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The paper presents, in a comparative study, six hybrid configurations that can assist the adaptation of
the neuro-fuzzy system parameters. The suggested configurations involve various combinations of the
gradient descent algorithm, the k-means clustering procedure and the genetic algorithms. The neuro-
fuzzy system architecture is adopted from literature. The applicability of the methodology is
investigated with respect to the time series prediction.
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1. INTRODUCTION

A multitude of research studies indicates that the neuro-fuzzy systems represent a powerful tool for
time series prediction [2, 4, 7, 13, 14, 15]. The neuro-fuzzy approach is a combination between two soft
computing techniques, which are both suitable for modeling expert behavior [8]. Fuzzy systems and neural
networks do not require any mathematical model of the problem to solve and are fault-tolerant to small
changes of their inputs or parameters.

The neuro-fuzzy systems can take advantage both from the learning abilities of the neural networks [6]
and the reasoning characteristics of the fuzzy systems. The combination should be able to learn linguistic
rules and membership functions or to optimize the existing ones. Usually, the membership functions of the
involved fuzzy systems are described by parameters, which are optimized during a training stage. On the
other hand, because the neuro-fuzzy systems are based on linguistic rules, the learning result can be
interpreted as a fuzzy system, thus avoiding the black box behavior of the neural networks. Moreover, at
initialization, one can easily integrate prior knowledge, for improving the efficiency of the learning process.
Various neuro-fuzzy architectures and learning algorithms were investigated in the related literature [8]. The
gradient algorithms have the drawback of frequently converging to local minima. On the other hand, pure
genetic algorithms are slow.

The paper investigates the potential of schemes using various combinations of the gradient descent
algorithm, the k-means clustering procedure and the genetic algorithms for neuro-fuzzy predictors.

The evolutionary algorithms represent efficient optimizations tools, able to cope with multimodality,
noise, discontinuity and time-variance. At each iteration, they work on a population of possible solutions,
named individuals or chromosomes. The most adapted ones are encouraged to produce new solutions
(offspring), using mechanisms similar to biological recombination. The offspring compete with their parents
and the most adapted ones survive to the next generation. After a large number of generations, the population
contains many duplicates of the same individual, selected as result of the algorithm.

The performances of the genetic search are compared with the performances of the k-means clustering
algorithm and the techniques based on the uniform distribution, in the case of center selection, respectively
with the performances of the gradient descent procedure (with momentum) in the case of the output singleton
adaptation. We analyze six configurations, recommended as support for providing an accurate one step ahead
prediction.

The paper is organized as follows. Section 2 presents the architecture of the neuro-fuzzy system,



Lavinia Eugenia FERARIU, Horia Nicolai TEODORESCU, Lucian Iulian FIRA 2

adopted from [9, 13]. The adaptation schemes used for the selection of centers and singletons are described
in Section 3. Their applicability to time series prediction is discussed in Section 4, based on several
experimental results achieved by simulation. Section 5 contains a discussion of the complexity issues and the
Section 6 is devoted to final remarks.

2. NEURO-FUZZY SYSTEM ARCHITECTURE

The architecture of neuro-fuzzy prediction system was introduced in [9, 13]. It was successively tested
for the prediction of the genomic time series in [5, 10, 11, 12]. This hybrid topology permits to interpret the
changes produced by the learning process from the point of view of both neural networks and fuzzy systems.

The neuro-fuzzy predictor consists in a network of M  cells represented by single input single output
0-type Sugeno fuzzy systems (Fig. 1).
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Fig. 1. The architecture of the neuro-fuzzy system. Here nx ,…, 1+−Mnx  represent the actual and the delayed samples of the input

signal, 1ˆ +nx  indicates the predicted value, Mff ,...,1  specify the Sugeno fuzzy systems.

The predictor has the topology of a feedforward finite response filter with the fuzzy cells acting as
nonlinear multipliers of the input delayed samples [11]. The Sugeno fuzzy systems are based on 7=N
Gaussian membership functions. The equation describing the input-output transfer performed by the
predictor [10]:
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where M denotes the number of Sugeno fuzzy systems (here, 5=M ), N indicates the number of membership
functions for each Sugeno fuzzy system ( 7=N ), klβ  represent the values of the output singletons, kla  and

2
klσ  denotes the centers and the spreads of the Gaussian membership functions, respectively.

3. TECHNIQUES FOR NEURO-FUZZY PARAMETERS ADAPTATION

Data-driven methodologies are considered for the selection of centers and output singletons, as
indicated below. The neuro-fuzzy parameters are determined according to supervised learning algorithms.
For each adaptation scheme, the accuracy of the prediction is evaluated subject to the Mean Squared
prediction Error (MSE), computed for the whole normalized training data set:
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Here, T indicates the interval time used for the analysis, 1ˆ +nx  and d
nx 1+  denote, respectively, the

predicted and target value at sample 1+n .
The schemes suggested for the neuro-fuzzy predictor adaptation are briefly described in Table 1. All

involved learning algorithms used for the adaptation of centers/singletons are indicated in sequel. The hybrid
configurations are supplementary discussed in Section 4, with respect to time series prediction problem.

Table 1. The description of the adaptation schemes

Scheme Selection of centers Selection of singletons
S1 Uniformly distributed in [-1,1] interval Gradient with momentum
S2 Uniformly distributed in [-1,1] interval Genetic algorithm
S3 k-means clustering algorithm Gradient with momentum
S4 k-means clustering algorithm Genetic algorithm
S5 Genetic algorithm Gradient with momentum
S6 Genetic algorithm Genetic algorithm

The selection of centers is done by means of uniform selection, k–means clustering, or genetic
algorithms.

The uniform selection considers a uniform distribution of the centers over the discourse universe. For
Gaussian membership functions, the universe of discourse could be ( ∞− , ∞+ ). If a normalization of the
data is used, the centers have to be distributed inside the normalization interval (e. g. [-1, 1]). Consequently,
in the case of 7=N  membership functions, the values of the centers result as follows:

5,..1,7,..,1},1,66.0,33.0,0,33.0,66.0,1{ ==−−−∈ klakl . (3)

The k-means clustering algorithm delimitates, over the considered training data set, k centers
corresponding to k different groups. The values of the centers represent the means of the resulted clusters.
The method can produce a non-uniform partition of the input space, according to the real grouping of the
learning data. One uses 7== Nk .

The centers of the membership functions are also determined using a genetic algorithm. The
optimization problem demands the minimization of the mean squared error (2). Each chromosome directly
encodes, as real values, the parameters of the membership Gaussian functions, namely the centers and the
spreads. The most adapted individuals are encouraged to produce new solutions and to survive. At each
generation, the offspring are generated using intermediary recombination and uniform mutation. The genetic
search has to be performed for a large number of generations, in order to provide a good exploration of the
search space. As the genetic algorithm is not formulated as a clustering algorithm, it is expected to achieve a
less accurate prediction. Moreover, the genetic search is implemented to accomplish a more difficult task,
namely to select both centers and spreads for the membership functions.

For the adaptation of the singletons, gradient-based algorithm with momentum and genetic techniques
are considered.

The use of the gradient-based algorithm is allowed, due the fact that the membership functions are
Gaussian type. The prediction error (2) is minimized, based on the adaptation equations (4):

][][][]1[ nnnn β∆α+β∆+β=+β , with 
β∂

∂η−=β∆ E , (4)

Here, β∆  denotes the variation produced for the adaptation of parameters β  at the successive iterations, η

indicates the learning rate ( )1,0(∈η ) and 
β∂

∂E  represents the gradient.

The implemented procedure is based on the momentum technique. According to this technique, the
actual adaptation step takes into account the changes produced at the previous iterations. In that situation, the
algorithm is able to perform a filtering over the error surface and to guarantee higher stability [1, 3].

The genetic algorithm determines the singletons, subject to the minimization of the objective function
(2). The singletons are directly encoded using real numbers. A chromosome encodes a whole set of
singletons. At each generation, the genetic algorithm works on a population of NIND chromosomes. The
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initial population is randomly distributed over the permitted search space. The individual evaluation
considers ranking-based fitness assignment. The recombination pool is filled in considering the stochastic
universal sampling method. The intermediary recombination and the uniform mutation maintain the diversity
of the genetic material and guarantee a robust exploration of the search space. The genetic search is
implemented according to an island model. As consequence, the population is separated into several
subpopulations that evolve quasi-independently. Once at NOMIGR generations, an exchange of information
is allowed between the subpopulations. A schematic description of the genetic algorithm used is indicated
below [3]:

Create the initial population (NIND individuals).
Evaluate the chromosomes and compute the fitness values.
Loop for MAXGEN generations:

For each subpopulation:
Select the parents for the reproduction pool.
Apply the crossover and the mutation operators.
Evaluate the offspring and compute the fitness values.
Insert the offspring into the population.
Once at NOMIGR generations, exchange individuals with the other subpopulations.
Compute the fitness values.

Determine the best individual.
End of the algorithm.

4. EXPERIMENTAL RESULTS

A chaotic time series is used as benchmark for prediction. The series is generated using the 3-order
discrete dynamic system [13], described in equation (5):
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subject to the initial conditions 773.00 =x , 234.01 =x , 973.02 =x . Fig. 1 illustrates the dynamic behavior
of the resulted time series, over the first 500 iterations, after the normalization to the [-1, 1] interval.

Fig. 2. The time series obtained for 500 iterations, after the normalization to the [-1, 1] interval.

Several experiments were carried out in order to verify the adaptation schemes S1- S6 presented in
Table 1. A goal of this research work is to compare the genetic adaptation schemes with other adaptation
procedures, as a preliminary study for the genetic design of dynamic neuro-fuzzy architectures.

The experimental results are illustrated in Tables 2-7, both for the training data set (iterations 1…180
of the chaotic time series) and for the testing data set (iterations 181…220 of the chaotic time series). The
solutions indicated in Tables 2-7 are those providing the best accuracy of prediction, achieved for each
adaptation scheme.

The configuration S1 (Table 2) considers the uniform selection of the centers inside the [-1, 1] interval
and the gradient descent algorithm for the singletons adaptation. This configuration was successfully tested
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before in [5, 10, 11, 12]. The learning rate is maintained constant during the training process ( 1.0=η ). The
momentum rate, denoted with α , is set to 0.7. The adaptation algorithm stops when the absolute value of the
difference that is considered between the mean squared errors resulted at two successive iterations is less
than 00001.0=ε . At the end of the learning procedure, an accurate neuro-fuzzy system is achieved (MSE =
0.0084 for the training data set), characterized by satisfactory generalization capabilities (MSE = 0.0171 for
the testing data set).

The configuration S2 (Table 3) uses a genetic algorithm for the singletons adaptation (instead of the
gradient descent algorithm applied by S1). The genetic algorithm considers: NIND = 500 chromosomes into
the population, with LIND = 35 genes (5 Sugeno fuzzy systems ×  7 output singletons for each fuzzy
system); the individuals are separated into SUBPOP = 10 subpopulations and the migration is applied once at
NOMIGR = 5 generations. A half of the offspring survives to the next generation (GGAP = 0.5). The
evolutionary loop is considered for MAXGEN = 100 generations.

The configuration S3 (Table 4) selects the centers using the k-means clustering algorithm (instead of
the uniform distribution tested for S1). The MSE values obtained after the adaptation are 0.0030 for the train
period and 0.0038 for the test period.

Table 2. Configuration S1-Parameter values for the adaptation algorithm and performances

Adaptation model centers: uniformly distributed in [-1,1] interval;
singletons: gradient with momentum.

The parameter values for the
adaptation algorithm

singletons: 00001.0=ε , 1.0=η , 7.0=α .

Results train: MSE=0.0084, test, test: MSE=0.0171.

Table 3. Configuration S2-Parameter values for the adaptation algorithm and performances

Adaptation model centers: uniformly distributed in [-1,1] interval;
singletons: genetic algorithm.

The parameter values for the
adaptation algorithm

singletons: NIND=500; SUBPOP=10; NOMIGR=5;
LIND=35; MAXGEN=100; GGAP=0.5.

Results train: MSE=0.0085, test: MSE=0.0103.

Table 4. Configuration S3-Parameter values for the adaptation algorithm and performances

Adaptation model centers: k-means clustering algorithm;
singletons: gradient with momentum.

The parameter values for the
adaptation algorithm

centers: k = 7;
singletons: 00001.0=ε , 1.0=η , 7.0=α .

Results train: MSE=0.0030, test: MSE=0.0038.

For the configuration S4 (Table 5), the selection of the centers is performed using the k-means
clustering algorithm. The singletons are adapted using a genetic search, with the genetic parameter values
previously mentioned at S2. The MSE values achieved after the adaptation stage are 0.0040 for the train
period and 0.0061 for the test period.

In the case of configuration S5 (Table 6), the selection of the centers is done considering a genetic
algorithm. The genetic algorithm parameters (denoted similarly as indicated for S2) are set as follows:
NIND=100; SUBPOP=10; NOMIGR=5; LIND=14; MAXGEN=75; GGAP=0.5. The singleton adaptation uses
the gradient algorithm described at the configuration S1. The MSE values obtained after the adaptation stage
are 0.0073 for the train period and 0.0407 for the test period.

For the configuration S6 (Table 7), the selections of the centers and singletons are accomplished using
genetic algorithms. In this case, the MSE values obtained after the adaptation result 0.0079 for the train
period and 0.0087 for the test period.
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Table 5. Configuration S4-Parameter values for the adaptation algorithm and performances

Adaptation model centers: k-means clustering algorithm;
singletons: genetic algorithm.

The parameter values for the
adaptation algorithm

centers: k = 7,
singletons: NIND=500; SUBPOP=10; NOMIGR=5; LIND=35;
MAXGEN=100; GGAP=0.5; PC=0.7; PM=0.1;

Results train: MSE=0.0040, test: MSE=0.0061.

Table 6. Configuration S5-Parameter values for the adaptation algorithm and performances

Adaptation model centers: genetic algorithm;
Singletons: gradient with momentum.

The parameter values for the
adaptation algorithm

centers: NIND=100; SUBPOP=10; NOMIGR=5; LIND=14;
MAXGEN=75; GGAP=0.5;
singletons: 00001.0=ε , 1.0=η .

Results train: MSE=0.0073, test: MSE=0.0407.

Table 7. Configuration S6-Parameter values for the adaptation algorithm and performances

Adaptation model centers: genetic algorithm;
singletons: genetic algorithm.

The parameter values for the
adaptation algorithm

centers: NIND=100; SUBPOP=10; NOMIGR=5; LIND=14;
MAXGEN=75; GGAP=0.5; PC=0.7; PM=0.1;
singletons: NIND=500; SUBPOP=10; NOMIGR=5; LIND=35;
MAXGEN=100; GGAP=0.5; PC=0.7; PM=0.1.

Results train: MSE=0.0079, test: MSE=0.0087

The experimental results indicate that the adaptation scheme S3 offers the best results, both for the train
and the test period. One confirms the ability of the clustering algorithms to select convenient centers and the
computational efficiency of the gradient-based technique. The later one is able to exploit advantageously the
local information in the case of convex objective functions. The genetic search, as a general approach, can be
surpassed by these dedicated methods. Its main advantage is related to flexibility and to the reduced amount
of a priori information requested for implementation.

Table 8. Comparison of the performances of the six configurations

Parameters PerformancesScheme
Centers Singletons Train Test

1 Uniform Gradient 0.0084 0.0171
2 Uniform GA 0.0085 0.0103
3 k-means Gradient 0.0030 0.0038
4 k-means GA 0.0040 0.0061
5 GA Gradient 0.0073 0.0407
6 GA GA 0.0079 0.0087

A comparison of the performances of the six configurations is presented in Table 8. While all six
configurations offer quite accurate predictions (the train error being less than 0.01), some differences occur
with respect to the generalization capabilities of the designed neuro-fuzzy systems. The worst results are
obtained for configurations S5 and S1. In these cases, the error for the test period is larger than twice the
error achieved for the train period.
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For the S3 adaptation scheme, more details are given in Fig. 3-8. Fig. 3 illustrates the iterative
improvement of MSE during the gradient-based algorithm, applied for the singletons adaptation. The stop
condition is satisfied after about 300 iterations. Fig. 4 describes the performances achieved by the neuro-
fuzzy system subject to the training data set (samples 1 to 180). An accurate prediction is performed,
characterized by a reduced correlation of the error series (less than 0.1), as it is revealed in Fig. 5. The
histogram of the errors, illustrated in Fig. 6, is almost Gaussian. The error histogram is an indication of the
quality of the prediction process. While the normal distribution of the errors is no guarantee that the errors
represent white noise, such a distribution is considered desirable [12]. In Fig. 7, the test period is presented
(samples 181 to 220). The prediction quality is validated by a small correlation of the error series (less than
0.1), as indicated in Fig. 8 (bottom panel).

Fig. 3. The learning curve for the singleton adaptation. Fig. 4. The signals for the training period: the desired signal is
represented with solid thin line, the predicted signal is represented
with dotted thin line and the prediction error is drawn with thick

solid line.

Fig. 5. The error (top) and the self-correlation of the error
(bottom)-training data set.

Fig. 6. The histogram of the prediction error-the training data set.
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Fig. 7. The signals for the test period: the desired signal is
represented with solid thin line, the predicted signal is represented
with dotted thin line and the prediction error is drawn with thick

solid line.

Fig. 8. The error (top) and the self-correlation of the error
(bottom)-testing data set.

The comparative study suggests several new directions for future work. The one-stage genetic
adaptation of centers and singletons implies a difficult optimization task. A better approach might be to
divide the training process into two stages. At the first stage might use a genetic adaptation of the centers
(formulated as a clustering algorithm) in combination with a gradient-based computation of singletons. The
second stage might use the centers previously determined and can apply a genetic algorithm for a fine-tuning
of the output singletons.

5. DISCUSSION OF COMPLEXITY ISSUES

The presented results should be considered preliminary results because we have not performed an
analysis of the complexity of the training. Moreover, the stop condition in the algorithms has not been
consistent. Indeed, in our analysis, the stop condition has not been the same for all the schemes and has not
been related to the evolution of the error on a validation set. (We used as stop condition a maximum
generation’s number for all genetic algorithms and a minimum level of decreasing for all gradient
algorithms). Further work is needed to determine the evolution of the error on the training set in relation to
the error on the validation set. It is known that before some threshold of the training error, both the validation
and the training errors decrease, while after the threshold, the training error decreases but the validation error
increases [6]. The threshold is used as the best stop condition for the training. The time to reach the threshold
is considered the learning time (see Fig. 9). However, determining the threshold is a tedious task and has not
been performed in this research.

Prediction is a multiple-objective task. While the prediction error is the main quality indicator, it is not
the only one. No predictor structure and related training algorithm can be considered a good choice until the
costs of implementation and the costs of utilization are determined. The implementation costs relate to the
time of developing the software, the resources (mainly memory) required, and the time of training on a given
problem. When the system is hardware implemented, the circuitry complexity (for both training and
utilization) and cost are also pertinent. The utilization cost relates chiefly to the running time to make a



9 Adaptation schemes for a neuro-fuzzy predictor

prediction, after the training. Because we use a single neuro-fuzzy system, whose structure is not changed
during the adaptation, the utilization cost is irrelevant here. In this discussion, we skip the developing costs
and the resources costs. Moreover, we recall that there is no connection between the complexity of the
system – typically assumed equal to the number of neurons or fuzzy systems in the system – and the learning
complexity.

Fig. 9. Standard definitions of the stop condition and of the learning time [6]

The time of training, on a given problem, relates to the complexity of the problem and the complexity
of the meta-problem of training. There are various points of view in the literature on measures of the
complexity of training adaptive systems and specifically predictors. A popular view is that the complexity of
the learning is proportional to the time of training scaled with a measure of the complexity of the problem to
be learned by the trained system.

The experimental approach to learning complexity is the direct measurement of the learning time, for
various “benchmark” problems and for several dimensions of the input data sets. This approach requires
huge work, yet it is the only to demonstrate the benefits of a specific algorithm for a given task. This
approach will be addressed in a future research. There are several theoretical results on the complexity of the
training for neural networks and other similar systems. Theoretical solutions to the complexity problem is
important because its answer can shed light on how the error on the training set is related to the error on the
validation sets, without any tedious tests. However, the currently existing results relate only to binary
classification and to classical neural networks. Further research is needed to extend the existing theoretical
results to neuro-fuzzy systems like the one used in this paper.

6. CONCLUSIONS

The paper investigates the potential of the genetic adaptation schemes, within the framework of neuro-
fuzzy prediction problems. The performances are compared with those corresponding to other
optimization/clustering techniques.

Using a prediction benchmark time series, the neuro-fuzzy predictor performances have been checked
for six different configuration strategies. The best prediction is achieved for the configuration that selects the
membership functions centers using the k-means clustering algorithm and adapts the singletons with a
gradient descent algorithm.

However, the genetic search offers a quite accurate prediction, with satisfactory generalization
capabilities, especially when applied for the singletons adaptation. Therefore, it can represent a good
alternative in the case of time-variance, discontinuity. Further research is needed to determine the complexity
of the learning with these schemes.

validation error

train error

learning time (time
complexity measure)

error
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