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The Padmakar-Ivan index of a graph G is the sum over all edges uv of G of the number of edges 

which are not equidistant from the vertices u and v. In this paper we compute the PI index of extended 

bridge graphs. This is an efficient method of finding these indices especially when the extended 

bridge graph has a molecular graph of dendrimers form. 
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INTRODUCTION
     

The Wiener index is one of the oldest 

descriptors concerned with the molecular graph. 

This index was first proposed by H. Wiener
18 

and it 

is concerned with the determination of the boiling 

points of paraffins. Wieners original definition was 

different, but equivalent, from that which was 

written above. The definition of Wiener index in 

terms of distances between vertices of a graph is 

due to Hosoya
17

. In mathematical research, the 

Wiener index has been first studied in
9
, and for a 

long time mathematicians were not aware of the 

importance of the Wiener index in mathematical 

chemistry. In theoretical chemistry molecular 

structure descriptor, also called topological indices, 

are used to understand the properties of chemical 

compounds. By now there are many different types 

of such indices for a general graph G=(V,E). Here, 

apart from the Wiener index, we are interested in 

indices such as the Szeged index and the vertex 

PadmakarIvan index, the so called PIv index of a 

graph. The Szeged index is a topological index 

closely related to the Wiener index and is a 

summation of vertexmultiplicative type and 

coincides with the Wiener index in the case that 

the graph G is a tree. Since the Szeged index takes 

into account how the vertices of the graph G are 

 
 Proc. Rom. Acad., Series B, 2013, 15(3), p. 157–163 

distributed, it is natural to define an index that 

takes into account the distribution of the edges of 

G. All the indices mentioned above, when applied 

to chemical graphs have many chemical 

applications and it was shown that the PIv index is 

related to the Szeged index of a graph, and all of 

them have connections with the physicochemical 

properties of many complex compounds. For the 

topological indices associated to a graph two 

groups of problems can be distinguished in the 

theory of topological indices. One is to ask the 

dependence of the index to the graph and the other 

is the calculation of these indices efficiently, the 

greatest progress in solving the above problems 

was made for trees and hexagonal systems by 

Gutman et al. in
10

. In this paper we will develop a 

method to calculate Padmakar-Ivan index of the 

extended bridge graphs with several examples of 

molecular graphs. Throughout this paper all the 

graphs are simple and connected. 

PRELIMINARIES 

Let G be a connected graph with vertex and 

edge sets V (G) and E(G), respectively. 

We denote the distance between two arbitrary 

vertices x and y of G by dG(x,y) (d(x,y) for short). It 
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is defined as the number of edges in the minimal 

path connecting the vertices x and y. Given an 

edge e=uv∈E(G) of G, we define the distance of e 

to a vertex w∈V(G) as the minimum of the 

distances of its ends to w, i.e. d(w,e)=min{d(w,u), 

d(w,v)}. Let us denote the number of edges lying 

closer to the vertex u than to the vertex v by 

mu(e|G) and the number of edges lying closer to 

the vertex v than to the vertex u by mv(e|G), thus 

mu(e|G)=|{f∈E(G)|d(u,f)<d(v,f)}|, and similarly 

for mv(e|G). The Padmakar-Ivan (PI) index of a 

graph G is defined as  

PI(G)= ∑
∈ )(

)(
GEe

e Gm  

where me(G)=mv(e|G)+mu(e|G) is the number of 

edges of G that are not equidistant from the two 

ends of the edge e. Let {Gi} be a set of finite pair 

wise disjoint graphs with vi∈V(Gi). The bridge 

graph  

B(G1,G2, . . . ,Gn) =B(G1,G2, . . . ,Gn;v1,v2, . . . , vn) 

of {Gi} with respect to the vertices {vi} is the 

graph obtained from the graphs G1,G2, . . . ,Gn by 

connecting the vertices vi and vi+1 by an edge for all 

i=1, 2, . . . , n−1. Define  

Gn(H, v)=B(H,H, . . . ,H; v, v, . . . v), 

(n times) which is the special case of bridge graph 

[12,13].  

 

 

Fig. 1. The extended bridge graph. 

Thus, G1(H,v)=H for any vertex v of H. Let G 

be a graph with vertex set V(G)={v1, v2, ·  ·  ·  , vn} 

and {Hi} a sequence of finite connected pairwise 

disjoint graphs such that V(G)I V(Hi)={vi}. The 

extended bridge graph EB(G;H1, ·  ·  ·  ,Hn; v1, ·  ·  ·  

vn) of G and {Hi} with respect to {vi} is 

constructed by identifying the vertex vi in G and 

Hi, by connecting the vertices vi and vi+1 by an 

edge for all i∈N and (i mod n), see [16]. An 

example is shown in Figure 1. In special case of 

extended bridge graph, if G a path graph then 

EB(G;H1, · · · , Hn; v1, · · · vn)=B(H1,H2, . . . ,Hn; v1, 

v2, . . . , vn). 

MAIN RESULTS AND DISCUSSION 

In this section we derive a formula for the PI 

index of the extended bridge graph when G is a 

cycle graph. First we denote the set of all edges uu' 

such that d(u,v)=d(u',v) by Mv(G). The cardinality 

of Mv(G) is denoted by mv(G). 

 
Theorem 1. The PI index of the extended 

bridge graph K=EB(Cn;H1, ...,Hn; v1, v2, ·  ·  ·  , vn) 

of cycle graph Cn and {Hi} with respect to {vi} is 

given by where ei =vivi+1 and we have: 

1

2

2
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Proof. Let K=EB(Cn;H1,…,Hn;v1,…,vn) of G 

and {Hi}. From the definitions we have that  

1 1

1 1

( ) ( ) (| ( )| \ ( )) { }
i i

n n

n
v i i v i i i i

i i
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where vn+1=v1 then 
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(a) If e is the edge vi vi+1 in K, then there exists the 

following two cases:  

Case(i) If G is a even cycle graph then there exists 

only a edge which is equidistant from the ends of 

the edge e 

 

Case(ii) If G is a odd cycle graph then there 

exists only a vertex such as vj which is equidistant 
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from the ends of the edge e, thus edges set E(Hj) is 

equidistant from the ends of the edge e 

 

(b) If e∈Mvi(Hi) then all the edges in E(K)\E(Hi) 

are equidistant from the ends of the edge e 

 

(c) If e∈E(Hi)\Mvi(Hi) then each edge in 

E(K)\E(Hi) is not equidistant from the ends of the 

edge e. 

 

This can be equivalent to  
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when Cn is an even cycle graph , and when Cn is an 

odd cycle graph, we can: 

1 ( ) 1
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We define, 

EBn(G,H,v)=EB(G;H,H,…,H;v,…,v}), 

(n times and n ≥ 3) which is the special case of 

extended bridge graph are built from several copies 

of the same graph was consider. As a corollary of 

Theorem 1, we have the following result. 

 
Corollary 1. Let H be any graph with fixed 

vertex v. Then the PI index of the extended bridge 

graph EBn(Cn,H, v) is given by 

2 2

2 2
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Proof. By use of the definitions and Theorem 1 

this proof is straightforward. 

 

 

                    (a)                                   (b) 

Fig. 2. The extended bridge graph  (a)- Γ 4,6 ,     (b)- ∆ 6,8. 

Example 1. Let Pm be the path graph on m 
vertices, Clearly PI(Pm)=(m-1)(m-2), |V(Pm)|, 
|E(Pm)|=m-1 and mv1(Pm)=0, defined 

, ,1 1( , , )n m n n mEB C P vδ =  

Then   
2 2

, ,1 2 2

2 2
( )

( 2)
n m

n m n n
PI

n m n m other

 −
δ = 

− −
  

We use a path Pm of arbitrary length m and 

choose a (fixed) vertex vl with ml ≤≤1 , and 

define lmn ,,δ = EBn(Cn, Pm, vl). It is easy to check 

that the vertex PI index of the graph lmn ,,δ does not 

depend on the vertex l which we choose in each 
path (as long as it is the same in each path). 
However, checking the formula given in Theorem 
1, we see that mvl(Pm) = 0 for any vertex v in Pm 
the resulting formula is the same for any choice of 
vertices in the paths. We describe the result more 
precisely in the following corollary. 

 
Corollary 2. For a tree Tm with m vertices, we 

have 

2 2

, , 2 2

2
( )

( 2)
n m l

n m n
PI

n m n m other


∆ = 

− −
 

Proof. By use of the definitions, we have 
|V(Tm)|=|E(Tm)| + 1=m , mvi(Tm) = 0 for 1 ≤ i ≤ m 
and Clearly PI(Tm)=(m−1)(m−2), then this proof is 
straightforward. 



  Jafar Asadpour  162

 
Corollary 2. The PI index for 

Γ n,m=EBn(Cn,Cm, v) is given by 

 

 

Proof. Let Cm be the cycle graph on m vertices,  

( 2) 2
( )

( 1)
m

m m m
PI C

m m other

 −
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0 2
( )
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Example 2. The PI index for nn,Γ  = 

EBn(Cn,Cn,v) is given by 

 
3

, 3

( )( 2) 2
( )
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PI
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Dendrimers are highly branched macromole-
cules. They are being investigated for possible uses 
in nanotechnology, gene therapy, and other fields. 

Each dendrimer consists of a multifunctional core 
molecule with a dendritic wedge attached to each 
functional site. The core molecule without 
surrounding dendrons is usually referred to as 
zeros generation. Each successive repeat unit along 

all branches forms the next generation, 1st 
generation and 2nd generation and so on until the 
terminating generation. The topological study of 
these macromolecules is the aim in investigations 

mathematical chemistry see [1-4] for details. In 
this example we will consider a two classes of 
dendrimer nanostars and find their PI indices. 

NS[r] denotes the molecular graph of a nanostar 
dendrimer with exactly r generations depicted in 

Figure 3. In [3] we have:  

 

and  

 

This dendrimer contains three branches B1NS[r], 
B2NS[r] and B3NS[r]. Hence by use of Theorem 1 
one can write: 

 

and  

 

Also, 

 

 

 

Therefore, 

 

We now consider PI index for NS4[r] class of 

nanostar dendrimers with exactly r generations 

depicted in Figure 4. In center of Figure 4, the core 

of dendrimer nanostar NS4[r] is depicted. Thus, we 

can check that the vertices set and edges set of 

NS4[n]. In [4], 

 and 

 

 

Fig. 3. The nanostar dendrimer NS[n]. 

 

Fig. 4. The Molecular Graph of NS4[n]. 

Also, 
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Thus,  

 

and  

 

Therefore, 
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