function. Section c. refers to a motif search inside a DNA sequence using sliding windows and section d. refers to a DNA 

motif search by direct match. 
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