
      THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A,
      OF THE ROMANIAN ACADEMY                                                                                   Volume 6, Number 2/2005, pp. 000-000

_________________________________________________________
Reccomended by Marius IOSIFESCU, member of the Romanian Academy

GENERALIZED VARIATIONAL INEQUALITIES
INVOLVING SOME TYPES OF RELAXED LIPSCHITZ AND RELAXED  MONOTONE

OPERATORS

Miruna BELDIMAN

University of Bucharest, Faculty of  Mathematics and Computer Science, Str. Academiei 14, 010014 Bucharest,  Romania
E-mail: miruna.m@gmail.com

We introduce  some new classes of generalized relaxed Lipschitz operators and relaxed monotone
operators. An iterative algorithm for solving generalized variational inequalities is studied . The
convergence of the iterative sequence generated by this algorithm is obtained under weaker
assumptions, improving some known results in the recent literature.

1. INTRODUCTION

Variational inequalities are an important area of mathematics, with applications in industry, physics,
economics and engineering. In recent years, variational inequalities have been extended in several directions
[2,4,8]. One of them is the class of generalized variational inequalities, introduced by Verma [7]. Also,
Verma and others considered the (GWI) problem associated with this type of variational inequality and
established its equivalence to a nonlinear equation which imply  projection operators [1,5,6].

Here we extend this result, introducing some new concepts of generalized relaxed Lipschitz continuity
and generalized relaxed monotonicity and prove the convergence  of an iterative algorithm for solving
generalized variational inequalities involving (k1, k2, k3)-relaxed Lipschitz and (c1, c2, c3)-relaxed monotone
multivalued operators and (r1, r2, r3)-strongly monotone singlevalued operators.

2. PRELIMINARIES

Let K be a nonempty closed convex subset of a real Hilbert space H with inner product < ⋅⋅, > and norm
|||| ⋅ .

We consider the following generalized variational inequality. Find )(),(, xTzxSwHx ∈∈∈ such
that Kxf ∈)(  and

0)(, ≥−− xfvzw  for all Kv ∈ , (1)

where HHf →: is a given singlevalued operator and 2:, →HTS H are multivalued operators. Now,as
in Verma [8], we consider the corresponding (GVI) problem.Find )(, xSwHx ∈∈ and )(xTz ∈ such that

Kxf ∈)( and
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0)(),()( ≥−−− xfvzwxf for all Kv ∈ (2)

In what follows we shall introduce some general classes of operators and prove  some properties of
these classes.

Definition 2.1. Let  0>r . An operator HHf →: is called r-expansive if vurvfuf −≥− )()(
for all Hvu ∈, .When r=1, we say that f  is expansive.

Definition 2.2. Let 0>s . An operator HHf →: is called s-Lipschitz continuous if
vusvfuf −≤− )()(  for all Hvu ∈, . Denote by L(s) the class of all s-Lipschitz continuous operators

HHf →: .

Definition 2.3. Let  0>m . An operator 2: →HS H is called m-Lipschitz continuous if for all
Hvu ∈,  and w1 ),(uS∈ w2 )(vS∈ , we have vumww −≤− 21 . Denote by L(m) the class of all m-

Lipschitz continuous operators 2: →HS H.

Definition 2.4.  Let k1, k2 and k3  be nonnegative real numbers. An operator 2: →HS H  is called (k1,
k2, k3)-relaxed Lipschitz if for all Hvu ∈, and w1 ),(uS∈ w2 )(vS∈ , we have

213
2

212
2

121 , wwvukwwkvukvuww −−+−+−−≤−− .Denote by RL(k1, k2, k3) the class of
all (k1, k2, k3)-relaxed Lipschitz operators 2: →HS H.

Remark 2.5. We note that RL(k1, 0, 0) corresponds to the class of k1-relaxed Lipschitz operators
(see[2]).

Proposition 2.6. For nonnegative real constants k1, k2, k3 we have
i) ),,0(),,()0,,()0,0,( 32321211 kkRLkkkRLkkRLkRL ⊂⊂⊂ ;
ii) ),,0()0,,0( 322 kkRLkRL ⊂ ;

        iii) If 13
2

20 kmkmk <+≤ , then )0,0,()0,0,( 3
2

211 mkmkkRLkRL −−⊂ ;

iv) If 13
2

20 kmkmk <+≤ , then )0,0,()(),,( 3
2

21321 mkmkkRLmLkkkRL −−⊂∩ .

Remark 2.7. The oposite inclusion in iii) does not hold, so it makes sense to obtain results about the
class RL ),( 3,21 kkk  which is  more general than RL(k1, 0, 0). In order to prove this, we give

Example 2.8. Let RRS 2: → , S(x)= {-x}. Let 02,0
4
1,03,0

10
11

321 >=>=>=>= kkkm . It is

easy to show that 




∈
10
11LS and 





∈ 2,

4
1,3RLS , so that 





=
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RLRLS ,

but )0,0,3(RLS ∉ .

Definition 2.9. Let r1,r2,r3 be nonnegative real numbers. An operator HHf →: is called (r1, r2, r3)-

strongly monotone if  )()()()(),()( 3
2

2
2

1 vfufvurvfufrvurvuvfuf −−−−−−≥−−  for
all Hvu ∈, .Denote by SM(r1, r2, r3) the class of all (r1, r2, r3)-strongly monotone operators HHf →: .
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Remark 2.10. We note that SM(r1, 0,0) corresponds to the class of r1-strongly monotone operators (see
[7]).

Proposition 2.11. For nonnegative real constants s, r1, r2, r3  , we have
i)  ),,()0,0,( 3211 rrrSMrSM ⊂ ;

ii) if 13
2

20 rsrsr <+≤ , then )0,0,()0,0,( 3
2

211 srsrrSMrSM −−⊂ ;

iii) if 13
2

20 rsrsr <+≤ , then )0,0,()(),,( 3
2

21321 srsrrSMsLrrrSM −−⊂∩ .

Remark 2.12. The oposite inclusion in ii) does not hold, so it makes sense to obtain results about the
class SM(r1, r2, r3), which is more general than SM(r1, 0,0). In order to prove this, we give

Example 2.13. Let RRf →: , f(x)=x+1. Let 02,0
4
1,03,0

10
11

321 >=>=>=>= rrrS .  It is

easy to show that 




∈
10
11Lf and 





∈ 2,

4
1,3SMf , so that






=















⋅−⋅−∈
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SMSMf  ,

but )0,0,3(SMf ∉ .

Definition 2.14. Let c1, c2, c3 be nonnegative real numbers. An operator 2: →HT H  is called (c1, c2 ,

c3)-relaxed monotone if for all Hvu ∈, and )(),( 21 vTzuTz ∈∈ , we have

213
2

212
2

121 , zzvuczzcvucvuzz −−−−−−−≥−− . Denote by RM(c1, c2, c3) the class of all
(c1, c2, c3)-relaxed monotone operators 2: →HT H.

Remark 2.15. We note that RM(c1,0,0) coresponds to the class of c1-relaxed monotone operators
(see[7]).

Proposition 2.16. Let m,c1,c2,c3 be nonnegative real constants and 2: →HT H a multivalued
operator. Then

i) ( )1,0,0RMT ∈ ;
ii) ( ) ( )3211 ,,0,0, cccRMcRM ⊂ ;

iii) ( ) ( ) ( )0,0,,, 3
2

21321 mcmccRMmLcccRM ++⊂∩ .

Remark 2.17. The oposite inclusion in ii) does not hold, so it makes sense to obtain results about the
class RM(c1,c2,c3), which is more general than RM (c1,0,0). In order to prove this, we give

Example 2.18. Let }{:)(,2: xxTRT R −=→ .Let 02,01,0
2
1,02 321 >=>=>=>= cccm .It is

easy to show that )2(LT ∈ and 




∈ 2,1,

2
1RMT , so 





=





 ⋅+⋅+∈

2
172221

2
1 2 RMRMT , but






∉ 0,0,

2
1RMT .
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3. MAIN RESULTS

We consider an iterative method for solving the (GVI) problem defined in Section 2, which has been
introduced by Verma [8]. In this section, we prove the convergence of this method under the hypotheses of
m-Lipschitz continuity, (k1, k2, k3)-relaxed Lipschitz continuity, (r1, r2, r3)-strong monotonicity and  (c1, c2,
c3)-relaxed monotonicity.

Lemma 3.1 ([3]).  Let HHf →: be a singlevalued operator, S, 2: →HT H multivalued operators,
)(),(, xTzxSwHx ∈∈∈ such that Kxf ∈)( .Then x,w and z are a solution set for (GVI) problem (2) iff

they satisfy the equation( in t)

)]()()1[()( zwtxftPxf k −+−= (3)

Based on Lemma 3.1, Verma [8] considered the iterative
Algorithm 3.2. For n = 0, 1, 2, ……. )]()()1[()( 1 nnnkn zwtxftPxf −+−=+

Theorem 3.3. Let K be a nonempty closed convex subset of a real Hilbert space H, HHf →: an  s-
Lipschitz continuous and (r1, r2, r3)- strongly monotone operator, where s,r1, r2, r3 are nonnegative real
constants. Let 2: →HS H be m- Lipschitz and 2: →HT H  a d- Lipschitz continuous and (c1, c2, c3)-
relaxed monotone operators, where m, d, k1, k2, k3, c1, c2 and c3 are nonnegative real constants.Assume also
that  r>0, k>0, 1-2r+s2>0 and

( ) { } 2/1222 ])(1][)()(21[)(1 prpdmckrppck −−−++−++−>−+ , (4)

{ }
2 2

1/ 22 2 2 2

2 2 1

1 ( )
1 2( ) ( d)

                 [1 ( ) ( )] [1 2( ) ( d) ][1 ( )

                     [1 2( ) ( d) ] ,

k c p p rt
k c m p

k c p p r k c m p r p

k c m p −

+ − − −− <
+ − + + −

< + − − − − + − + + − − − ⋅

⋅ + − + + −

(5)

where r = r1 – r2s2 – r3s, k = k1 – k2m2 – k3m,c = c1 – c2d2 – c3d, p = (1 – 2r + s2)1/2  .
         Then the sequences {xn}, {wn}, {zn}and {f(xn)}, generated by Algorithm 3.2 with

)(),(, 00000 xTzxSwHx ∈∈∈ and Kxf ∈)( 0 , converge to x, w, z and f(x), respectively, solution of
equation (3).

  Theorem 3.3 has the following corollaries.

Corollary 3.4 ([7]). Let K be a nonempty closed convex subset of a real Hilbert  space H,
HHf →: an s-Lipschitz continuous and (r1, r2)-strongly monotone operator, where s,r1, r2  are

nonnegative real constants. Let 2: →HS H  be an m-Lipschitz continuous and (k1, k2)-relaxed Lipschitz
operator ,let   2: →HT H  a  d- Lipschitz continuous and (c1, c2)- relaxed monotone operator, where m, d,
k1, k2, c1  and c2 are nonnegative real constants.

Assume also that  r>0, k>0, 1 - 2r + s2>0 and conditions (4) and (5) hold, where r = r1– r2s2, k = k1 –
k2m2 , c = c1 + c2d2  , p = (1 – 2r + s2)1/2 .

Then the sequences {xn}, {wn}, {zn} and that {f(xn)}, generated by Algorithm 3.2 with
)(),(, 00000 xTzxSwHx ∈∈∈ and Kxf ∈)( 0 , converge to x, w, z and f(x), respectively, solution of

equation (3).

Corollary 3.5 ([7]). Let K be a nonempty closed convex subset of a real Hilbert space H and let
HHf →: be  a strongly monotone and Lipschitz continuous operator with corresponding constants r>0

and  s>0. Let 2: →HS H be a  relaxed Lipschitz and Lipschitz continuous operator with corresponding
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constants 0≥k  and 0≥m . Let 2: →HT H be a relaxed monotone and Lipschitz continuous operator
with corresponding constants  c>0  and  d>0. Also, we asume 1 - 2r + s2 > 0 and conditions (4) and (5) hold.

        Then the sequences {xn}, {wn}, {zn}and {f(xn)}, generated by Algorithm 3.2 with
)(),(, 00000 xTzxSwHx ∈∈∈ and Kxf ∈)( 0 , converge to x, w, z and f(x), respectively, solution of

equation (3).

Corollary 3.7 ([2]). Let f be the identity and HKS →:  a relaxed Lipschitz continuous operator.
Then the sequence {xn}, generated by

)]()1[(1 nnkn xtSxtPx +−=+  , n = 0, 1, 2, …. (6)

where x0 is in K 221
)1(20
mk

kt
++

+<< , converges to the unique fixed point of S.

Corollary 3.8 ([9]). Let f be the identity and HKS →: a  Lipschitz continuous operator with

Lipschitz constant 1≥m . Then the sequence {xn} generated by (6), where  Kx ∈0 and 
m

t
+

<<
1

20 ,

converges to the unique fixed point of S.
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