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We introduce some new classes of generalized relaxed Lipschitz operators and relaxed monotone
operators. An iterative algorithm for solving generalized variational inequalities is studied . The
convergence of the iterative sequence generated by this algorithm is obtained under weaker
assumptions, improving some known results in the recent literature.

1. INTRODUCTION

Variational inequalities are an important area of mathematics, with applications in industry, physics,
economics and engineering. In recent years, variational inequalities have been extended in several directions
[2,4,8]. One of them is the class of generalized variational inequalities, introduced by Verma [7]. Also,
Verma and others considered the (GWI) problem associated with this type of variational inequality and
established its equivalence to a nonlinear equation which imply projection operators [1,5,6].

Here we extend this result, introducing some new concepts of generalized relaxed Lipschitz continuity
and generalized relaxed monotonicity and prove the convergence of an iterative algorithm for solving
generalized variational inequalities involving (ky, ko, ks)-relaxed Lipschitz and (c;, C,, C3)-relaxed monotone
multivalued operators and (ry, r,, r3)-strongly monotone singlevalued operators.

2. PRELIMINARIES

Let K be a nonempty closed convex subset of a real Hilbert space H with inner product <LI3 and norm

I

We consider the following generalized variational inequality. Find x OH,w[JS(x),z OT(X) such
that f(x) OK and

(w=z,v=f(x) )=0 forall vOK, 1)

where f :H - H is a given singlevalued operator and S,T : H — 2" are multivalued operators. Now,as
in Verma [8], we consider the corresponding (GVI) problem.Find x OH,wS(x)and z 0T (x) such that
f(x) UK and
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(f(x)=(w=-2z),v-f(x))=0forall vOK (2)

In what follows we shall introduce some general classes of operators and prove some properties of
these classes.

Definition 2.1. Let r>0. An operator f :H — H is called r-expansive if || f (u) = f (V)| = ru -V
for all u,vH .When r=1, we say that f is expansive.

Definition 2.2. Let s>0. An operator f:H — His called s-Lipschitz continuous if
|f (u) = f(v)| < s|u~v| forall u,vOH . Denote by L(s) the class of all s-Lipschitz continuous operators
f:H - H.

Definition 2.3. Let m>0. An operator S:H - 2" is called m-Lipschitz continuous if for all
u,vOH and w;[S(u), w20 S(v), we have |, —w,| < m|u—Vv|. Denote by L(m) the class of all m-

Lipschitz continuous operators S: H — 2"

Definition 2.4. Let ky, k, and ks be nonnegative real numbers. An operator S: H — 2" is called (ki,
Ko, ks)-relaxed Lipschitz if for all uvOHand w[J S(u),w20S(v), we have

(W, =Wy, u=v) < =k, Ju=v|" +k,|w, = w, | +kyu = V] [w, —w,|.Denote by RL(ki, k;, ks) the class of
all (ky, ko, ks)-relaxed Lipschitz operators S:H — 2",

Remark 2.5. We note that RL(k;, 0, 0) corresponds to the class of kj-relaxed Lipschitz operators

(see[2]).
Proposition 2.6. For nonnegative real constants ki, k», ks we have
i) RL(k;,0,0) O RL(k,,k,,0) O RL(k,,k,,k;) O RL(0,k,,k;);
ii) RL(0,k,,0) O RL(0,k,,k;);
iii) If 0 < k,m? +k,m <k, then RL(k,,0,0) O RL(k, —k,m?* —k,m,0,0);
iv) If 0< k2m2 +k,m <k,, then RL(k,,k,,k;) n L(m) ORL(k, - kzm2 —k,m,0,0).

Remark 2.7. The oposite inclusion in iii) does not hold, so it makes sense to obtain results about the
class RL (k;, k;, k;) which is more general than RL(ks, 0, 0). In order to prove this, we give

Example 2.8. Let S:R = 2%, S(x)= {-x}. Let m=%>0,kl =3>0,k, =%>O,k3 =2>0.1tis

easy to show that S DLEEEand S DRLEB,E,ZEI so that S O RL L G1—1 ZEB'ESH RLBﬂ
100 04" 0 410 ~ 000OH

(200 0]
but S O RL(3,0,0).

Definition 2.9. Let ry,I,,r; be nonnegative real numbers. An operator f : H — H is called (ry, s, r3)-
strongly monotone if (f(u) = f(v),u-v)=ru —V||2 —1,||f (u) - f(v)||2 —rfu=v|||f ()= f(v)| for
all u,vJH .Denote by SM(ry, r2, r3) the class of all (ry, rz, r3)-strongly monotone operators f :H — H .
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Remark 2.10. We note that SM(ry, 0,0) corresponds to the class of ry-strongly monotone operators (see

[7D.
Proposition 2.11. For nonnegative real constants s, ry, I, rs , we have
i) SM(r;,0,0) 0 SM(r,r,,1;);
i) if 0<r,s* +r,s <1, then SM(r,,0,0) O SM (r, —r,s* —1,5,0,0) ;
iii) if 0<r,s° +1,5<r,, then SM(r,,1,,r;) n L(s) O SM(r, —r,s° - 1,5,0,0).

Remark 2.12. The oposite inclusion in ii) does not hold, so it makes sense to obtain results about the
class SM(ry, 1, rs), which is more general than SM(r, 0,0). In order to prove this, we give

Example 2.13. Let f:R - R, f(x)=x+1. Let S :%>0,r1:3>0,r2 :%>0,r3 =2>0. ltis

easy to show that f [J L%Eﬁnd f OSM EBEZH so that

fmsm% 1, AR gupst 61H

4710 0Ol ~ 0000
but f OSM (3,0,0).

Definition 2.14. Let ¢, C,, ¢3 be nonnegative real numbers. An operator T : H — 2" is called (cy, ¢,
c3)-relaxed  monotone  if  for  all u,vH and z,0T(u),z, OT(v), we have

(z, =2, u-Vv)2—c,u —v||2 —C,l|z, - 22||2 —Cyfu =V| |z, = z,||. Denote by RM(cy, ¢z, ¢s) the class of all

(c1, Cy, C3)-relaxed monotone operators T : H — 2 H)

Remark 2.15. We note that RM(c;,0,0) coresponds to the class of c;-relaxed monotone operators

(see[7]).

Proposition 2.16. Let m,cy,Cy,C3 be nonnegative real constants and T :H — 2" a multivalued
operator. Then

i) TORM(0,01);

ii) RM (c;,0,0) 0 RM (¢, ¢,, ¢, );

iy RM (¢,,¢,,¢,)n L(m) O RM (¢, +c,m? +¢,m,0,0).

Remark 2.17. The oposite inclusion in ii) does not hold, so it makes sense to obtain results about the

class RM(c3,C2,C3), which is more general than RM (c4,0,0). In order to prove this, we give

Example 2.18. Let T:R - 2R,T(x) ={-x}.Let m=2>0,c, =%>0,C2 =1>0,c,=2>0.ltis
easy to show that TOL(2)and TORMEE12H so TORMEE+122 +22H RMEH but
270 2 0 020

TORM[E-,0,0
o
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3. MAIN RESULTS

We consider an iterative method for solving the (GVI) problem defined in Section 2, which has been
introduced by Verma [8]. In this section, we prove the convergence of this method under the hypotheses of
m-Lipschitz continuity, (ki, ko, ks)-relaxed Lipschitz continuity, (ry, r», r3)-strong monotonicity and (ci, ¢,
Cs)-relaxed monotonicity.

Lemma 3.1 ([3]). Let f :H — H be asinglevalued operator, S, T : H — 2" multivalued operators,
xOH,wOS(x),zOT(x) such that f(x) K .Then x,w and z are a solution set for (GVI) problem (2) iff
they satisfy the equation( in t)

f(x) =RIA-) () +t(w=-2)] ®3)
Based on Lemma 3.1, Verma [8] considered the iterative
Algorithm 3.2. Forn=0,1,2, ....... f(X,.)=PIA-t)f(x,)+t(w, —2z,)]

Theorem 3.3. Let K be a nonempty closed convex subset of a real Hilbert space H, f :H - H an s-

Lipschitz continuous and (ry, r,, r3)- strongly monotone operator, where s,ry, I, r; are nonnegative real
constants. Let S:H — 2" be m- Lipschitz and T :H — 2" a d- Lipschitz continuous and (cy, c,, Cs)-
relaxed monotone operators, where m, d, ki, kz, ks, €1, C; and ¢z are nonnegative real constants.Assume also
that r>0, k>0, 1-2r+s°>0 and

1+(k-c)> p(p—r)+{[1+2(k—c)+(m+d)2 - P2 -(r - p)z}llz, 4
__ ltk=c-p(p-n |
1+2(k —c) +(m +d)? —p?|

<{l+ k=) =p(p -1 L +2(k ) Hm +)* I A 9} O
M +2(k =¢) +(m +d)* =p°]",

(®)

where r = ry — ;8% — 138, k = ky — kom? — ksm,c = ¢; — ¢,d* = cad, p = (1 — 2r + s%)"?

Then the sequences {x.}, {w.}, {z.Jand {f(x,)}, generated by Algorithm 3.2 with
Xo OH,w, 0S(x,),z, 0T(x,)and f(x,) K, converge to x, w, z and f(x), respectively, solution of
equation (3).
Theorem 3.3 has the following corollaries.

Corollary 3.4 ([7]). Let K be a nonempty closed convex subset of a real Hilbert space H,
f :H - Han s-Lipschitz continuous and (r;, ry)-strongly monotone operator, where s,r;, r, are
nonnegative real constants. Let S:H — 2" be an m-Lipschitz continuous and (ki, kz)-relaxed Lipschitz
operator let T:H — 2" a d- Lipschitz continuous and (c,, ¢,)- relaxed monotone operator, where m, d,
ki, kz, €1 and c; are nonnegative real constants.

Assume also that r>0, k>0, 1 - 2r + s>>0 and conditions (4) and (5) hold, where r = r;— r,s% k = k; —
kom?, ¢ =cy +c,d? , p=(1-2r+s)™.

Then the sequences {x.}, {w.}, {z.} and that {f(x,)}, generated by Algorithm 3.2 with
Xo OH,w, 0S(X,),z, OT(x,)and f(x,) K, converge to x, w, z and f(x), respectively, solution of

equation (3).

Corollary 3.5 ([7]). Let K be a nonempty closed convex subset of a real Hilbert space H and let
f:H - H be a strongly monotone and Lipschitz continuous operator with corresponding constants r>0

and s>0. Let S:H — 2" be a relaxed Lipschitz and Lipschitz continuous operator with corresponding
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constants k=0 and m=>0. Let T:H - 2" be a relaxed monotone and Lipschitz continuous operator
with corresponding constants ¢>0 and d>0. Also, we asume 1 - 2r + s*> 0 and conditions (4) and (5) hold.
Then the sequences {x.}, {w.}, {z.}and {f(x,)}, generated by Algorithm 3.2 with

Xo OH,w, 0S(Xy),z, OT(x,)and f(x,) DK, converge to x, w, z and f(x), respectively, solution of
equation (3).

Corollary 3.7 ([2]). Let f be the identity and S:K — H a relaxed Lipschitz continuous operator.
Then the sequence {x,}, generated by

Xp = P IA-t)x, +tS(x,)] ,n=0,1,2, .... (6)

+
2(L+k) -, converges to the unique fixed point of S.

where xgisinK 0 <t < ——
1+2k +m

Corollary 3.8 ([9]). Let f be the identity and S:K — H a Lipschitz continuous operator with
2

1+m’

Lipschitz constant m >1. Then the sequence {x,} generated by (6), where X, JKand 0<t<

converges to the unique fixed point of S.
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