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CONSERVATIVE NEWTONIAN FORCES
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The most general expression of conservative Newtonian generalized forces is determined.

1. NEWTONIAN FORCES

A force F acting on a particle is a Newtonian one, if and only if, their components X, Y, Z on the axes
of a right-handed rectangular Cartesian coordinate system Oxyz are scalar functions of x, y, z (particle
coordinates), X, y,z (components of the particle velocity) and of the instant ¢ only, [4]i.e.

X =X(x,y,z,5c,)'/,z',t)

Y=Y(x,y,z,5c,)'/,z',t) (1)
Z=Z(x,y,z,5c,)'/,z',t)

In this case, Newton's second law leads to three scalar second-order differential equations.

2. NEWTONIAN GENERALIZED FORCES

Generalized forces Q,,0,.....0, are Newtonian, if and only if, they are scalar functions of ¢,,q,.....q,
(generalized coordinates), ¢,,4,....., (generalized velocities) and time ¢, i.e.

In this case the Lagrange equations are second-order differential equations.

3. CONSERVATIVE NEWTONIAN FORCES

A force F (r) is a conservative one, if and only if [2]:
F(r)dr=0 3
? ()

where F(r) is a single-valued vector function and differentiable with continuous partial derivatives

throughout a finite region /" and C is a regular closed curve contained in this region.
The line integral (3) equals the flux of curlF through a simply connected regular (one-side) surface
segment S situated in /" and bounded by C (Stoke's theorem). It follows:
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lcurlF(r)mdA =0 4)

and because S is an arbitrary surface segment situated in V, curl F (r) =0, and:

F=grad¢ (5)
ie.
0d 0d f6l0]
X,=— ; Y==— ; Z=—
Yoo Yoy oz (©)

where ¢ = ¢ (x, y,z) .
The expressions (5) and (6) are not the most general expressions for a conservative Newtonian force in

E,.
*kx

The line integral (3) is valid for any regular closed curve C situated in V. It is necessary to consider
also the case F (r) Ldr =0, respective F[¥df=0.From F[¥ =0 it follows:

F=Axv (7

where A(AX,A},,AZ) is an arbitrary vector function of r,f and ¢. The components of F are:

X,=A4z-Ay
L=4y-4z ®)
Z,=A4y-A4x
The most general expressions of the components X, ¥, Z of a conservative-Newtonian force F in E; is:
a 2 2 . . . . . . . .
X=X +X, =M +Ay (x,y,z,x,y,z,t)z —A. (x,y,z,x,y,z,t)y
X
a b b
Y=Y, +Y, :M + A, (x5, ,2.5, 3, 2,0) % A, (%0, 2,5, 9,2,) 2 )
Y
a b b . . . . . .
Z=7Z+Z, =M +A4, (x,y,z,x,y,z',t)y -4, (x,y,z,x,y,z',t)x
/4
and, in matrix form:
Lol
05 .0
20 7o me
HHH® +Ha o -4 Bl (10)

9
Iz DDanE)D Ha, 4 0 Hh
Ho-1

An important particular case is:
A =curlB (11)

In this case:
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0B 0B
4, ] ;o4 S ;oA =— 95, (12)
dy Oz 0z Ox Ox Oy
The expression (10) becomes:
[P0 U 0 0B, _ 0B, 0B, _0B.0
05,0 B oy ox 0z ox»
0 (0B, 0B 0B, 0B .
FEHW B > Pl (13)
BZB 0oy [0ox Oy 0z Oy DDDE
0 0
e g s on 0B
oz0 Hox 0z Ay 0z 8

It is easy to recognize the electromagnetic force acting on a particle having an electromagnetic charge
e=1[1], [3].

4. CONSERVATIVE NEWTONIAN GENERALISED FORCES

A system of generalized forces Q,,0,.....0, is a conservative-Newtonian one if the expression:
0 dq, +0,dg, +....+0,dg, (14)
is an exact differential d¢, or if

qu.l +Q2q2 o +an.n (15)

is identical null.
In the first case the generalized forces have the expressions:

0=t

=1,2....n 16
24, (16)

and in the second case the generalized forces have the expressions:
Q/: = Z 4,9, with 4, =-4, (17)

From (16) and (17) there follows the most general expression of conservative-Newtonian generalized
forces in matrix form:

0060
g, 5
1 .
o0 oO@ O O an)g 00 4, 4, . . 4,006
PLop®o g 0,0 o 0 4 - - 4ggi
%‘bm 0 00k [
BE.EB B8 B O : : .
O o=l D%DD= o. +0 D%D (18)
O-0g0aocodg o - -00-0
ooooogo o 0. ' oo.o
DDD&DDD . [l 00
@ng E E Q:; Daq)D @4n1 An2 An3 OE@@
[t dl
Hdq,8

where:
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L.

bl S

0=0(q-0,) 3 4 =4, (0-9,.6-G,.1) 5 A =4, (19)

NOTES

The expression (13) corresponding to the electromagnetic force can be generalized in configuration

space. Let B (B1 ,Bz...B”) be a vector in this space. It follows:

0o¢0 O 0B, _0B, 0B, _0By 9B, _08,0
oo P90 0 dg, Oq, dq, O, %, 0
‘0 0 @B, 4 B d B, 0B, 0B, 0BUO[
@zm 0, 0 O3, " 54 0 9. o0, | oo es.BrfO
%o P9 94, 0q;  0q, 0q, 04,
8.5 (7% O 08 E
O0f 0+ 0 (18)
o-og o O Ono-o
ooog o O Uno o
g.QD O .0 E . . . ED,D
gu| 0368 o3, 0B, 0B, 0B, 0B, 0B g B
P98 g 0q, 9q. 9, dg 0, g

The antisymetric #» xn matrix (20) generalize the motion of curl, in matrix form, in configuration space.
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