
PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A,
OF THE ROMANIAN ACADEMY Volume 3, Number 3/2002.

__________________________
    Recommended by Radu P.VOINEA
    Member of the Romanian Academy

1

HYSTERETIC DAMPING MODELLING BY NONLINEAR KELVIN-VOIGT MODEL

Dinu BRATOSIN, Tudor SIRETEANU

Institute of Solid Mechanics - Romanian Academy,
Calea Victoriei 125, 71102 Bucharest

Corresponding author: Dinu BRATOSIN: e-mail: bratosin@acad.ro

ABSTRACT. This paper present a nonlinear Kelvin-Voigt model (NKV model) with the stiffness and
damping characteristics as function in term of displacements. The behaviour of this model for har-
monic imput was verified by means of the resonant column experimental data.
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1. INTRODUCTION

The strong dependence of the soils dynamic
properties on strain or stress level produced by ex-
ternal loads is very well known. In the previous
author's papers [1], [2], [3] this nonlinear behav-
iour was modeled assuming that the geological
materials are nonlinear viscoelastic materials. The
dynamic model obtained was built upon two dy-
namic nonlinear functions – one for material
strength modeling and another including material
damping, both in terms of strain level caused by
external loading conditions and both functions be-
ing completely determined from resonant column
test data.

The resonant column system can be considered
as a one degree-of-freedom system that is made up
of a single mass (the vibration device) supported
by a spring and a damper represented by the
specimen [3]. But, due to the mechanical proper-
ties of the specimen materials both spring and
damper have non-linear characteristics and thus the
entire system is a non-linear one [4].

In linear dynamics a usual description of a solid
single-degree-of-freedom behaviour is given by the
Kelvin-Voigt model consisting of a spring (with a
stiffness k) and a dashpot (with a viscosity c) con-
nected in parallel. The governing equation of this
system for torsional harmonic vibrations (usually
resonant column system excitation) is:

tMkcJ ω⋅=θ⋅+θ⋅+θ sin00
&&& (1.1)

where θ is the system's displacement (rotation, in
this case), J0 is the moment of inertia of the vibra-
tor, M0 are the amplitude and ω the pulsation of the
harmonic external imput.

In the non-linear case, due to the mechanical
properties of the specimen materials both spring
and dashpot characteristics become non-linear
functions in terms of deformation (or rotation)
level [4], [5]. The most expected form of the gov-
erning equation for non-linear behaviour of a sin-
gle- degree-of-freedom system is:

( ) ( ) tMkcJ ω⋅=θ⋅θ+θ⋅θ+θ sin00
&&& (1.2)

with the analogic model from fig.1.1.
The purpose of this paper is to verify this non-

linear forms of the Kelvin-Voigt model and the
capabilities of this model to modelling the hystere-
sis loops.

Fig.1.1 Non-linear Kelvin-Voigt model

 Mt  = M0 sin ωt

 c = c(θ) k = k (θ)

  m ; J0
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2. NONLINEAR MATERIAL FUNCTION

In order to model the non-linear material behav-
iour, in [1], [2], and [3] a non-linear viscoelastic
constitutive law for dynamic response of soils was
presented. This model describes the nonlinearity
by the dependence of the material mechanical pa-
rameters: shear modulus G and damping ratio D in

terms of shear strain invariant γ: ( )γ= GG ,

( )γ= DD , or twisting angle θ: ( )θ= GG ,
( )θ= DD .

As an example, in fig.2.1 such non-linear mate-
rial functions obtained from resonant column test
performed upon clay sample are given.

Fig.2.1 Dynamic material functions

Using the same method that describes the non-
linearity by strain dependence of the material pa-
rameters, we assume that the damper viscosity c
and the spring stiffness k  are functions in terms of
rotation θ [4], [5] (fig.2.2):
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where ω0 is the system undamped natural pulsa-
tion, Ip = πφ4/32 is the polar moment of the speci-
men and (φ , h) are the diameter and height of the
cylindrical specimen. For the linear systems, the
undamped natural pulsation 0ω  is defined in terms

of spring stiffness k : 00 / Jk=ω . In this
case, the spring stiffness is a function, and we de-

fine the undamped natural pulsation in terms of
initial value of stiffness function

( )0k : ( ) 00 /0 Jk=ω .

3. VALIDATION OF THE NON-LINEAR
FORM

Eq. (1.1) can be numerical solved [4], [11], [12]
and the computed results can be compared with the
measured resonant test results. Thus, by using the
change of variable t0ω=τ  and by introducing a
new "time" function [4]:

( ) ( ) ( )0/ ωτθ=θ=τϕ t (3.1)

one obtains from eq.(1.2) a dimensionless form of
the non-linear equation of motion:
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 Fig.2.2 Dynamic non-linear characteristics

( ) ( ) υτ⋅µ=ϕ⋅ϕ+ϕ′⋅ϕ+ϕ ′′ sinKC (3.2)

where the superscript accent denotes the time de-
rivative with respect to τ, and:
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For a given normalized amplitude µ and relative
pulsation υ, the non-linear equation (3.2) can be
numerically solved and a solution of the form

( )υµτϕ=ϕ ,;  can be obtained in n points [4],
[11]. After that, dropping the transitory part of the
solution and keeping only the stationary part, the
amplitude of rotation 0θ  becomes:

( ) ( )τϕ=θ=θ t0 (3.4)

The same rotation 0θ can be obtained directly
form resonant column output:

20 ω
=θ

ar
A

(3.5)

where A is the measured accelerometer value, ar  is
the distance from the axis of rotation to the accel-
erometer axis (ra = 0.03175m for Drnevich reso-
nant column) and r2 fω = π  is the pulsation of the
vibrator device under resonant frequency fr.

The comparison of the θ values obtained from
the steady-state solution of the non-linear single
degree-of-freedom system with experimental data
can give a pertinent information about the model
validity. The results of such evaluation, given in
fig.3.1, show a good behaviour for the NKV
model.
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Fig.3.1 Model validation

4. HYSTERETIC DAMPING MODELLING

A great number of laboratory tests on soils
shows that the cyclic stress-strain curves are high
nonlinear and constitute a closed hysteresis loops.
These testing results seem to indicate that damping
properties are especially of  hysteretic type, and
not viscous as those corresponding to the Kelvin-
Voigt model.

All of the resonant column determinations of
the damping capacity for a certain strain level are
based on the equivalence between the hysteretic
damping of the soil specimen and the viscous
damping for a uniform viscoelastic specimen of the
same mass, density and dimensions as the soil
specimen [2]. As a result of this rheo-hysteretic
hypothesis, the Kelvin-Voigt model is able to de-
scribe the dissipated energy of the specimen-
vibrator system and the verifying method presented
in capther 3 demonstrated a good agreement be-
tween model and experimental data.

Several methods use for damping evaluation
of the experimental registered hysteretic loops and
determine the damping ratio as:

W
WD ∆

π
=

4
1

(4.1)

where W is the maximum stored energy and ∆W is
the energy loose per cycle represented by the area
enclosed inside the hysteresis loop (fig.4.1). By
another methods the hysteresis loop is obtained
from the skeleton curve by applying the Masing
rule (the superior and inferior branches are ob-
tained from the skeleton curve by multiplying by a
factor two in both directions). [9], [10].

Fig.4.1 Hysteretic damping definition

Using the same single degree-of-freedom sys-
tem from fig.1.1 there is a possibility to compare
the resonant column experimental damping values



Hysteretic damping modelling5

with the values obtained from non-linear Kelvin-
Voigt model and Masing model.

We mention that in the ordinary resonant col-
umn test the damping evaluation uses a different
method – the magnification factor method based
on measuring both current and acceleration at two
different frequencies - from resonant frequency rf

and at r2 f .
To verify the capabilities of the non-linear Kel-

vin-Voigt equation (1.2) to modelling a hysteresis
loop one can use a inverse strategy – starting from
the  given dynamic material functions ( )θ= cc

and ( )θ= kk  included in the restoring force

( )θθ= &,QQ  one can built the hysteresis loops for a
certain levels θ0 and then the damping ratio value
D for level θ0 can be obtained from eq.  (4.1). This
value can be compared with the experimental va l-
ues at level θ0: ( )

0θ=θθ= DD

Thus, for nonlinear Kelvin-Voigt model from
fig.1.1 the restoring force is:

( ) ( ) ( )
( ) ( ) θ⋅θ+θ⋅θ=

=θθ+θ=θθ
&

&&

ck

QQQ damel

            

,,
(4.2)

where ( ) ( ) θ⋅θ=θ kQel  is the backbone curve or
skeleton curve.

For a certain amount of the excitation
tMM ω= sin0  the response rotation θ (after the

dropping the transitory part) has the form:

tωθ=θ cos0 (4.3)

and, then:

tωωθ=θ sin0
& (4.4)

Therefore, by eliminating the time t between this
two equations, (4.3) and (4.4), result:

θ−θω±=θ 2
0

& (4.5)

and the restoring force (4.2) becomes:

( ) ( ) ( ) θ−θω⋅θ±θ⋅θ=θ 2
0ckQ (4.6)

where the sign "+" is for the superior branch of the
hysteresis loop and the sign "-" for the inferior
branch (fig.4.2).

Fig.4.2 NKV hysteresis loop

Fig.4..3   Masing  hystersis loop

For comparison, the Masing hysteresis loop is
given in fig.4.3 for the same tested clay, at the
same amplitude level %076.20 =θ  built using

the same skeleton curve ( ) ( ) θ⋅θ=θ kQel . The
superior and inferior branches are obtained usig the
Masing rule – starting from the skeleton curve and
multiplying by a factor two in both Q and θ direc-
tions.

As can see in these figures the geometrical as-
pect of these hysteresis loops are different. But, the
damping value is directly connected with the loop
area and not with its form. Fortunately, the loop
area differences are not so obvious. This can be
proved by computing the damping ratio for differ-
ent amplitude θ0 and for each kind of hysteresis
loop. The results of such calculus together with the
corresponding D experimental values are given in
fig.4.4.
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Fig.4.4 NKV and Masing damping modelling

4. CONCLUDING REMARKS

• The non-linear viscoelasticity can be used as
starting point for building a dynamic model for
soils behaviour.

• The non-linear dynamic characteristics for
damping and stiffness can be obtained as an
extension in the non-linear domain of the cor-
responding linear constants.

• The non-linear Kelvin-Voigt model provides a
good agreement with the experimental reso-
nant column data.

• The non-linear Kelvin-Voigt model is able to
model the damping characteristics of the hys-
teretic type materials.
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