
 THE PUBLISHING HOUSE BIOINFORMATICS

 OF THE ROMANIAN ACADEMY Research article

DYNAMIC BLOCK ALLOCATION FOR BIOLOGICAL SEQUENCES

PAUL GAGNIUC1 and CONSTANTIN IONESCU-TIRGOVISTE2

1 First author affiliation Institute of Genetics, University of Bucharest, Romania
2 National Institute of Diabetes, Nutrition and Metabolic Diseases ”N.C. Paulescu”, Romania

Corresponding author: P. Gagniuc, E-mail: paul_gagniuc@acad.ro

Received October 11, 2011

Dynamic Data Block Allocation (DDBA) represents a novel and flexible method for partitioning

string sequences into data blocks taking into account different rules imposed by a function. We

present two versions of this algorithm, namely DBFA (Double Brute Force Algorithm) and MBFA

(Multi Brute Force Algorithm). A series of tests were performed, mostly related to integer numbers

where blocking and block size planning was used. Comparisons made between these two versions of

the algorithm have shown different allocation distributions of data blocks, both for small sequences

and for very large sequences, suggesting that DBFA provides more rigid solutions than MBFA. We

suggest possible applications in biology, but also a range of applications in computer science, such as

storage efficiency or memory optimization. We used this algorithm in biology in order to divide DNA

sequences into data blocks for further processing by a data mining function.

Key words: Dynamic block allocation, Brute force, DNA periodicity patterns, Optimal storage.

INTRODUCTION

Here we describe a method for handling

biological sequences (strings) in some particular

cases. In order to perform our analysis on strings

we used DNA sequences. The genetic information

is stored in DNA (deoxyribonucleic acid). DNA

consists of two long polymers of simple units

called nucleotides. The four bases found in DNA

are adenine (abbreviated A), cytosine (C), guanine

(G) and thymine (T)1. In 2001, the human genome

sequence was published and the order of these

molecules was available as text2. A vast majority

of algorithms used in bioinformatics are designed

for text data mining3. Some functions used in

bioinformatics or in computational biology accept

structured data types of a certain length. For

instance, every analysis tool uses a specific set of

file formats4. FASTA format is frequently used.

This format can encompass several types of

sequences, such as DNA/RNA (ribonucleic acid)

sequences or amino acid sequences. Files using

Proc. Rom. Acad., Series B, 2013, 15(3), p. 233–240

FASTA format may contain up to 3Gb - 6Gb of

information. In order to process this information,

first, one must extract smaller sequences (data

blocks). For in silico DNA-related analysis, data

blocks are string data type sequences having a

nominal length (a block size). DNA sequences

structured in this manner are said to be blocked

(i.e. GenBank format5). Blocked data are commonly

read by a function or procedure a whole block at a

time. For example, we consider a function which

has two parameters, a minimum input length (n)

and a maximum input length (m). Therefore, the

alleged function accepts only data blocks

containing a number of nucleotides larger or equal

to n and lower than or equal to m. Nevertheless, the

chances for a number of nucleotides larger than n in

the last data block depend on the total length of the

sequence (length-dependent). Our method ensures

this minimum input limitation (minimum content)

for the last data block by planning in advance the

size of data blocks. Thus, we can avoid an error

inside the function. Therefore, for processing long

 Paul Gagniuc and Constantin Ionescu-Tirgoviste 234

DNA sequences which are mandatory for de novo

genomic analysis6, dynamic block allocation

represents a possible method of choice for

retrieving information from large files using

buffers. One of the fundamental problems of modern

biology is related to post-translational modifications

of proteins in the endoplasmic reticulum where

these processes occur, such as folding, twisting or

splitting of pro-molecules
7
. In order to understand

these processes, a dynamic block allocation may

also be used for a better prediction of protein

folding, especially for amino acid sequences

showing some periodicity patterns.

Continuing the work presented in8 with

additional results and several refinements, we

show two distinct algorithms for dynamic

allocation of data blocks, namely Double Brute

Force and Multi Brute Force.

MATERIALS AND METHODS

We consider a function f that accepts as input

only segments of data larger than or equal to n

nucleotides. Let L be the length of an input

sequence. We call any string made of L characters

from a set {A,T,C,G} a L-string. In actual practice,

these algorithms will take only integer input sizes

and we consider number three (n ≥ 3) as the

minimum input for a function f (as an example). A

division of L by a constant integer will not always

result in equal data blocks. Therefore, the last

block of data may contain fewer nucleotides than

the minimum limit accepted by f function (e.g. n ≥ 3).

Standard brute force exemplification

We implemented an informatic strategy based

on a brute-force search of an integer that meets

indirectly the input conditions of some external

function. To find an integer which represents the

smallest multiple for L, we apply a brute force

search method. For example, when looking for the

divisors of an integer, these procedure for brute

force search should take as parameters: the integer

L, which represents the length of a DNA sequence,

a boolean variable P, which stops the search when

the result is found, and A variable which represents

the divisor of L. Inside the loop, A variable is

incremented every cycle, and a condition checks if

the division result of L by A is an integer number.

Thus, the boolean variable P (initially false),

becomes true and the function returns the last

increment of A.

P = False
L = 143
A = 1
Do Until P = True
A = A + 1
If (L/A)= (integer number) THEN P =

True
Loop
return A

In the example above, the first integer result

from a division of L by A is number 11, which

represents the smallest integer number that can

divide L into another integer. Usually, the main

disadvantage for brute-force method is that the

number of possibilities is excessivly large for many

problems. However, we managed to optimize the

Fig. 1. Distribution of values generated by Double Brute Force and Multi Brute Force method. (A) Double Brute Force long

distribution of data blocks lengths for L-string sequences starting from 5b up to 30Kb. (B) Multi Brute Force long distribution of data

blocks lengths for L-string sequences starting from 5b up to 30Kb. Represented on y-axis is the block size range and on the x-axis the

length of the L-string sequences.

Dynamic block allocation for DNA/RNA sequences 235

process by using the modulo operator. Starting

from this example, we take advantage of the

modulo operator in order to implement a brute

force search of an integer which can be used as a

data block length (in most programming languages

modulo operator is written Mod or %%).

Double Brute Force method

In order to obtain a desired number of

nucleotides in the last block through double brute

force method, we search for a remainder t which

will represent the elements from the last block of

data. The operation of finding the remainder is

sometimes referred to as the modulo operation and

in our case is definded by

L
t L A

A

 
= − × 

 

where [L/A] represents the largest integer less than

or equal to L/A. For programming environments

lacking on modulo opertator, it can be calculated

as follows:

mod(,) int
L

L A L A
A

 
= − ×  

 

where int() represents a rounding function. Next

we modify the pseudocode example from above by

introducing the modulo operator. As shown below,

by removing the condition inside the loop we

obtain the same result:

t = 1
L = 143
A = 1
Do Until t = 0
A = A + 1
t = L - A * int(L/A)

Loop
return A

We create a condition in which we declare two

limits. The first limit, t, is responsible for the

minimum length of a data block and the second

limit, m (the upper limit), is responsible for the

maximum length of a data block. Next we begin to

increment a new variable a, and at each

incrementation of this variable we calculate the t

value as the result of the expression:

int
L

L a
A

 
− ×  

 
, reduced to aL mod

Variable r represents the difference L – t and is

an integer multiple of a. The a variable is called

the modulus of the congruence, in other words,

both numbers have the same remainder when

divided by a. The imposed condition is that t, must

result in an integer greater than three in order to

ensure at least four nucleotides in the last data

block. However, the value of L may store a prime

number. To avoid a prime number
9
, we introduce a

new variable v whose value must be equal to zero

in order to meet the imposed condition. Knowing

that prime numbers are divided by number one or

by themselves, we define variable v as the result of

the expression

2 int
2

L
L

 
− ×  

 

The result of this expression is number zero if L

is not a prime number (variable v having a

minimum role of primality tester10,11). If those two

conditions are fulfilled, meaning that t > 3 and v = 0,

then we say that the algorithm, up to this point,

managed to find a number a, which provides t

variable a value larger than three. The next step

consists in finding the optimal length for data

blocks in accordance with t variable. Variable r is a

multiple of a, thus the difference L – t will ensure a

number divisible at least by three integers. The

maximum length of a data block is declared

through m variable (m = 10). To find the optimal

length for data blocks, we must find an integer m

which is a multiple of r. If we consider a new

variable called b, which is the result of the

expression r mod m, then we impose a condition by

which the data block length is found when b is

equal to zero.

Function DBFA(ByVal L As Variant) As Integer

Dim a, t, b, m As Integer

a = 1

t = 1

b = 1

m = 10

Do Until t > 3 And v = 0

 a = a + 1

 t = L Mod a

 r = L – t

 v = r Mod 2

Loop

Do Until b = 0 Or m >= 999

 m = m + 1

 b = r Mod m

Loop

DBFA = m

End Function

At every iteration, m variable is incrementing.

If the value assigned to m variable in the

 Paul Gagniuc and Constantin Ionescu-Tirgoviste 236

incrementation process does not ensure a result

equal to zero for b variable, then we consider that

this method has not provided a valid result for

dividing L by specified parameters. Thus, L

becomes the length of a data block. Above we

show the source code of the Double Brute Force

Alocation function, syntactically compatible with

VBA, VBScript, Visual Basic 4,5,612, Visual Basic

NET and Visual Basic 2005.

Multi Brute Force method

Unlike Double Brute Force algorithm, this

method is based on a brute force search for every

decrementation of L variabile. In order to ensure a

certain number (n) of nucleotides in the last block

of data, we subtract the desired number of

nucleotides from L. We define q as the result of the

expression L – n, where n represents the number of

nucleotides in the last block. We start a brute force

search of an integer, called block, which can be a

multiple for q variable. By noting t as the result of

the expression q mod block, we could impose a

condition by which the length of the block is found

only if t is equal to zero. The block variable is

incremented from the minimum value (number

nine) which we define as a parameter, to an

arbitrary value. If block variable passes the

arbitrary value (ie. one thousand), the increment

stops, q decreases by one, the minimum length of

the block variable is redefined from the baseline (a

reset) and the search begins again for a multiple of

q.

Function MBFA(ByVal L As Variant) As Integer

Dim block As Integer

Dim t, q, n As Integer

last_block = 3

block = 9

t = 1

q = L – n

1:

Do Until t = 0 Or block > 1000

 block = block + 1

 t = q Mod block

Loop

If block > 1000 Or q < 9 Then

 q = q – 1

 block = 9

 GoTo 1

End If

MBFA = block

End Function

The search process continues until a result is

found. Essentially, dynamic allocation of data

blocks consists in dividing a L-string into smaller

segments of equal length, with respect to the

L-string total length. Above is the source code of

the Multi Brute Force Alocation function,

syntactically compatible with VBA, VBScript,

Visual Basic 4,5,6, Visual Basic NET and Visual

Basic 2005.

RESULTS AND DISCUSSION

In order to obtain an exact visualization of a data

block length distribution, we conducted an

experiment on virtual sequences (Fig. 2A). For

larger DNA sequences (up to 30Kb), both methods

exhibit two distinct areas of distribution. The first

area of distribution is located at the top of the

diagram whereas the second area of distribution is

located on the left side of the diagram (Fig. 1A,B).

For small sequences up to 300b (bases), the

Double Brute Force method assigns lengths

between 6b and 12b for each data

block set (Fig. 2B).

These allocations for data blocks, aim to

obtainin a certain number of nucleotides in the last

block, higher than the lowest limit imposed by the

programmer, but less than the total length of a data

block (Fig. 2D). For instance, a small DNA

sequence of 22b can be divided manually into 10b

for each block of data. First and second block of

data having 10b each, and the third block only 2b.

We consider a function whose input requirements

are DNA sequences between 3b and 10b (Fig. 2D).

Since the third block of data contains only 2b and

the minimum input consists of 3b, function f can

not accept this data block. Instead, the algorithm

will provide data blocks of 6b, therefore a 22b

sequence will be divided into four data blocks. The

first three data blocks will contain 6b each and the

fourth will contain 4b, which is compatible with

the minimum 3b input of the f function. The

second experiment was conducted to see how the

algorithm behaves for very large sequences.

Even for large sequences the algorithm can find

the optimal size for data blocks in the specified

parameters (Fig. 2B).

Comparison between methods

DBFA (Double Brute Force Algorithm) and

MBFA (Multi Brute Force Algorithm) functions

were tested in parallel for sequences up to 300b in

size. Apparently the block size allocation is treated

differently by both versions of the algorithm

(Fig. 2C).

Dynamic block allocation for DNA/RNA sequences 237

Fig. 2. MBFA and DBFA tests and comparisons. (A) short distribution of block sizes by Double Brute Force method ranging from 3b

to 20b, for L-string sequences starting from 5b up to 300b. Represented on y-axis is the block size range and on the x-axis the length

of the L-string sequences. The result is plotted by red lines for a better visualization of the distribution, (B) Double Brute Force

method - long distribution of block sizes ranging from 3b to 20b, for L-string sequences starting from 5b up to 30Kb. X and Y axes

have the same meaning as in section A. Data blocks are represented by red dots for a distinguishable distribution of the field, (C)

allocation of data blocks for L-string ascending sequences, from 20b up to 300b. Represented on y-axis is the block size range and on

the x-axis the length of the L-string sequences. Red line shows the distribution of data blocks for Multi Brute Force method whereas

the blue line shows the distribution of data blocks for Double Brute Force method, (D) shows a schematic representation for f

function and a random sequence of 32 nucleotides. The green horizontal segments signify the compatibility of a data block with

function f, while the red segment signify the incompatibility of a data block with function f.

MBFA shows greater flexibility and manages to

find more solutions than DBFA algorithm,

showing a relatively uniform distribution. MBFA

and DBFA methods can be incorporated as they

are or ported to other platforms without additional

effort.

Implementation

DBFA and MBFA functions work well with

other functions which require some minimum input

limitation. Below we show an example, coded in

Visual Basic programming language, which

calculates the size of data blocks for random DNA

sequences (simple strings). The syntax that comes

from Basic family of programming languages was

chosen for many similarities with the pseudocode

expressions13, which allow a focus on the logic of

the method. The application presented below is

designed to work without a GUI (Graphical user

interface) for an easy portability to other platforms.

Private Sub main()

sequence_input = Novo_Sequence(300,

"ADN")

Last_Block = 3

Min_Block = 9

Max_Block = 1000

Max_Rows = 1

Max_Cols = 3

b = MBFA(Len(sequence_input), Last_Block,

Min_Block, Max_Block)

 Paul Gagniuc and Constantin Ionescu-Tirgoviste 238

For i = 1 To Len(sequence_input) Step b

 Total_Blocks = Total_Blocks + 1

 Col = Col + 1

 BlockData = Mid(sequence_input, i, b)

 output = output & "|" & BlockData

 If Col >= Max_Cols Then

 Col = 0

 Max_Rows = Max_Rows + 1

 output = output & vbCrLf

 End If

Next i

MsgBox output

End Sub

Function MBFA(L, Last_Block, MinBlock,

MaxBlock) As Variant

Dim RestetBlock As Variant

Dim q, t As Variant

RestetBlock = MinBlock

t = 1

q = L - Last_Block

1:

Do Until t = 0 Or MinBlock > MaxBlock

 MinBlock = MinBlock + 1

 t = q Mod MinBlock

Loop

If MinBlock > MaxBlock Or q < RestetBlock

Then

 q = q - 1

 MinBlock = RestetBlock

 If q < RestetBlock Then GoTo 2

 GoTo 1

End If

2:

MBFA = MinBlock

End Function

Function Novo_Sequence(ByVal nr As

Variant, ByVal tip As String) As String

Dim nucleo(1 To 5) As String

 nucleo(1) = "A"

 nucleo(2) = "T"

 nucleo(3) = "G"

 nucleo(4) = "C"

 nucleo(5) = "U"

For N = 1 To nr

 If (tip = "ADN") Then

 C = Int(3 * Rnd(3))

 p = p & nucleo(C + 1)

 End If

 If (tip = "ARN") Then

 C = Int(4 * Rnd(4))

 If (C + 1 = 2) Then C = 4

 p = p & nucleo(C + 1)

 End If

Next N

Novo_Sequence = p

End Function

Our Supplementary material 1 contains the

source codes of DBFA and MBFA algorithms.

We aimed at assessing the effectiveness of the

proposed algorithms by implementing a GUI

application (Fig. 3A,B). This application allows

the arrangement of a DNA sequence so that an

exact number of nucleotides is provided in the last

block of data. The software implementation is

started by calling Novo_Sequence function, which

creates a random DNA sequence of a predefined

length. Next, all parameters are defined and

declared, namely Last_Block, Min_Block,

Max_Block, Max_Rows and Max_Cols.

Next, MBFA function is called in order to

determine the optimal length for data blocks.

Depending on the number of columns and rows

allowed, the spatial positioning of data blocks is

processed and displayed (Fig. 3A,B). Dynamic

block allocation may also have an important role in

aligning DNA sequences by segmental sequence

alignment method. Other possible applications are

in areas where optimization is mandatory, such as

compression functions, optimal storage for

databases, new processing methods for DNA in

silico analysis
14

 or perhaps some DNA sequence

storage formats
15

. Another application for DBFA

and MBFA functions consists in reading

information from large FASTA files through buffer

methods, by planning in advance the size of data

blocks, which are entering in the buffer

information flow.

Storage efficiency

In most software implementations a data block

length is directly allocated into memory as empty

space. Subsequently, this empty space will be

loaded with data at the entire allocated space

capacity or less than the allocated space. In silico,

an equivalent for a nucleotide molecule is an

ASCII (American Standard Code for Information

Interchange) character of 8 bits. Thus, we refer at

the memory space in terms of nucleotides. For

instance, a DNA sequence of 33 nucleotides

divided into four blocks of data (each of 10

nucleotides long), will allocate memory space for

40 nucleotides. However, the information that will

be written in the allocated area is of 33 nucleotides,

which leaves unused space for seven nucleotides.

The obvious solution is to remove the unused

space by recalculating the size of a data block. A

DNA sequence of 33 nucleotides is divided by

MBFA function into three blocks of data, each of

11 nucleotides long. This recalculation of a data

Dynamic block allocation for DNA/RNA sequences 239

Fig. 3. MBFA application. (A) Multi Brute Force method - allocation of data blocks for a DNA sequence of 122b. On the right panel

the parameters can be changed, namely the minimum and maximum length of a data block, the desired number of nucleotides in the

last data block and the maximum number of columns in which data blocks are arranged. (B) Multi Brute Force method - allocation of

data blocks for a DNA sequence of 450b.

block size allocates memory space for exactly 33

nucleotides, thus making an optimization of

memory use. This method is applicable both to

memory allocation and information storage for

files. Furthermore, a dynamic allocation may

protect any software implementation from buffer

overflow, because the algorithm itself makes this

allocation and not the programmer. The method

efficiency consists in calculating the length of data

blocks depending on the total length of the

sequence.

In future applications we intend to use this

methods for detecting different types of genomic

signals using sliding window methods
16,19

 or for

self-organization models in proteins. Self-

organization models in proteins are important for

understanding the causes of certain diseases, such

as diabetes and obesity
20,21

. Therefore, an accurate

prediction of a 3D structure for certain hormones

or prohormones, such as insulin or proinsulin (the

precursor of insulin), proamylin (Proislet Amyloid

Polypeptide) or leptin22, may bring new insights in

the metabolic syndrome
23

.

Notice: Part of this paper was presented in a

preliminary version as8.

CONCLUSIONS

Dynamic data block allocation represents a

novel and flexible method for partitioning DNA

sequences into data blocks taking into account

different rules imposed by a function. We showed

two versions of this algorithm, namely DBFA

(Double Brute Force Algorithm) and MBFA (Multi

Brute Force Algorithm). We suggested possible

applications in biology, but also a range of

applications in computer science, such as storage

efficiency or memory optimization. However, we

used this algorithm in biology in order to divide

DNA sequences into data blocks for further

processing by a certain function responsible for

data mining. Comparisons made between these two

versions of the algorithm have shown that the

allocation of data blocks involve different

distributions, both for small sequences and for very

large sequences, suggesting that DBFA provides

more rigid solutions than MBFA. Nevertheless,

given the role of this algorithm to partition

information, we also thought of a possible

application in the allocation of data packets for

telecommunication. Moreover, in our supplementary

material 1 we provide the source code of four

applications that are based on this algorithm.

REFERENCES

1. Watson J.D. & Crick F.H.C., A Structure for

Deoxyribose Nucleic Acid, Nature, 171 (4356), pp. 737–

738, 1953.

2. Venter J.C. et al., The sequence of the human genome,

Science, 16, 291(5507), pp. 1304-1351, 2001.

3. Kumar S. & Dudley J., Bioinformatics software for

biologists in the genomics era, Bioinformatics, 23,

pp. 1713–1717, 2007.

4. Gary R. Skuse & Chunguang, DU., Bioinformatics Tools

for Plant Genomics, Int J Plant Genomics, 2008.

5. Dennis A. Benson, Ilene Karsch-Mizrachi, David J.

Lipman, James Ostell, and Eric W. Sayers, GenBank,

Nucleic Acids Res. 38(Database issue): pp. 46–51, 2010.

6. Hand, D. J., Mannila, H. & Smyth, P., Principles of Data

Mining, MIT Press, Cambridge, Mass, 2000.

 Paul Gagniuc and Constantin Ionescu-Tirgoviste 240

7. Ionescu-Tîrgovişte C. & Guja C., Proinsulin, proamylin

and the beta cell endoplasmic reticulum: the key for the

pathogenesis of different diabetes phenotypes, Proc.

Rom. Acad., Series B, 2, pp. 113–139, 2007.

8. Gagniuc, P. et al., Dynamic Block Allocation for DNA

sequences, GSP 2011, 2nd International Workshop on

Genomic Signal Processing, pp. 125-130, 2011.

9. Luque, B. & Lacasa L., The first-digit frequencies of

prime numbers and Riemann zeta zeros, Proc. R. Soc. A,

465, pp. 2197-2216, 2009.

10. Andrew Granville, Prime Number Patterns, The

mathematical association of america, pp. 279-296, 2008.

11. Rene Schoof, Four primality testing algorithms,

Algorithmic Number Theory, MSRI Publications, 44,

pp. 101-126, 2008.

12. David I. Schneider, Computer Programming Concepts

and Visual Basic, 2000.

13. Kreher, D.L. & Stinson, D.R., Pseudocode: A LATEX

Style File for Displaying Algorithms, Bulletin of ICA,

30, pp. 11-24, 2000.

14. Miller, W., Comparison of genomic DNA sequences:

Solved and unsolved problems, Bioinformatics, 17, 5, pp.

391-397, 2001.

15. Jacqueline Batley & David Edwards, Genome sequence

data: management, storage, and visualization,

BioTechniques, 46, pp. 333-336 (Special Issue), 2009.

16. Paul Gagniuc et al., A sensitive method for detecting

dinucleotide islands and clusters through depth analysis,

RJDNMD, 18, 2, pp. 165-170, 2011.

17. Paul Gagniuc et al., Genomin: a software framework for

reading genomic signals, Proc. Rom. Acad., Series B, 1,

pp. 53–56, 2011.

18. Paul Dan Cristea & Rodica Tuduce: Use of Nucleotide

Genomic Signals in the Analysis of Variability and

Inserts in Prokaryote Genomes, BIOCOMP, pp. 241-247,

2008.

19. Paul Dan Cristea, Rodica Tuduce, Iulian Nastac, Jan

Cornelis, Rudi Deklerck, Marius Andrei, Signal

representation and processing of nucleotide sequences, I.

J. Functional Informatics and Personalised Medicine 1, 3,

pp. 253-268, 2008.

20. Constantin Ionescu-Tîrgovişte, A short personal view on

the pathogenesis of diabetes mellitus, Proc. Rom. Acad.,

Series B, 3, pp. 219–224, 2010.

21. Constantin Ionescu-Tîrgovişte, Proinsulin as the possible

key in the pathogenesis of type 1 diabetes, Acta

Endocrinologica, 5, 2, pp. 233-249, 2009.

22. Alina Constantin & Gabriela Costache, The emerging

role of adipose tissue-derived leptin in inflammatory and

immune responses in obesity: an update, Proc. Rom.

Acad., Series B, 1, pp. 3-12, 2010.

23. Nicoleta Milici, A short history of the metabolic

syndrome definitions, Proc. Rom. Acad., Series B, 1,

pp. 13–20, 2010.

