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This paper presents the use of distance normalization techniques in order to improve the speaker
verification systems performances. These techniques provide a dynamic threshold that compensates
the trial-to-trial variations and replaces the fixed threshold used in the classical speaker verification
approach. The use of cohort method normalization is described. The paper also presents a theoretical
approach to the world model method normalization, which is an alternative of the cohort method. The
algorithm is evaluated using the YOHO database and a proprietary database. The method is also
studied from the point of view of storage space requirements and computational effort. The results
showed that the use of cohort normalization increases the system performances. The algorithm also
involves small computational resources, making them more suitable for a commercial application.
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1. INTRODUCTION

The speaker verification applications are based
on matching a voice sample acquired in the
recognition phase with a speaker model created in
the training phase [7]. This is a classification task
that can yield two results: true customer and
impostor. The classic approach is to measure the
matching degree between the voice sample and the
speaker model by computing a distance and
comparing it with a fixed threshold. The value of
this threshold can be set during the training phase
and can be updated periodically, but this operation
requires a priori knowledge of both true customers
and impostors. The decision is based exclusively
on the voice sample and speaker model data,
without considering any information about
possible impostors.

Given a sequence of vectors O  obtained from a
verification phrase, a test speaker identity is
authenticated if and only if:

( ) ( )YTYOd <, (1)

otherwise the speaker is declared an impostor and
will be rejected.

• ( )YOd ,  is the distance between the sequence
of feature vectors and the model Yλ  which
was obtained in the training phase.

• ( )YT  is the decision threshold for the speaker
Y ; usually this threshold is set to the same
value for all speakers.

The decision threshold is computed during the
training phase by minimizing the classification
error of the available voice samples. Even if the
decision threshold is modified subsequently, it is
not adapted in real time based on the testing
conditions (noise, speaker’s mood, etc).

The classic methods obtain the verification
score (distance or likelihood) using only the model
of the speaker who claimed the identity. This way,
only information about the claimed identity is
used, and no information about the potential
impostors.

The variations in time of the testing conditions
(noise, speaker's mood, inherent variations among
utterances of the same speaker, etc.) cannot be
handled by this method. Adaptation of the
customer’s model as well as the verification
threshold for each speaker is a solution to the
problem of obtaining high recognition accuracy
over a long period of time. In order to compensate
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the effects of these variations, three types of
normalization/adaptation techniques have been
attempted: in the parameter domain, in the model
domain, and in the distance domain.

This paper focuses only on normalization in the
distance domain and describes the cohort
normalization method and the world model
method.

2. THE COHORT METHOD AND THE
WORLD MODEL METHOD

The cohort method [1] consists in selecting a
number of speakers, different from the speaker
who claimed the identity; these speakers will form
the cohort. The ensemble of speakers available for
the selection process is called the cohort pool.
Usually, the cohort pool is identical to the
ensemble of users of a given system. If m
speakers are selected in a cohort, the number m  is
called the cohort dimension [10], [11]. The cohort
method uses a threshold computed in the
verification phase, instead of a fixed threshold.
Thus, two distances are computed: one to the
speaker model of the person whose identity is
claimed, and another to the models of the cohort
speakers associated with that speaker. If we agree
that the acceptance of an impostor and the rejection
of a true customer are of equal importance, then
expression (1) becomes:

( ) ( )YOdYOd ,, < (2)

where ( )Y,Od  is the distance between the sequence
of feature vectors O  and the cohort models. The
term ( )YT  from expression (1) was replaced by

( )Y,Od , called the normalization term.
The normalization term in expression (2)

explicitly depends on the sequence of test vectors
O . This way, the new obtained “threshold” is now
sensitive to the variation of the sequence O  from
one utterance to another.

The cohort method raises two questions:
• How do we select the cohort members?
• How do we compute the distance ( )Y,Od  when

Y  is in fact a composite model made of m
individual models?

The differences between various
implementations of the cohort method result from
the different techniques being used to select the
models and to compute the distance ( )Y,Od .

There are several techniques for selecting the
speakers who will form the cohort:
• Selection of the closest speakers to a given

speaker; the selection criterion from the cohort
pool is the matching degree with the given
speaker model.

• Random selection of m  speakers from the
cohort pool.

• Selection based on the minimization of the
error rate. This way, only one cohort model is
used for all the speakers. The selection of the
cohort speakers is performed by trying
different models until the error rate is
minimized. This technique has the
inconvenience of requiring a high computation
volume in the training phase.

Choosing cohort speakers close to the target
speaker model increases the system performance
against attack by impostors whose voices are
similar to the target speaker’s voice [1], [2], [12],
[14].

The model Y is a composite model including m
speaker models. The computation of ( )Y,Od
requires the use of an operator over m distances,
one for each cohort speaker. Examples of methods
used are: the arithmetic or geometric mean method,
the minimum method, and the weighted average
method. Using one of these methods, the decision
of acceptance/rejection for a speaker is based on
the score S , which is computed as follows [1]:
• The arithmetic mean method

The distance from the test phrase to the cohort
models is the arithmetic mean of the distances
to the cohort speaker models

( ) ( )yX,dy'X,d
m
1

S
m

1i
i −= ∑

=

(3)

where iy ′  is the model for the cohort speaker i
of the cohort associated with the speaker y ,
and X  is the test phrase.

• The geometric mean method
The distance from the test phrase to the cohort
models is the geometric mean of the distances
to the cohort speaker models

( ) ( )yX,dy'X,dS
1

i −= ∏
=

m m

i

(4)

• The minimum method
The distance between the test phrase and the
impostor model is the minimum of the
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distances to the cohort speaker models. For
one phrase that is

( )[ ] ( )yX,dy'X,dminS
yØy

−=
∈′ (5)

where yΨ  is the cohort associated with the
speaker y .

• The weighted average method [10]
The distance to the impostor model is a
weighted average of the distances to the cohort
speakers. The weights can remain fixed after
the training phase or they can be modified
during the test itself. The score is computed as
follows

( ) ( )yX,dy'X,dwS
m

1i
ii −= ∑

=

(6)

      where the weights iw  satisfy the relation

      1
1

=∑
=

m

i
iw .

This method is applied to a feature vector
level corresponding to a window frame and
not to a phrase level.

For all these above expressions, the unknown
speaker is accepted as a true customer if S  has a
positive value (i.e., the distance to the impostor
model is greater than the other term) and is
rejected if the score is negative or zero.

The actions performed are:
A. In the training phase:
• build the voice model for each speaker;
• select m  speakers from the cohort pool and

use them to build the cohort.
B. In the verification phase:
• the unknown speaker claims an identity and

utters a phrase;
• the phrase is compared to the model associated

with the claimed identity and to the cohort
models; for each comparison a distance is
computed; using the 1+m  distances, a score is
computed using one of the methods presented
above and a decision is made; the decision is
either “accept” or “reject”, depending on the
sign of the score.

The world model method [5], [7], [9] reduces
the dimension of the normalization problem from
m  to 1 by using a single impostor model that is
synthesized. Similarly with the cohort method a
speaker is accepted if the sequence of feature
vectors satisfies the expression

( ) ( )YOdYOd ,, < (7)

where ( )Y,Od  is the distance between the
sequences of feature vectors O  and the world
model.

The main question here is “how do we generate
the world model?”

Two different methods are used to generate the
world model [2], [11]:
• The world model is generated as the average of

the feature vectors of all speakers.
• The world model is generated from a subset of

training phrases. The selection criterion is the
maximum average distance to the speaker
models.

The operations performed are:
A. In the training phase:
• build the voice model for each speaker;
• generate the world model using one of the

above mentioned methods.
B. In the verification phase:
• the unknown speaker claims an identity and

utters a phrase;
• the phrase is compared to the model associated

with the claimed identity and to the world
model; the decision to accept or reject the
speaker is made by comparing the two
distances.

The performance of this method depends on the
number and the specific features of the available
speakers.

The world model method increases the system
confidence with regard to attacks by impostors
whose voices are different than the target speaker’s
voice.

For all the mentioned methods, depending on
the type of parameters used in the feature vector,
various distances can be used: log-spectrum,
cepstral, probability distortions, etc.
§ A typical example is the Euclidean distance

( )
m

yxyxd −=, (8)

the most natural measure of the match being
the square error function ( 2=m ).

§ A more general method is the weighted square
error function:

( ) ( ) ( )yxwyxyxd t −⋅−=, (9)

where w  is a symmetric matrix non-negative
defined.
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§ The Itakura-Saito distance computes a distance
between two random input vectors, using their
spectral densities:

1ln),( −









−=

y

x

y

x

f
f

f
f

yxd (10)

      where xf , yf  are the spectral densities of the

      input vectors x , respectively y .

3. THE COHORT NORMALIZATION
ALGORITHM

This section describes the algorithm used to
implement the cohort normalization method. Both
training and verification phases are described.

Assuming that there are N  available speakers –
each of them having an ID and a voice model – for
each speaker we create a cohort made of m
speakers similar to the target speaker.

The number m  is related to the system
performance; a larger value yields better
performance but implies more processing time.
A. The training phase:
§ for each speaker, we compute the distance

between the training phrases of all the other
speakers (the rest of  1−N  speakers) and this
speaker model;

§ we sort these training phrases ascending, based
on their distances;

§ we select the first m  speakers thus sorted.
During this process, a specific training phrase
may emerge in the higher range of the sorted
list more often than others. This means that the
information carried by this specific phrase is
not sufficiently speaker dependent.

B. The verification phase:
§ we compute the distance between the test

phrase and the model associated with the
claimed identity;

§ we compute the distances to the other m
speaker models (the total number of distances
computed increases from 1, when not using
cohort normalization, to 1+m  for this
algorithm);

§ if the lowest distance of all 1+m speakers is
the distance to the claimed identity model, the
speaker is accepted, otherwise the speaker is
rejected. The minimum method is used to
compute the distances to the cohort models in
order to decide the impostor.

In this algorithm, the fixed threshold was
replaced by the lowest distance to the m  cohort
models. This way, the threshold becomes explicitly
dependent on the test phrase and implicitly
dependent on the claimed identity.

4. TEST DESCRIPTION

The tests were performed using a text-
independent speaker recognition system based on
the vector quantization technique.

The tests were performed on two databases: the
YOHO database and the DiSPPALL database a
proprietary speech database.

The YOHO database consists of 138 speakers
(106 male, 32 female) producing short
combination-lock phrases consisting of three
doublets (e.g., "twenty-six, fifty-one, eighty-
seven"). Each speaker participated in 4 enrollment
sessions consisting of 24 phrases each. In addition
there are 10 verification sessions, each of which
consists of 4 phrases. The YOHO database is a
clear speech database.

The DiSPPALL database includes 26 speakers
and the training set contains 11 phonetically
balanced phrases. For verification there are 20 (4
sets of 5) phrases recorded in two sessions spaced
over one month. The phrases are not restricted to
number sequences. Every phrase is validated to
contain at least 2 sec of speech in terms of an
energy threshold. The speech sampling rate was
8kHz and the samples coding was 12-bit linear.
The DiSPPALL database is a real (real noise)
speech database.

Acoustic feature and codebook generation

We used 12 LPCC (Linear Prediction Cepstrum
Coefficients) coefficients computed every 20 ms
using 30 ms Hamming windows. The silence was
removed from each phrase using an adaptive
algorithm based on energy and zero crossing rate
criteria. The signal was pre-emphasized using the
filter with the impulse response:

[ ]







>
=
=

−=
1
1
0

0
95.0

1

n
n
n

nh (11)

Using the cepstral vectors obtained from the
training phrases, we computed a codebook for each
speaker. The codebooks have 128 code vectors and
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were generated using the Linde-Buzo-Gray vector
quantization algorithm.

Performance criterion

In the speaker verification experiments, a test
phrase is compared to the voice model of the
speaker whose identity is verified, and an average
distance is computed. If this distance is lower than
a fixed or dynamically computed threshold, the
speaker is accepted, otherwise the speaker is
rejected. There are two types of errors associated
with the verification process: the rejection of a true
customer, called type I error – FRE (false
rejection) and the acceptance of an impostor,
called type II error – FAE (false acceptance). The
compromise between the two types of errors is
generally balanced by using a decision threshold.
These thresholds are not a priori established.
Instead, the total average distance is computed, for
which the type I and type II errors are equal: this
value determines the equal-error-rate (EER).

5. EXPERIMENTAL RESULTS

This section presents the results obtained one
the two databases. We tested the classical
verification system and EER curves were plotted.
The cohort algorithm was tested on both closed (all
impostors known) and open database (unknown
impostors). Finally we tried to decrease the FRE
using a combined threshold-cohort approach.

The reference values for the FRE and FAE
curves for the two databases, YOHO and
DiSPPALL, are presented in Fig.1 and Fig.2,
respectively. eerT  is the decision threshold for the
equal-error-rate (EER).

Fig.1. Verification error for the speaker recognition system
using the YOHO database; EER = 7.12%

The DiSPPALL database is a real speech
database giving a higher EER.

Fig.2. Verification error for the speaker recognition system
using the DiSPPALL database; EER = 10.99%

We are now going to use the cohort method in
order to improve the performances of our speaker
verification system.

We used the minimum method to estimate the
distance between the test phrase and the impostor
model. No significant improvement occurred once
the cohort dimension exceeded than a certain value
(20 for YOHO, 10 for DiSPPALL).

a. The False Acceptance Error and False
Rejection Error using the cohort normalization
method on the closed YOHO database are
presented in Fig.3. FRE is increasing from 7.11%
for 5 speakers in the cohort to 11.82% for a cohort
with 20 members. In the same time, FAE is
decreasing from 8.94% to 1.29% for the same
cohort sizes. We obtain a FAE four times smaller
for a FRE less than two times higher.

0
2
4
6
8

1 0
1 2

5 7 9 1 1 1 3 1 5 1 7 1 9

Cohor t  S ize

F R E  ( % ) F A E  ( % )

Fig.3. The False Acceptance Error (FAE) and False Rejection
Error (FRE) using the cohort method on the closed YOHO

database

b. The False Acceptance Error and False
Rejection Error using the cohort normalization
method on the closed DiSPPALL database are
presented in Fig.4.
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Fig.4. The False Acceptance Error (FAE) and False Rejection
Error (FRE) using the cohort method on the closed DiSPPALL

database.

For cohort size increasing from 5 to 10
members, FRE has values from 6.34% to 7.88%
and FAE is decreasing from 8.61% to 4.23%.

c. Further experiments performed on the open
YOHO database are presented in Fig.5:
§ We removed one speaker and we applied the

algorithm for the remaining of 137 speakers; in
this case, the removed speaker acted as an
unknown impostor.

§ We split the database in two parts: the first 69
speakers were retained and the last 69 were
removed. We built speaker models and cohort
models for the first half of the database and we
used the remaining 69 speakers only as
impostors.

§ We reversed the two parts of the database and
repeated the above process.

0

5

10

15

5 7 9 11 13 15 17 19

Cohort Size

1 speaker
removed

last 69
speakers
removed

first 69
speakers
removed

Fig.5. The False Acceptance Error (FAE %) on the open
YOHO database

The values of FAE decreased from 9.59% to
2.03% in the experiments with 1 speaker removed,
decreased from 11.36% to 2.06% when the last 69

speakers were removed and decreased from 8.37%
to 1.90% when the last 69 speakers were retained.

d) During the tests we noticed that a large
number of false acceptance errors occurred in
association with high distances. Therefore, we used
a fixed threshold to eliminate these errors. The
threshold was set high enough (T=0.0275) so it
would not influence the false rejection errors.

Test results using cohort normalization and a
fixed threshold on the closed DiSPPALL database
are presented in Fig.6. FRE is increasing from
6.34% for 5 speakers in the cohort to 7.88% for a
cohort with 10 members. At the same time, FAE
decreased from 8.61% to 4.23% for the same
cohort sizes without a threshold and decreased
from 6.21% to 3.11% with the threshold set to
0.0275. Thus the threshold reduces the FAE by
35% compared to the cohort FAE.
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5 6 7 8 9 10

Cohort Size

FRE (%) FAE (%) FAE (%), T=0.0275

Fig.6. The False Rejection Error (FRE) and the False
Acceptance Error (FAE) on the closed DiSPPALL database

using cohort normalization and a fixed threshold

e) Test results using cohort normalization and
fixed threshold on the closed YOHO database are
presented in Fig.7.

For cohort size increasing from 5 to 20
members, FRE had values from 7.11% to 11.82%
and FAE without threshold is decreasing from
8.94% to 1.29%. Using a fixed threshold, the
improvements are obvious: decreases from 4.99%
to 0.83%.



Cohort method optimization for speaker recognittion7

0

2

4

6

8

10

12

5 7 9 11 13 15 17 19

Cohort Size

FRE (%) FAE (%) FAE (%), T=0.03

Fig.7. The False Rejection Error (FRE) and the False
Acceptance Error (FAE) on the closed YOHO database using

cohort normalization and a fixed threshold

f) Fig.8 presents the test results using cohort
normalization on the open YOHO database, with
variable number of speakers.
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FAE (%), 1 speaker removed

FAE (%), last 69 speakers removed  

FAE (%), first 69 speakers removed    

Fig.8. The False Acceptance Error (FAE) on the open YOHO
database with variable number of speakers and a fixed

threshold

The False Acceptance Error decreased from
5.64% to 1.57% with 1 speaker removed, from
6.17% to 1.86% for the first 69 speakers retained

and from 5.95% to 1.79% for the last 69 speakers
retained.

In all these experiments, the fixed threshold was
set to T=0.03.

6. CONCLUSIONS

Two normalization techniques in the distance
domain were presented: the cohort method and the
world model method. Evaluation tests were
accomplished for a speaker verification system in
the following situations:
§ in a “classical” manner (without cohorts)
§ using cohort models
§ using cohort models with a fixed threshold

YOHO is still one of the most comprehensive
freely available speaker verification corpora [8].
The experimental results using the YOHO database
[3], [4], [6], [8], [13] were very different
depending on the complexity of the speaker
models and on the number of speakers used for
testing. In [8] the EER was about 0.06%, but the
test conditions are not defined and the models used
were HMMs with one state per phoneme and 5
Gaussians per state. In [3] the models were 32
GMMs (Gaussian Mixture Models), 10 cohorts
speakers and 19 MFC (Mel Frequency Cepstrum)
coefficients. The EER was 1.45% but there was a
matching condition between the train and test
sentences. In [13], using 32 GMMs with 26 MFC
coefficients the EER were 6%, but only 10
speakers are used. In [6] the EER without cohort
was 7.79% and with cohort 3%, but the models
were 60 states HMMs with 3 GMMs per state and
39 acoustic parameters. Finally, in [4] the EER was
less than 5%, the tests are conducted on the entire
database, but with a different approach based on
SVM (Support Vector Machine).

The basic approach in our paper is vector
quantization, each speaker being characterized by a
codebook. The main advantage of the vector
quantization approach is the computational
resources necessary to implement this approach in
terms of processing time and memory required.

In conclusion, performance is improved using
the cohorts relative to the “classical system”
(without cohorts) and is even better with a fixed
threshold.

Several methods were used for the computation
of the distance between the sequence of feature
vectors and the cohort models: the arithmetic mean
method, the geometric mean method, the minimum
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method and the weighted average method. In our
opinion, the tendency of the two errors (error of
false acceptance and error of false rejection) to
modify their values in an opposite manner (one
decreasing and the other increasing) could be the
effect of the specific method used for the
computation of the distance.

The results show that the tests on an open data
base is strongly dependent on the available set of
speakers for the cohort. The speaker recognition
algorithms work better in the case of a closed
database, where all the possible impostors are
known, than in the case of an open database, where
there may be unknown impostors.

On a closed database, the improvements are
grater if the signal acquisition is performed under
noisy conditions. For example, in the case of the
DiSPPALL database, which is noisier, the decrease
of the EER is almost 50% for a 6-speaker cohort,
while with the YOHO database the decrease is
much smaller.

The main performance improvement provided
by the proposed algorithm is the decrease of the
false rejection error, for a constant false acceptance
error, as the cohort size increases. Also, the
algorithm involves less computational resources
than other algorithms, making them more suitable
for a commercial application. We use only a 128
codebook-size for every speaker and 12 LPCC
coefficients. The use of codebooks instead of more
complicated models like GMMs or HMMs has
another advantage: it requires less memory space, a
digital signal processor being more appropriate to
implement the algorithm.
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