CONSERVATIVE NEWTONIAN FORCES

Radu P.VOINEA*

Romanian Academy, Section of Technical Sciences Calea Victoriei 125, 010071 Bucharest 1, Romania E-mail: bratosin@acad.ro

The most general expression of conservative Newtonian generalized forces is determined.

1. NEWTONIAN FORCES

A force **F** acting on a particle is a Newtonian one, if and only if, their components X, Y, Z on the axes of a right-handed rectangular Cartesian coordinate system Oxyz are scalar functions of x, y, z (particle coordinates), \dot{x} , \dot{y} , \dot{z} (components of the particle velocity) and of the instant t only, [4]i.e.

$$X = X(x, y, z, \dot{x}, \dot{y}, \dot{z}, t)$$

$$Y = Y(x, y, z, \dot{x}, \dot{y}, \dot{z}, t)$$

$$Z = Z(x, y, z, \dot{x}, \dot{y}, \dot{z}, t)$$
(1)

In this case, Newton's second law leads to three scalar second-order differential equations.

2. NEWTONIAN GENERALIZED FORCES

Generalized forces $Q_1, Q_2, ..., Q_n$ are Newtonian, if and only if, they are scalar functions of $q_1, q_2, ..., q_n$ (generalized coordinates), $\dot{q}_1, \dot{q}_2, ..., \dot{q}_n$ (generalized velocities) and time t, i.e.

$$Q_k = Q_k (q_1 q_n, \dot{q}_1 \dot{q}_n, t) \qquad k = 1, 2 n$$
 (2)

In this case the Lagrange equations are second-order differential equations.

3. CONSERVATIVE NEWTONIAN FORCES

A force $\mathbf{F}(\mathbf{r})$ is a conservative one, if and only if [2]:

$$\oint_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = 0 \tag{3}$$

where $\mathbf{F}(\mathbf{r})$ is a single-valued vector function and differentiable with continuous partial derivatives throughout a finite region V and C is a regular closed curve contained in this region.

The line integral (3) equals the flux of $\operatorname{curl} \mathbf{F}$ through a simply connected regular (one-side) surface segment S situated in V and bounded by C (Stoke's theorem). It follows:

^{*} Member of the Romanian Academy

Radu P.Voinea 2

$$\int_{S} \operatorname{curl} \mathbf{F}(\mathbf{r}) \cdot \mathbf{n} \, \mathrm{d} A = 0 \tag{4}$$

and because S is an arbitrary surface segment situated in V, $\operatorname{curl} \mathbf{F}(\mathbf{r}) = 0$, and:

$$\mathbf{F} = \operatorname{grad} \mathbf{\phi} \tag{5}$$

i.e.

$$X_1 = \frac{\partial \varphi}{\partial x}$$
 ; $Y_1 = \frac{\partial \varphi}{\partial y}$; $Z = \frac{\partial \varphi}{\partial z}$ (6)

where $\varphi = \varphi(x, y, z)$.

The expressions (5) and (6) are not the most general expressions for a conservative Newtonian force in E_3 .

The line integral (3) is valid for any regular closed curve C situated in V. It is necessary to consider also the case $\mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = 0$, respective $\mathbf{F} \cdot \mathbf{v} dt = 0$. From $\mathbf{F} \cdot \mathbf{v} = 0$ it follows:

$$\mathbf{F} = \mathbf{A} \times \mathbf{v} \tag{7}$$

where $\mathbf{A}(A_x, A_y, A_z)$ is an arbitrary vector function of $\mathbf{r}, \dot{\mathbf{r}}$ and t. The components of \mathbf{F} are:

$$X_{2} = A_{y}\dot{z} - A_{z}\dot{y}$$

$$Y_{2} = A_{z}\dot{y} - A_{x}\dot{z}$$

$$Z_{2} = A_{x}\dot{y} - A_{y}\dot{x}$$
(8)

The most general expressions of the components X, Y, Z of a conservative-Newtonian force \mathbf{F} in E_3 is:

$$X = X_{1} + X_{2} = \frac{\partial \phi(x, y, z)}{\partial x} + A_{y}(x, y, z, \dot{x}, \dot{y}, \dot{z}, t) \dot{z} - A_{z}(x, y, z, \dot{x}, \dot{y}, \dot{z}, t) \dot{y}$$

$$Y = Y_{1} + Y_{2} = \frac{\partial \phi(x, y, z)}{\partial y} + A_{z}(x, y, z, \dot{x}, \dot{y}, \dot{z}, t) \dot{x} - A_{x}(x, y, z, \dot{x}, \dot{y}, \dot{z}, t) \dot{z}$$

$$Z = Z_{1} + Z_{2} = \frac{\partial \phi(x, y, z)}{\partial z} + A_{x}(x, y, z, \dot{x}, \dot{y}, \dot{z}, t) \dot{y} - A_{y}(x, y, z, \dot{x}, \dot{y}, \dot{z}, t) \dot{x}$$
(9)

and, in matrix form:

An important particular case is:

$$\mathbf{A} = \operatorname{curl} \mathbf{B} \tag{11}$$

In this case:

$$A_x = \frac{\partial B_z}{\partial y} - \frac{\partial B_y}{\partial z}$$
 ; $A_y = \frac{\partial B_x}{\partial z} - \frac{\partial B_z}{\partial x}$; $A_z = \frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y}$ (12)

The expression (10) becomes:

It is easy to recognize the electromagnetic force acting on a particle having an electromagnetic charge e = 1[1], [3].

4. CONSERVATIVE NEWTONIAN GENERALISED FORCES

A system of generalized forces Q_1, Q_2, \dots, Q_n is a conservative-Newtonian one if the expression:

$$Q_1 dq_1 + Q_2 dq_2 + \dots + Q_n dq_n \tag{14}$$

is an exact differential $d\phi$, or if

$$Q_1 \dot{q}_1 + Q_2 \dot{q}_2 + \dots + Q_n \dot{q}_n \tag{15}$$

is identical null.

In the first case the generalized forces have the expressions:

$$Q_k' = \frac{\partial \varphi}{\partial q_k} \qquad k = 1, 2, \dots, n \tag{16}$$

and in the second case the generalized forces have the expressions:

$$Q_{k}'' = \sum_{i=1}^{n} A_{ki} \dot{q}_{i} \quad \text{with} \quad A_{ik} = -A_{ki}$$
 (17)

From (16) and (17) there follows the most general expression of conservative-Newtonian generalized forces in matrix form:

where:

Radu P.Voinea 4

$$\varphi = \varphi(q_1...q_n) \quad ; \quad A_{ki} = A_{ki}(q_1...q_n, \dot{q}_1...\dot{q}_n, t) \quad ; \quad A_{ik} = -A_{ki}$$
 (19)

NOTES

1. The expression (13) corresponding to the electromagnetic force can be generalized in configuration space. Let $\mathbf{B}(B_1, B_2 ... B_n)$ be a vector in this space. It follows:

2. The antisymetric $n \times n$ matrix (20) generalize the motion of curl, in matrix form, in configuration space.

REFERENCES

- 1. JUCKSON J.D., Classical Electrodynamics, John Wiley, New York, London, 1962.
- 2. PETRUȘ O., Mecanica clasică, Editura Moldova, Iași, 1995.
- 3. STRATTON J.A., Electromagnetic Theory, McGraw-Hill, New York, 1941.
- 4. VĂLCOVICI V., BĂLAN ŞT., VOINEA R., Mecanică teoretică, Editura Tehnică, București, 1968.

Received August 15, 2005