RESEARCH ON THE INFLUENCE OF TECHNOLOGY ON SOYBEABEAN CROP IN THE ROMANIAN PLAIN

SIMONA MARIANA GÎDEA

PhD University of Agronomic Sciences and Veterinary Medicine, Faculty of Agriculture, 59 Marasti Avenue, sector 1, Bucharest, Romania, sgidea@yahoo.com

Received May 28, 2010

Soybean is one of the agricultural crops central to insuring protein resources both for humans and for animals. In addition it has the capacity to enter into a symbiotic relationship with *Rhizobium japonicum*, a process which results in the fixation of a large amount of nitrogen.

The optimization of the production process is the aim of any farmer.

The research which was carried out proved that significant production boosts may be gained through a combination of the technological elements of weed control and fertilization levels.

Key words: Technological elements; Weed control; Fertilization formula; Weed coverage; Production.

INTRODUCTION

Soybean provides a high amount of high quality and economic nutrients necessary in human and animal diets. Soybean has an agrotechnical importance thanks to the symbiotic relationship with the Bradyrhizobium bacteria (*Rhizobium japonicum*) which results in an increase of 60 to 90 kilos of nitrogen per hectare and reduces the demand for nitrogen fertilizers. In the first stage of the growing season, during the first 4 to 5 weeks after emergence, soybean crop is sensitive to weed coverage and defective weed control in this period leads to production decreases which could even compromise it.

The objective of the research was to quantify the impact of weed control methods and of fertilization on soybean yield, to identify the best technological elements, to observe how different agrophytotechnical treatments result in variations in the plant component of the biocenosis and foremost on the growth and development of soybean plants, production and on some of its quality indicators, as well as on the process of symbiosis of soybean plants with the nitrogen-

Proc. Rom. Acad., Series B, 2010, 1, p. 75-80

fixating bacteria (*Bradyrhizobium japonicum*) and to determine the influence of agrophytotechnical measures on weeds and their influence on soybean yields.

MATERIALS AND METHODS

In order to attain these objectives in the period 2004–2009, a bifactorial (2×5) experiment was set up, where

Factor A: Fertilization with 2 graduations: $a_1 = N_0P_0$; $a_2 = N_{100}P_{50}$

Factor B: Weed control tillage, with 5 graduations:

b₁ – no tillage

 $b_2 - 2$ mechanical hoeings + row weeding

 $b_3 - 2$ mechanical hoeing + row herbiciding (Pulsar 0.3l/ha+ Fusilade 0.3/ha)

 b_4 – preemergent herbiciding (Dual Gold 1,51/ha) + mechanical hoeing

b₅ – preemergent herbiciding (Dual Gold 1,51/ha).

The research was performed unde the pedoclimatic conditions of Moara Domneasca on a reddish preluvosoil, with a humus content of 2.35%.

Except for the applications specific of each treatment, all treatments received the same applications.

Phosphorus fertilizers were applied in autumn, before plowing and nitrogen fertilizers were applied before the preparation of the seedbed.

RESULTS AND DISCUSSIONS

Determining the weed coverage of soybean crop three weeks after crop emergence (Table 1)

The findings lead to the following reasoning: - So far the application of fertilizers hasn't

influenced the weed coverage of the crop;

- The applications of preemergent herbicides reduced the weed coverage of the crop compared to the witness treatments. In comparison with the witness treatment with no tillage. application of preemergent the herbicides led to a very significant reduction in the number of weeds per square metre, for both studied fertilization formulas and as well as for the mean values for factor A.

Determining the weed coverage rate of soybean crop three weeks after performing the first tillage (Table 2). When analysing the table data there can be seen.

- In the fertilized crop, during the first three weeks, the weed coverage rate was on average smaller in comparison with the no till treatments. This phenomenon took place because the soybean plants developed faster in

Weed coverage of the sovbean crop (no/sqm)

the fertilized crop and they prevented (reduced) the further occurence of weed emergence.

- In the treatments where weed control was performed in May (row howing or herbiciding on the plant row), the weed coverage rate was smaller on average for both fertilization formulas. The differences between the treatments with row weeding and row herbiciding aren't statistically assured, these kinds of till having a practically similar effect.

- Concerning the effectiveness against weeds, the treatments of the experiment go as follows:

- 1. The $N_{100}P_{50}$ fertilization formula reduced the weed coverage rate in comparison with the N₀P₀ fertilization formula.
- 2. In the $N_{100}P_{50}$ fertilization formula, compared with N₀P₀, all till determined lower values of weed numbers.

The differences favouring the N₁₀₀P₅₀ fertilization formula aren't statistically assured, but given the general occurence of the phenomenon, it can be concluded that in the $N_{100}P_{50}$ fertilization formula, the fertilized soybean plants developed better and prevented the emergence of some weeds

Mean values 2005-2008

Weed coverage of soybean crop (no/sqm) when performing the first tillage in the growing season, averages of 2005–2008

			fluence of v the same fe Interac	The influence of weed control methods Factor B				
	Weed control	$a_1 \\ N_0 P_0$	$\begin{array}{c} \text{Dif} \\ a_1b_n \text{-} a_1b_1 \end{array}$	a ₂ N ₁₀₀		Dif a ₂ b _n - a ₂ b ₁	Mean b	$\frac{\text{Dif}}{b_n - b_1}$
b_1	No till	113	Mt	11	0	Mt	112	Mt
b ₂	2 mechanical hoeings+ row weeding	112	-1	11	0	-1	111	-1
b ₃	2 mechanical hoeings+ row herbiciding (Pulsar 0,31/ha + Fusilade 0,3/ha)	115	3	10	9	-2	112	0
b ₄	preemergent herbiciding(Dual Gold 1,51/ha) + mechanical hoeing	17	-96 ⁰⁰⁰	15	5	-95 ⁰⁰⁰	15	-97 ⁰⁰⁰
b ₅	preemergent herbiciding(Dual Gold 1,5l/ha)	16	-97 ⁰⁰⁰	14	ļ	-96 ⁰⁰⁰	15	-97 ⁰⁰⁰
		The inf	luence of the					
		Factor	A					
			Dif $b_n - b_1$					
a ₁	N ₀ P ₀	74	Mt			DL 5%	DL 1%	DL 0,1%
				Α		5,2	7,1	9,8
1 2	$N_{100}P_{50}$	72	-2	B	×A	4.4	6.8 10,1	11.1

Table 2

The weed coverage rate of soybean crop (no/sqm) three weeks after performing the first till in the growing season, mean values of 2005–2008

Weed coverage of the soybean c	crop (n	o/sqm)
--------------------------------	---------	--------

Averages 2005–2008

		The in	fluence of v	The inf	The influence of weed		
		for	the same fe	control methods Factor B			
			Interac				
	Weed control	a ₁	Dif	a ₂	Dif	Mean	Dif
		N_0P_0	a_1b_n - a_1b_1	$N_{100}P_{50}$	a_2b_n - a_2b_1	b	$b_n - b_1$
b_1	No till	140	Mt	128	Mt	133.5	Mt
b_2	2 mechanical hoeings+ row weeding	23	-118	18	-110	19.5	-114
b_3	2 mechanical hoeings+ row herbiciding	28	-112	23	-105	24.5	-109
	(Pulsar 0,31/ha + Fusilade 0,3/ha)						
b_4	preemergent herbiciding(Dual Gold	25	-115	18	18 -110		-112.5
	1,51/ha)						
	+ mechanical hoeing						
b_5	preemergent herbiciding(Dual Gold	37	-103	27	-101	43	-90.5
	1,5l/ha)						
		The inf	luence of th	e fertilizatio	on formula		
		Factor	А				
			Dif $b_n - b_1$				
a_1	N ₀ P ₀	52	Mt		DL	DL	DL 0,1%
					5%	1%	
				А	2.75	3.85	6.15
a ₂	$N_{100}P_{50}$	45	-7	В	5.75	7.65	10.8
				$B \times A$	7.3	10.35	15.4

Weed coverage rate of soybean crop three weeks after performing the first till (Fig. 1). The findings of the measurements carried out three weeks after performing the first till in the growing season show that:

a. In the fertilized crop, compared to the treatments with no fertilization the weed coverage rate was on average 13% lower;

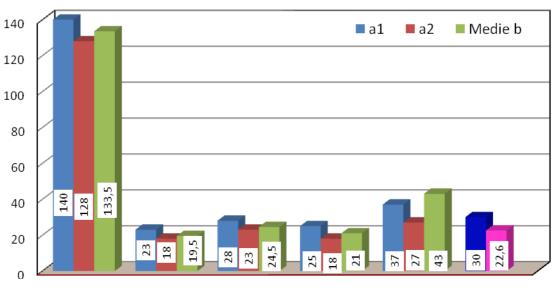


Fig. 1

Weed coverage rate of soybean crop before harvesting soybean crop

The numerical findings of the measurements of the weed coverage rate carried out in autumn, before harvesting soybean crop were the following (Table 3):

In comparison with the N₀P₀ fertilization formula, fertilization reduced very significantly the weed coverage rate for all 5 till treatments,

The weed control till, compared with the treatment with no till, reduced the weed coverage rate for both studied fertilization formulas as well as for the mean values.

The lowest weed coverage rate was recorded in the treatments with 2 mechanical hoeings and row weeding (b₂), or 2 mechanical hoeings and row herbiciding (Pulsar 0.3l/ha + Fusilade 0.3/ha) (b₃). A higher weed coverage rate was recorded in the treatments with preemergent herbiciding (b_4 and b_5).

The findings of the quantitative measurements of the weed coverage rate of soybean crop before harvesting (Table 4) show that:

The fertilization with N₁₀₀P₅₀ didn't produce significant changes in weed biomass,

Weed control till reduced very significantly weed biomass for both tested fertilization formulas.

The treatments with preemergent herbiciding only, weed control was poor

The aforementioned prove that the effectiveness (and the efficiency) of fertilization and weed control can be properly assessed if the weed coverage rate is measured using both methods (numerical and quantitative).

Soybean production, mean values for the studied period (Table 4). Their examination leads to the following conclusions:

- Soybean production was favoured both by fertilizers and by weed control;

- The fertilization of soybean with $N_{100}P_{50}$ in the studied period determined a mean production boost of 343.7 compared with the treatment with no fertilization.

- Therefore, soybean crop has a favourable reaction to nitrogen and phosphorus fertilization in the soil of Moara Domneasca, even if a part of the nitrogen amount is provided by the symbiotic process.

- Weed control till is also an important factor for the production boost. On average, for the two fertilization formulas, the studied till increased production 4-5 times.

In comparison with the treatment with 2 mechanical hoeings and row weeding which weed considered witness (for ecological reasons), in the treatment with no till soybean production was 1850kg/ha lower

The comparisons among treatments, in each fertilization formula, highlight that in three treatments with weed control till, almost the same production levels are reached (the differences aren't statistically assured). There can be also seen that in each fertilization formula, the treatment with preemergent herbiciding with 1.5 l Dual/ha the production was lower than for the witness and statistically assured.

- The comparisons to the production of the witness treatment $(N_0P_0 + 2 \text{ mechanical hoeing})$ + row weeding) lead to the following conclusions:

a. Under no fertilization (N_0P_0) , three tilled treatments have similar productions, with no statistical assurance.

b. The N₁₀₀P₅₀ fertilization formula for three treatments with weed control (the same kind as for N_0P_0) led to statistically assured production boosts compared to the witness.

Table 3

The weed coverage rate of soybean crop (no/sqm) before harvesting soybean crop, mean values of 2005-2008

We	eed coverage of the soybean crop (no/sqm)					Average	s 2005–2008
		-	fluence of v the same fe Interac	The influence of weed control methods Factor B			
	Weed control Factor B	a ₁	Dif	a ₂	Dif	Mean b	Dif
		N_0P_0	$a_1b_n - a_1b_1$	$N_{100}P_{50}$	$a_2b_n - a_2b_1$		$b_n - b_1$
b_1	No till	133	Mt	123	Mt	128	Mt
b ₂	2 mechanical hoeings+ row weeding	29	-104 ⁰⁰⁰	25	-99 ⁰⁰⁰	27	-101 ⁰⁰⁰
	2 mechanical hoeings+ row herbiciding (Pulsar 0.3l/ha + Fusilade 0.3/ha)	28	-105 ⁰⁰⁰	24	-99 ⁰⁰⁰	28	-100 ⁰⁰⁰
	preemergent herbiciding(Dual Gold 1.5l/ha) + mechanical hoeing	35	-98 ⁰⁰⁰	27	-97 ⁰⁰⁰	31	-97 ⁰⁰⁰

b ₅	preemergent herbiciding(Dual Gold 1.5l/ha)	49	-84 ⁰⁰⁰	41	-82 ⁰⁰⁰	45	-83 ⁰⁰⁰
		The in	fluence of th				
			Fa	ctor A			
	Fertilization Factor A		Dif $b_n - b_1$				
a_1	N ₀ P ₀	55	Mt		DL 5%	DL 1%	DL 0,1%
				А	2.4	3.8	6.6
a_2	$N_{100}P_{50}$	48	-7 ⁰⁰⁰	В	4.9	7.17	11.7
				$\mathbf{B} \times \mathbf{A}$	6.0	8.1	11.3

Table 3 (continued)

Table 4

The weed coverage rate of soybean crop (kg/ha d.s.) before harvesting soybean crop, mean values of 2005-2008

We	Weed coverage of the soybean crop (no/sqm)Averages 2005–2008								
		-	nfluence of v the same fe Interac	The influence of weed control methods Factor B					
	Weed control Factor B	$a_1 \\ N_0 P_0$	Dif $a_1b_n - a_1b_1$	$a_2 \\ N_{100}P_{50}$	Dif $a_2b_n - a_2b_1$	Mean b	Dif $b_n - b_1$		
b_1	No till	750	Mt	731	$\frac{u_2 v_n}{Mt}$	741	Mt		
b ₂	2 mechanical hoeings+ row weeding	189	-561 ⁰⁰⁰	196	-535 ⁰⁰⁰	192	-548 ⁰⁰⁰		
b ₃	2 mechanical hoeings+ row herbiciding (Pulsar 0,31/ha + Fusilade 0,3/ha)	183	-567 ⁰⁰⁰	202	-529 ⁰⁰⁰	193	-549 ⁰⁰⁰		
b ₄	preemergent herbiciding(Dual Gold 1,51/ha) + mechanical hoeing	206	-544 ⁰⁰⁰	215	-516 ⁰⁰⁰	210	-530 ⁰⁰⁰		
b ₅	preemergent herbiciding(Dual Gold 1,5l/ha)	319	-431 ⁰⁰⁰	297	-435 ⁰⁰⁰	186	-555 ⁰⁰⁰		
		The influence of the fertilization formula Factor A							
	Fertilization Factor A		$\operatorname{Dif} b_n - b_1$						
a 1	N ₀ P ₀	330	Mt	A	DL 5%	DL 1% 16.5	DL 0,1% 28.1		
a ₂	$N_{100}P_{50}$	328	-2	\mathbf{B} $\mathbf{B} \times \mathbf{A}$	13.6 22.3	18.76 32.9	33.3 57.1		

Table 4

Productions of soybean (kg/ha), mean values of 2005-2008

Averages 2005-2008

		The influence of weed control methods for the same fertilization formula Interaction B × A				weed control methods		
		a ₁	a ₁ Dif a ₂ Dif I				actor B Dif	
	Weed control Factor B	$N_0 P_0$	$a_1b_n - a_1b_1$	$N_{100}P_{50}$	$a_2b_n - a_2b_1$	b	$b_n - b_1$	
b ₁	No till	296.7	-1780.0	516.7	-1920.0	406.7	-1850.0	
b ₂	2 mechanical hoeings+ row weeding	2076.7	Mt	2436.7	Mt	2256.7	Mt	
b ₃	2 mechanical hoeings+ row herbiciding (Pulsar 0,31/ha + Fusilade 0,3/ha)	2073.3	-3.3	2503.3	66.7	2288.3	31.7	
b ₄	preemergent herbiciding(Dual Gold 1,51/ha) + mechanical hoeing	1991.7	-85.0	2353.3	-83.3	2172.3	-84.3	
b ₅	preemergent herbiciding(Dual Gold 1,51/ha)	1703.3	-373.3	1996.7	-440.0	1850.0	-406.7	
		The inf	The influence of the fertilization formula Factor A					
	Fertilization Factor A	Dif b _n - b ₁						
0	N ₀ P ₀	1628.3	Mt		DL 5%	DL 1%	DL 0,1%	
a ₁	TA0T 0	1020.3	IVIL	A	138.3	230	480	
a ₂	N ₁₀₀ P ₅₀	1972.0	343.7**	\mathbf{B} $\mathbf{B} \times \mathbf{A}$	193 370	350 510	608.3 740	

CONCLUSIONS

The fertilization with $N_{100}P_{50}$ didn't influence the weed coverage rate of soybean crop significantly.

Weed control significantly reduced the weed coverage rate of soybean crop for all three determinations.

Soybean productions were very significantly higher when fertilizing with $N_{100}P_{50}$ and weed control methods determined production boosts 4-5 times higher.

REFERENCES

- 1. Gidea Mariana Simona PhD thesis, Bucharest, 2010.
- Chris Halford, Allan S. Hamill, John Zhang, Colleen Doucet, Critical Period of Weed Control in No-Till Soybean (Glycine max) and Corn (Zea mays), Weed Technology, Volume 15, Issue 4 (October-December 2001) p. 737–744.
- Clifford H. Koger, David R. Shaw, Clarence E. Watson, and Krishna N. Reddy, Detecting Late-Season Weed Infestations in Soybean (Glycine max), Weed Technology, Volume 17, Issue 4 (October-December 2003) p. 696–704.
- Clyde C. Dowler and M. B. Parker, Soybean Weed Control Systems in Two Southern Coastal Plain Soils, by © 1975, Weed Science Society of America.
- Cousens Roger, Mortimer Martin, Dynamics of weed populations, Cambridge [u.a.]: Cambridge Univ. Press, 1995, ISBN 0521 49649.