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Dynamic Data Block Allocation (DDBA) represents a novel and flexible method for partitioning 

string sequences into data blocks taking into account different rules imposed by a function. We 

present two versions of this algorithm, namely DBFA (Double Brute Force Algorithm) and MBFA 

(Multi Brute Force Algorithm). A series of tests were performed, mostly related to integer numbers 

where blocking and block size planning was used. Comparisons made between these two versions of 

the algorithm have shown different allocation distributions of data blocks, both for small sequences 

and for very large sequences, suggesting that DBFA provides more rigid solutions than MBFA. We 

suggest possible applications in biology, but also a range of applications in computer science, such as 

storage efficiency or memory optimization. We used this algorithm in biology in order to divide DNA 

sequences into data blocks for further processing by a data mining function. 
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INTRODUCTION
     

Here we describe a method for handling 

biological sequences (strings) in some particular 

cases. In order to perform our analysis on strings 

we used DNA sequences. The genetic information 

is stored in DNA (deoxyribonucleic acid). DNA 

consists of two long polymers of simple units 

called nucleotides. The four bases found in DNA 

are adenine (abbreviated A), cytosine (C), guanine 

(G) and thymine (T)1. In 2001, the human genome 

sequence was published and the order of these 

molecules was available as text2. A vast majority 

of algorithms used in bioinformatics are designed 

for text data mining3. Some functions used in 

bioinformatics or in computational biology accept 

structured data types of a certain length. For 

instance, every analysis tool uses a specific set of 

file formats4. FASTA format is frequently used. 

This format can encompass several types of 

sequences, such as DNA/RNA (ribonucleic acid) 

sequences or amino acid sequences. Files using 
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FASTA format may contain up to 3Gb - 6Gb of 

information. In order to process this information, 

first, one must extract smaller sequences (data 

blocks). For in silico DNA-related analysis, data 

blocks are string data type sequences having a 

nominal length (a block size). DNA sequences 

structured in this manner are said to be blocked 

(i.e. GenBank format5). Blocked data are commonly 

read by a function or procedure a whole block at a 

time. For example, we consider a function which 

has two parameters, a minimum input length (n) 

and a maximum input length (m). Therefore, the 

alleged function accepts only data blocks 

containing a number of nucleotides larger or equal 

to n and lower than or equal to m. Nevertheless, the 

chances for a number of nucleotides larger than n in 

the last data block depend on the total length of the 

sequence (length-dependent). Our method ensures 

this minimum input limitation (minimum content) 

for the last data block by planning in advance the 

size of data blocks. Thus, we can avoid an error 

inside the function. Therefore, for processing long 
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DNA sequences which are mandatory for de novo 

genomic analysis6, dynamic block allocation 

represents a possible method of choice for 

retrieving information from large files using 

buffers. One of the fundamental problems of modern 

biology is related to post-translational modifications 

of proteins in the endoplasmic reticulum where 

these processes occur, such as folding, twisting or 

splitting of pro-molecules
7
. In order to understand 

these processes, a dynamic block allocation may 

also be used for a better prediction of protein 

folding, especially for amino acid sequences 

showing some periodicity patterns.  

Continuing the work presented in8 with 

additional results and several refinements, we 

show two distinct algorithms for dynamic 

allocation of data blocks, namely Double Brute 

Force and Multi Brute Force. 

MATERIALS AND METHODS 

We consider a function f that accepts as input 

only segments of data larger than or equal to n 

nucleotides. Let L be the length of an input 

sequence. We call any string made of L characters 

from a set {A,T,C,G} a L-string. In actual practice, 

these algorithms will take only integer input sizes 

and we consider number three (n ≥ 3) as the 

minimum input for a function f (as an example). A 

division of L by a constant integer will not always 

result in equal data blocks. Therefore, the last 

block of data may contain fewer nucleotides than 

the minimum limit accepted by f function (e.g. n ≥ 3). 

Standard brute force exemplification 

We implemented an informatic strategy based 

on a brute-force search of an integer that meets 

indirectly the input conditions of some external 

function. To find an integer which represents the 

smallest multiple for L, we apply a brute force 

search method. For example, when looking for the 

divisors of an integer, these procedure for brute 

force search should take as parameters: the integer 

L, which represents the length of a DNA sequence, 

a boolean variable P, which stops the search when 

the result is found, and A variable which represents 

the divisor of L. Inside the loop, A variable is 

incremented every cycle, and a condition checks if 

the division result of L by A is an integer number. 

Thus, the boolean variable P (initially false), 

becomes true and the function returns the last 

increment of A. 

 
P = False 
L = 143 
A = 1 
Do Until P = True 
A = A + 1 
If (L/A)= (integer number) THEN P = 

True 
Loop 
return A  

 

In the example above, the first integer result 

from a division of L by A is number 11, which 

represents the smallest integer number that can 

divide L into another integer. Usually, the main 

disadvantage for brute-force method is that the 

number of possibilities is excessivly large for many 

problems. However, we managed to optimize the  

 

 

Fig. 1. Distribution of values generated by Double Brute Force and Multi Brute Force method. (A) Double Brute Force long 

distribution of data blocks lengths for L-string sequences starting from 5b up to 30Kb. (B) Multi Brute Force long distribution of data 

blocks lengths for L-string sequences starting from 5b up to 30Kb. Represented on y-axis is the block size range and on the x-axis the 

length of the L-string sequences.
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process by using the modulo operator. Starting 

from this example, we take advantage of the 

modulo operator in order to implement a brute 

force search of an integer which can be used as a 

data block length (in most programming languages 

modulo operator is written Mod or %%). 

Double Brute Force method 

In order to obtain a desired number of 

nucleotides in the last block through double brute 

force method, we search for a remainder t which 

will represent the elements from the last block of 

data. The operation of finding the remainder is 

sometimes referred to as the modulo operation and 

in our case is definded by  

L
t L A

A

 
= − × 

 
 

where [L/A] represents the largest integer less than 

or equal to L/A. For programming environments 

lacking on modulo opertator, it can be calculated 

as follows:  

mod( , ) int
L

L A L A
A

 
= − ×  

 
 

where int() represents a rounding function. Next 

we modify the pseudocode example from above by 

introducing the modulo operator. As shown below, 

by removing the condition inside the loop we 

obtain the same result: 

 
t = 1 
L = 143 
A = 1 
Do Until t = 0 
A = A + 1 
t = L - A * int(L/A) 

Loop 
return A 

 

We create a condition in which we declare two 

limits. The first limit, t, is responsible for the 

minimum length of a data block and the second 

limit, m (the upper limit), is responsible for the 

maximum length of a data block. Next we begin to 

increment a new variable a, and at each 

incrementation of this variable we calculate the t 

value as the result of the expression:  

int
L

L a
A

 
− ×  

 
, reduced to aL mod  

Variable r represents the difference L – t and is 

an integer multiple of a. The a variable is called 

the modulus of the congruence, in other words, 

both numbers have the same remainder when 

divided by a. The imposed condition is that t, must 

result in an integer greater than three in order to 

ensure at least four nucleotides in the last data 

block. However, the value of L may store a prime 

number. To avoid a prime number
9
, we introduce a 

new variable v whose value must be equal to zero 

in order to meet the imposed condition. Knowing 

that prime numbers are divided by number one or 

by themselves, we define variable v as the result of 

the expression 

2 int
2

L
L

 
− ×  

 
 

The result of this expression is number zero if L 

is not a prime number (variable v having a 

minimum role of primality tester10,11). If those two 

conditions are fulfilled, meaning that t > 3 and v = 0, 

then we say that the algorithm, up to this point, 

managed to find a number a, which provides t 

variable a value larger than three. The next step 

consists in finding the optimal length for data 

blocks in accordance with t variable. Variable r is a 

multiple of a, thus the difference L – t will ensure a 

number divisible at least by three integers. The 

maximum length of a data block is declared 

through m variable (m = 10). To find the optimal 

length for data blocks, we must find an integer m 

which is a multiple of r. If we consider a new 

variable called b, which is the result of the 

expression r mod m, then we impose a condition by 

which the data block length is found when b is 

equal to zero. 
 
Function DBFA(ByVal L As Variant) As Integer 

Dim a, t, b, m As Integer 

a = 1 

t = 1 

b = 1 

m = 10 

 

Do Until t > 3 And v = 0 

   a = a + 1 

   t = L Mod a 

   r = L – t 

   v = r Mod 2 

Loop 

 

Do Until b = 0 Or m >= 999 

   m = m + 1 

   b = r Mod m 

Loop 

 

DBFA = m 

End Function 

 

At every iteration, m variable is incrementing. 

If the value assigned to m variable in the 
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incrementation process does not ensure a result 

equal to zero for b variable, then we consider that 

this method has not provided a valid result for 

dividing L by specified parameters. Thus, L 

becomes the length of a data block. Above we 

show the source code of the Double Brute Force 

Alocation function, syntactically compatible with 

VBA, VBScript, Visual Basic 4,5,612, Visual Basic 

NET and Visual Basic 2005. 

Multi Brute Force method 

Unlike Double Brute Force algorithm, this 

method is based on a brute force search for every 

decrementation of L variabile. In order to ensure a 

certain number (n) of nucleotides in the last block 

of data, we subtract the desired number of 

nucleotides from L. We define q as the result of the 

expression L – n, where n represents the number of 

nucleotides in the last block. We start a brute force 

search of an integer, called block, which can be a 

multiple for q variable. By noting t as the result of 

the expression q mod block, we could impose a 

condition by which the length of the block is found 

only if t is equal to zero. The block variable is 

incremented from the minimum value (number 

nine) which we define as a parameter, to an 

arbitrary value. If block variable passes the 

arbitrary value (ie. one thousand), the increment 

stops, q decreases by one, the minimum length of 

the block variable is redefined from the baseline (a 

reset) and the search begins again for a multiple of 

q.  

 
Function MBFA(ByVal L As Variant) As Integer 

Dim block As Integer 

Dim t, q, n As Integer 

last_block = 3 

block = 9 

t = 1 

q = L – n 

1: 

Do Until t = 0 Or block > 1000 

   block = block + 1 

   t = q Mod block 

Loop 

 

If block > 1000 Or q < 9 Then 

   q = q – 1 

   block = 9 

   GoTo 1 

End If 

 

MBFA = block 

End Function 

 

The search process continues until a result is 

found. Essentially, dynamic allocation of data 

blocks consists in dividing a L-string into smaller 

segments of equal length, with respect to the  

L-string total length. Above is the source code of 

the Multi Brute Force Alocation function, 

syntactically compatible with VBA, VBScript, 

Visual Basic 4,5,6, Visual Basic NET and Visual 

Basic 2005. 

RESULTS AND DISCUSSION 

In order to obtain an exact visualization of a data 

block length distribution, we conducted an 

experiment on virtual sequences (Fig. 2A). For 

larger DNA sequences (up to 30Kb), both methods 

exhibit two distinct areas of distribution. The first 

area of distribution is located at the top of the 

diagram whereas the second area of distribution is 

located on the left side of the diagram (Fig. 1A,B). 

For small sequences up to 300b (bases), the 

Double Brute Force method assigns lengths 

between 6b and 12b for each data  

block set (Fig. 2B).  

These allocations for data blocks, aim to 

obtainin a certain number of nucleotides in the last 

block, higher than the lowest limit imposed by the 

programmer, but less than the total length of a data 

block (Fig. 2D). For instance, a small DNA 

sequence of 22b can be divided manually into 10b 

for each block of data. First and second block of 

data having 10b each, and the third block only 2b. 

We consider a function whose input requirements 

are DNA sequences between 3b and 10b (Fig. 2D). 

Since the third block of data contains only 2b and 

the minimum input consists of 3b, function f can 

not accept this data block. Instead, the algorithm 

will provide data blocks of 6b, therefore a 22b 

sequence will be divided into four data blocks. The 

first three data blocks will contain 6b each and the 

fourth will contain 4b, which is compatible with 

the minimum 3b input of the f function. The 

second experiment was conducted to see how the 

algorithm behaves for very large sequences.  

Even for large sequences the algorithm can find 

the optimal size for data blocks in the specified 

parameters (Fig. 2B).  

Comparison between methods 

DBFA (Double Brute Force Algorithm) and 

MBFA (Multi Brute Force Algorithm) functions 

were tested in parallel for sequences up to 300b in 

size. Apparently the block size allocation is treated 

differently by both versions of the algorithm  

(Fig. 2C). 
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Fig. 2. MBFA and DBFA tests and comparisons. (A) short distribution of block sizes by Double Brute Force method ranging from 3b 

to 20b, for L-string sequences starting from 5b up to 300b. Represented on y-axis is the block size range and on the x-axis the length 

of the L-string sequences. The result is plotted by red lines for a better visualization of the distribution, (B) Double Brute Force 

method - long distribution of block sizes ranging from 3b to 20b, for L-string sequences starting from 5b up to 30Kb. X and Y axes 

have the same meaning as in section A. Data blocks are represented by red dots for a distinguishable distribution of the field, (C) 

allocation of data blocks for L-string ascending sequences, from 20b up to 300b. Represented on y-axis is the block size range and on 

the x-axis the length of the L-string sequences.  Red line shows the distribution of data blocks for Multi Brute Force method whereas 

the blue line shows the distribution of data blocks for Double Brute Force method, (D) shows a schematic representation for f 

function and a random sequence of 32 nucleotides. The green horizontal segments signify the compatibility of a data block with 

function f, while the red segment signify the incompatibility of a data block with function f. 

 

MBFA shows greater flexibility and manages to 

find more solutions than DBFA algorithm, 

showing a relatively uniform distribution. MBFA 

and DBFA methods can be incorporated as they 

are or ported to other platforms without additional 

effort. 

Implementation 

DBFA and MBFA functions work well with 

other functions which require some minimum input 

limitation. Below we show an example, coded in 

Visual Basic programming language, which 

calculates the size of data blocks for random DNA 

sequences (simple strings). The syntax that comes 

from Basic family of programming languages was 

chosen for many similarities with the pseudocode 

expressions13, which allow a focus on the logic of 

the method. The application presented below is 

designed to work without a GUI (Graphical user 

interface) for an easy portability to other platforms.  

 

 
Private Sub main() 

sequence_input = Novo_Sequence(300, 

"ADN") 

Last_Block = 3 

Min_Block  = 9 

Max_Block  = 1000 

Max_Rows   = 1 

Max_Cols   = 3 

b = MBFA(Len(sequence_input), Last_Block, 

Min_Block, Max_Block) 
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For i = 1 To Len(sequence_input) Step b 

   Total_Blocks = Total_Blocks + 1 

   Col = Col + 1 

   BlockData = Mid(sequence_input, i, b) 

   output = output & "|" & BlockData 

   If Col >= Max_Cols Then 

      Col = 0 

      Max_Rows = Max_Rows + 1 

      output = output & vbCrLf 

   End If 

Next i 

 

MsgBox output 

End Sub 

 

Function MBFA(L, Last_Block, MinBlock, 

MaxBlock) As Variant 

Dim RestetBlock As Variant 

Dim q, t As Variant 

RestetBlock = MinBlock 

t = 1 

q = L - Last_Block 

 

1: 

Do Until t = 0 Or MinBlock > MaxBlock 

   MinBlock = MinBlock + 1 

   t = q Mod MinBlock 

Loop 

 

If MinBlock > MaxBlock Or q < RestetBlock 

Then 

   q = q - 1 

   MinBlock = RestetBlock 

   If q < RestetBlock Then GoTo 2 

   GoTo 1 

End If 

 

2: 

MBFA = MinBlock 

End Function 

 

Function Novo_Sequence(ByVal nr As 

Variant, ByVal tip As String) As String 

Dim nucleo(1 To 5) As String 

   nucleo(1) = "A" 

   nucleo(2) = "T" 

   nucleo(3) = "G" 

   nucleo(4) = "C" 

   nucleo(5) = "U" 

 

For N = 1 To nr 

   If (tip = "ADN") Then 

      C = Int(3 * Rnd(3)) 

      p = p & nucleo(C + 1) 

   End If 

 

   If (tip = "ARN") Then 

      C = Int(4 * Rnd(4)) 

      If (C + 1 = 2) Then C = 4 

      p = p & nucleo(C + 1) 

   End If 

Next N 

Novo_Sequence = p 

End Function 

Our Supplementary material 1 contains the 

source codes of DBFA and MBFA algorithms. 

We aimed at assessing the effectiveness of the 

proposed algorithms by implementing a GUI 

application (Fig. 3A,B). This application allows 

the arrangement of a DNA sequence so that an 

exact number of nucleotides is provided in the last 

block of data. The software implementation is 

started by calling Novo_Sequence function, which 

creates a random DNA sequence of a predefined 

length. Next, all parameters are defined and 

declared, namely Last_Block, Min_Block, 

Max_Block, Max_Rows and Max_Cols.  

Next, MBFA function is called in order to 

determine the optimal length for data blocks. 

Depending on the number of columns and rows 

allowed, the spatial positioning of data blocks is 

processed and displayed (Fig. 3A,B). Dynamic 

block allocation may also have an important role in 

aligning DNA sequences by segmental sequence 

alignment method. Other possible applications are 

in areas where optimization is mandatory, such as 

compression functions, optimal storage for 

databases, new processing methods for DNA in 

silico analysis
14

 or perhaps some DNA sequence 

storage formats
15

. Another application for DBFA 

and MBFA functions consists in reading 

information from large FASTA files through buffer 

methods, by planning in advance the size of data 

blocks, which are entering in the buffer 

information flow. 

Storage efficiency 

In most software implementations a data block 

length is directly allocated into memory as empty 

space. Subsequently, this empty space will be 

loaded with data at the entire allocated space 

capacity or less than the allocated space. In silico, 

an equivalent for a nucleotide molecule is an 

ASCII (American Standard Code for Information 

Interchange) character of 8 bits. Thus, we refer at 

the memory space in terms of nucleotides. For 

instance, a DNA sequence of 33 nucleotides 

divided into four blocks of data (each of 10 

nucleotides long), will allocate memory space for 

40 nucleotides. However, the information that will 

be written in the allocated area is of 33 nucleotides, 

which leaves unused space for seven nucleotides. 

The obvious solution is to remove the unused 

space by recalculating the size of a data block. A 

DNA sequence of 33 nucleotides is divided by 

MBFA function into three blocks of data, each of 

11 nucleotides long. This recalculation of a data
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Fig. 3. MBFA application. (A) Multi Brute Force method - allocation of data blocks for a DNA sequence of 122b. On the right panel 

the parameters can be changed, namely the minimum and maximum length of a data block, the desired number of nucleotides in the 

last data block and the maximum number of columns in which data blocks are arranged. (B) Multi Brute Force method - allocation of 

data blocks for a DNA sequence of 450b. 

block size allocates memory space for exactly 33 

nucleotides, thus making an optimization of 

memory use. This method is applicable both to 

memory allocation and information storage for 

files. Furthermore, a dynamic allocation may 

protect any software implementation from buffer 

overflow, because the algorithm itself makes this 

allocation and not the programmer. The method 

efficiency consists in calculating the length of data 

blocks depending on the total length of the 

sequence.  

In future applications we intend to use this 

methods for detecting different types of genomic 

signals using sliding window methods
16,19

 or for 

self-organization models in proteins. Self-

organization models in proteins are important for 

understanding the causes of certain diseases, such 

as diabetes and obesity
20,21

. Therefore, an accurate 

prediction of a 3D structure for certain hormones 

or prohormones, such as insulin or proinsulin (the 

precursor of insulin), proamylin (Proislet Amyloid 

Polypeptide) or leptin22, may bring new insights in 

the metabolic syndrome
23

.  

Notice: Part of this paper was presented in a 

preliminary version as8. 

CONCLUSIONS 

Dynamic data block allocation represents a 

novel and flexible method for partitioning DNA 

sequences into data blocks taking into account 

different rules imposed by a function. We showed 

two versions of this algorithm, namely DBFA 

(Double Brute Force Algorithm) and MBFA (Multi 

Brute Force Algorithm). We suggested possible 

applications in biology, but also a range of 

applications in computer science, such as storage 

efficiency or memory optimization. However, we 

used this algorithm in biology in order to divide 

DNA sequences into data blocks for further 

processing by a certain function responsible for 

data mining. Comparisons made between these two 

versions of the algorithm have shown that the 

allocation of data blocks involve different 

distributions, both for small sequences and for very 

large sequences, suggesting that DBFA provides 

more rigid solutions than MBFA. Nevertheless, 

given the role of this algorithm to partition 

information, we also thought of a possible 

application in the allocation of data packets for 

telecommunication. Moreover, in our supplementary 

material 1 we provide the source code of four 

applications that are based on this algorithm. 
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