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In very high speed IC circuits, the extraction of the self and coupling capacitances of multilayer and
multiconductor interconnects is usually required. A new approach for the accurate calculation of
capacitance matrix of multilayered IC interconnects with very thick conductors is presented, based on
a perturbation procedure to calculate the multilayer Green’s function for planar interfaces. The
validity of the technique is verified by comparing its results with accelerating capacitance calculations
by Pade approximation technique and moment method for total charges in the structure, respectively.
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1. INTRODUCTION

Calculation of the capacitance matrix in multilayer IC interconnects is a well-known problem that can
be solved by many analytical and numerical techniques [1-8]. Often these procedures were based on the
integral equation formulation, differential equation formulation, or have been the results of extensive
numerical simulations using adequate empirical corrections.

This letter proposes a new and more general formulation for computation of capacitance matrix of the
most common 2-D interconnect structures using perturbation calculation of the Green’s function of the
structures.

2. ANALYSIS

In the formulation, 2-D L-layered interconnect structures with planar boundaries are considered. Each
layer is linear, homogeneous, and isotropic, and has permittivity ε (l) and conductivity σ(l), where l = 1,...,L.
For lossy medium the complex permittivity is ε (l) = ε(l) - jσ/ω. The point charge source is placed at

( ), ,s s s sx y z=r , in the multilayered dielectric media (see Figure 1).
The Green’s function of the problem G(rs;rf) at the any point rf = (xf,yf,zf), satisfies the differential

equation:
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with standard boundary conditions on the interfaces, where ε(rf) represents the dielectric permittivity ε (m) in
the half-space with charge source and that ε(l) in the layer l of the multilayer media, respectively.

If we suppose that the whole space in the structure is homogeneous (no dielectric inhomogenities), we
have: ∇2G0(rf,rs) = -δ(rf-rs)/ε0, where G0(rf,rs) = [ε 0rf - rs]-1. The dielectric function ε(rf) = can be written
as:
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where η(l) = 1 - ε (l)/ε (m) and hl(rf) equals unity when rf is in layered medium (l) and zero otherwise. Let Vl and
Sl be the volume and surface of layer l, respectively. For rf∈Vl, the Green’s function is given by [9]:
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where n’j is a unit normal to Sj while for rf∈Vm, however, we get:
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where Vm means the volume of the upper half-space of the structures. The image potential is given by:
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Fig. 1. Geometry of a layered structure with multiconductor interconnection lines.

The above described procedure provides a general method for determining the multilayered Green’s
function of the IC interconnects.

In order to determine the per unit length capacitance of the multiconductor multi-layer interconnect, the
potential on any conductor in the structure resulting from the charge distribution ρ(rs) is computed using a
convolution of the form:
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where G(rf;rs) is the Green’s function determined using new defined approach in this paper.
The Galerkin’s technique is used to set up the final matrix equation. The unknown charge distribution

are expanded in terms of known basis function, namely:
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where ma ’s are unknown constants to be solved, and Kb is the number of basis functions used to model the
charge density on each conductor.



3 Capacitance matrix calculation for integrated circuit interconnects

3. NUMERICAL RESULTS

In our approach suggested in this paper, regions of different permittivities are modeled by modifying
the homogeneous Green function (charge point) to incorporate the effects of dielectric interfaces
(perturbation formalism). The advantages of using such an approach are that only conductor surfaces need to
be discretized and that there is no need to truncate wide ground conductors and dielectric layers. Therefore
the system matrix is reduced in size. The Green’s function may be easily found for planar layered
interconnect configurations and other VLSI and MCMs structures in which all dielectric interfaces and
ground planes are planar, parallel and infinite in extent.

Example 1
Let us consider the system of three conductors embedded in three-layered dielectric region with

structure as shown in Figure 2, where the conductors are numbered from left to right as 1, 2, and 3,
respectively (all dimensions are in µm). Numerical values for the capacitance matrix elements, generated by
the proposed approach, by Pade approximation formalism [1] and total charge boundary element procedures
[2], respectively, are given in Table 1. Note that the discrepancies between the values generated by our
approach and one by [2] are practically smaller than 0.2%.

Fig. 2. Geometry of the structure from example 1 (w/H1= w/t= 8/6, s/H2 = 10/11, εr1= 9.5 and εr2= 4.0 and εr3= 1.0).

Table 1. Capacitance matrix of the structure of Fig. 2.

Capacitance (pF/m) [1] [2] This letter
C11 266.459 269.520 268.930

C12=C21 -34.812 -34.868 -34.770
C13=C31 -1.302 -1.256 -1.259

C22 274.743 277.750 276.998
C23=C32 -34.812 -34.868 -34.770

C33 266.459 269.520 268.930

Example 2

Numerical values of C11, C12, C21, and C22, generated by the proposed approach, for a pair of coupled
interconnection lines (see Fig. 3), are shown in Table 2. Table 2 compares our results with those of [1] and
[5,8], respectively. It is clear from this table that our approach can provide very high accuracy even if we
have very thick interconnect conductors.
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Fig. 3. Coupled parallel interconnection lines ( w/H = w/t = 3, s = 2, εr1= 2.0 and εr2= 1.0).

Table 2. Comparison of results for example 2, Fig. 3.

Capacitance
(F/m)

[1] [5,8] This letter

C11 0.9264×10-10 0.9165×10-10 0.9189×10-10

C12 -0.8305×10-11 -0.8220×10-11 -0.8245×10-11

C21 -0.8305×10-11 -0.8220×10-11 -0.8245×10-11

C22 0.9264×10-10 0.9165×10-10 0.9189×10-10

4. CONCLUSION

A new perturbation procedure for the analysis of multilayer IC interconnects is proposed in this letter
and applied to for the case of very thick conductors. The derived algorithm is tested in the numerical
calculation of capacitance per unit length of some inhomogeneous IC interconnects. The proposed method
leads to an accurate and efficient computer code that permits one to analyze a variety of interconnect IC
circuits.
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