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One proves that a Nuclear Threshold Effect is dependent, via Neutron Strength Function, on
Spectroscopy of Ancestral Neutron Threshold State.  The magnitude of the Nuclear Threshold Effect
is proportional to the Neutron Strength Function.  Evidence for relation of Nuclear Threshold Effects
to Neutron Strength Functions is obtained from Isotopic Threshold Effect and Deuteron Stripping
Threshold Anomaly

1.  INTRODUCTION

The problems of Nuclear Threshold Effects and of Neutron Strength Function were both formulated by
Wigner, (Nobel Prize, 1963, see [1]), in the early times of Nuclear Physics, [2], [3]. Both subjects are still
topical in Contemporary Physics of Nuclear Reactions as cardinal research topics, (see [4] and [5]).
Apparently the two research subjects have been developed mainly as non-related ones.  This Report does
establish, theoretically and from experimental data, a relation between Nuclear Threshold Effects and
Neutron Strength Functions.

2.  NUCLEAR THRESHOLD EFFECTS

The basic law of Nuclear Reactions is conservation of the flux; if a new reaction channel opens, a
redistribution of the flux appears in old open channels.  The modification of an open-channel cross-section,
due to opening of a new one, is called threshold effect.

The first (formulation and) solution to the problem of Threshold Effects was provided by Wigner and it
is known as the Cusp Theory, [2]. The threshold effects observed in open channels depend on amount of flux
absorbed by the new opening (threshold) channel.  If the threshold channel exhibits no (coulombian and
centrifugal) barriers, (i.e.  it is a s-wave neutron one), then absorption of the flux is suddenly produced and it
results in the Cusp Threshold Effect.  The Wigner Threshold Cusp should be an universal effect, appearing at
threshold of every new s-wave neutron channel.  However, extensive experimental studies, along many
decades, (see [4]), have shown that the nuclear threshold effects are rather rare and diverse.  An alternative
solution to problem of Nuclear Threshold Effects has to be developed; it has to explain the diversity and rare
evidences of threshold effects and to include, as limit cases, the Cusp Theory and other theoretical threshold
models.

The problem of Threshold Effects can be incorporated in a broader class of multichannel scattering
problems studying the effect of an eliminated (invisible or unobserved) channel on the retained (observed)
open channels.  Formally, such multichannel scattering problems, could be considered as scattering problems
in truncated space of retained channels.

The Dynamics of Quantum Scattering is described by S- or Scattering- Matrix.  The S- Matrix elements
describe distribution of the flux in different reaction channels.  The conservation of the flux is expressed by
the S- Matrix Unitarity.  The flux transfer between retained r and eliminated e channels is described by the
Reduced S- Matrix, [6]. The Reduced S- Matrix is the S- submatrix for retained channels, taking into account
the effect of the eliminated one(s),
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The "reduced" component ∆S
rr

 of the S- Matrix displays transitions to and from eliminated channels.
The Reduced Scattering Matrix was generalized, [7], in order to separate S- Matrix singularities, i.e. the
resonant- and threshold- structures.  The Reduced Scattering Matrix method was extended below threshold,
by a joint approach with the Atomic Quantum Defect Method, [8], [9].

The Reduced S- Matrix describes, unitary, a broad class of multichannel problems, including the
problem of Threshold Effects.  The most important physical result is the relation between Threshold Effects
in open channels, (∆S

rr
), and Nuclear Reaction Dynamics, (S

ee
), of the threshold channel.  For example, the

Cusp Theory is obtained in zero-energy limit of Potential Scattering, [6]. Other types of Threshold
Anomalies are related to Resonant or Quasi-Resonant Scattering, [7], [10].

The flux transfer between reaction channels of a Direct Interaction Process is mainly controlled by
kinematical and channel penetration factors. The S- Matrix dependence only on penetration factors is basic
assumption of the Cusp Theory, [2], [11], namely, S
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, [11]. One can prove, [6], that the energy dependence only via

neutron penetration factors is not a sufficient condition for an observable nuclear cusp effect.
The flux transfer in reactions developing via resonances, is controlled by the resonance couplings to

reaction channels.  [A resonance is a quasistationary state of the compound system, decaying in different
reaction channels.]  The factor governing the flux leakage from a resonance (λ) to reaction channel (n) is the
partial resonance decay width, Γ
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; it consists from the preformation factor of (n)-particle in (λ)

resonance, (particle reduced width γ
λn

 ), and from the penetration factor (P
n
) of the channel barrier.  The

reduced width amplitude γ
λn

 is proportional to single particle component (n) of the wave function of the
resonant state (λ); it is primary factor governing the flux leakage from compound state into reaction
channels.  The other factor governing the flux leakage into reaction channel is penetrability P

n
 through n-

channel potential barrier, (favouring s- wave neutron channel). The resonance total width, i.e.  sum of all
channels partial widths, Γ

λ
=Γ
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+Γ
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+..., gives the flux leakage in all reaction channels.  The threshold

effect is directly related to flux absorbed by threshold channel; this means that the resonance total width has
to be dominated by neutron threshold partial width, Γ

λ  ≅ Γλn
, or resonance’s neutron reduced width is very

large approaching its maximal value, γ
λn ≅ γW

 ,(reduced width Wigner unit). An obvious necessary condition

is energy coincidence of the resonance with neutron threshold, |E
λ
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λ
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π      and  γ
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W

 , define the (π) “Neutron Threshold State”. According to this representation the
significant threshold effects are related to resonances, coincident with neutron threshold; these resonances
have to decay preferentially in neutron threshold channel.

The magnitude of a threshold effect does depend not only on Reaction Mechanism but also on
Spectroscopical Amplitude, (i.e.  neutron reduced width), of the Neutron Threshold State.  A threshold
quasistationary state does act as an amplifier for flux transfer to threshold channel because state overlap of
channel is very large, i.e.  it has a large reduced width for decay in threshold channel.  The neutron threshold
states are vital in producing significant threshold effects.  The threshold effects observed with light nuclei are
related to resonant levels coincident with neutron channel thresholds and having large neutron reduced
widths (spectroscopic amplitudes). This assertion could be verified by analysis of threshold effects observed
with light nuclei, (1- p Shell), [4].

The threshold effects are determined by Reaction Dynamics which comprises, in addition to genuine
Reaction Mechanisms, the Spectroscopy of the involved nuclear states.
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3.  NEUTRON STRENGTH FUNCTION

The sharp resonances are observed in reactions on light nuclei at low energies; the resonance’s
spectroscopic parameters are reduced widths. For medium and heavy nuclei one observes no longer sharp
resonances but rather smooth cross-sections; the resonant levels become very closely spaced and their widths
are larger than their separations.  It is therefore necessary to define a corresponding statistical spectroscopic
quantity, by averaging over many levels.  This is the Strength Function, which is defined as the total value of
the reduced width per unit energy interval of (λ) resonances, Sλn=<γλn

2>ρλ, where ρ
λ
 is the density of (λ)

levels.  The Strength Function is ratio of averaged width to the mean spacing D between adjacent levels,
ρ

λ
=1/D

λ
 . The Strength Function is an averaged quantity like the nuclear-level density.  Regions where it is

appropriate to discuss levels densities instead of single levels are also regions where it is useful to think in
terms of Strength Function instead of individual reduced widths.

The (Bohr) Compound Nucleus Resonance is a quasistationary state of high complexity, involving
multinucleon excitations.  The formation of Compound Nucleus develops via succesive nuclear
configurations culminating with resonant quasistationary state(s), which afterwards decay in different
reaction channels.  The first configuration of this sequential process corresponds to motion of incident
nucleon in the self-consistent nuclear potential of the compound system.  This motion is described by Single
Particle Models as Shell Model (for negative energies) and Optical Model (for positive energies). The Single
Particle (nucleon) Shell Model bound state’s counterpart, at positive energies, is the Optical Model (Shape
or) Single Particle Resonance.  The next configurations following single particle motion, are approached via
residual nuclear interactions; these are differences between the actual nuclear potential and the Shell
Model/Optical Model Potential.  By the residual interactions the Single Particle Resonant State is spread out
over a group of actual levels.  The group of actual levels, carrying out a substantial fraction of Single Particle
State, constitues the Giant Resonance, (Micro-Giant Model of Lane-Thomas-Wigner, for Optical Model
Resonance [3]). (If the residual interactions would a bigger spreading of the Single Particle State, one results
the Uniform Model).

The Strength Function is a measure of the mean strength of reduced widths of actual compound
nucleus resonances.  This spectroscopic quantity is defined as the overlap of Single Particle State and the
actual states, giving how much the Single Particle State is mixed with actual states of the nucleus.  It is
expected that the Strength Function will display maxima whenever a Single Particle State is present.  The
(broad) Giant Resonances correspond to each of the Single Particle States of the compound system when the
residual interaction was neglected.  The (neutron) single particle reduced width γ

sp
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complicated levels of the compound nucleus in such a way that that Σ
λ
γ
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2
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enhancement of the cross-section or of the Strength Function , resembling to a large width resonance, reveals
existence of Single Particle States in nucleon scattering on nuclei.  The Giant Resonances are (e.g.  neutron)
Single Particle Resonances which are split , by residual interactions, into complicated Compound Nucleus
states.  They are not more described by Single Particle reduced widths but rather by the statistical Neutron
Strength Function. The spectroscopic parameter of the Neutron Giant Resonance is not more the neutron
reduced width but rather its statistical corresponding, i.e.  the Neutron Strength Function.  Both the Reduced
Width of an isolated resonance and the Strength Function of a Giant Resonance could influence the flux
dynamics in threshold channel which, at its turn, is determining the magnitude of the threshold effects.

For this study, the Neutron Single Particle Resonance coincident with threshold are of interest.  The
Single Particle Resonance is a Single Channel Resonance.  In next chapter we discuss how a single channel
neutron resonance could induce, via Quasi-Resonant Scattering, a multichannel threshold effect and how this
effect is related to Neutron Strength Function.
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4.  THRESHOLD EFFECTS, QUASI-RESONANT SCATTERING AND NEUTRON CHANNEL
STRENGTH FUNCTION

The Compound Nucleus Resonances (involving multinucleon excitations) are multichannel resonances.
The Single Particle Resonances, on contrary, should manifest, in first approximation, as Single Channel
Resonances.  A Direct Channel Coupling of a Single Particle resonance to other competing reaction channels
could result into a Coupled Multichannel Resonance.  This resonant scattering mechanism, as distinct from
Compound Nucleus, is named Quasi-Resonant Scattering, [10], [8]. In last frame, a threshold channel Single
Particle Resonance, could induce a significant threshold effect provided there is a strong and selective direct
coupling to open channels.

The Quasi-Resonant Scattering process consists of direct inter-channel transitions, preceded or
followed by a Single Channel Resonance.  They are experimentally evinced as resonant structures in some
reaction channels; other competing reaction channels show a (direct interaction) monotone energy
dependence . An approach to Quasi-Resonant processes is here presented in terms of Reduced S- Matrix.

The Scattering Matrix is split into "fast" background (β) and "delayed" resonant (ρ) terms, S=S
β
+S

ρ
.

The Unitarity of Scattering Matrix S and of "fast" background Scattering Matrix S
β results into a

"modulation" of S
ρ
 resonant elements in terms of background Scattering Matrix, [7]. The resonance (λ) could

decay in a channel both directly or via other intermediate channels.  If a single channel resonance from an
unobserved channel n is involved , (γ

λn
≠0,γ

λa
=0, a  and b- observed channels), then the S- Matrix or the

Transition T- Matrix,(S=1+2iT), becomes, [10],
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structures in other reactions (a,b). The Quasi-Resonance’s reduced widths depend both on channel couplings
strengths and on Spectroscopy of ancestral Single Particle State: αλa=iTan
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); the resonant structure width of the whole reaction system is narrower

than single channel resonance width. A physical interpretation, [10], of this effect is related to Channel
Coupling Pole; this originates in a distant pole in energy (or wave number) plane which is driven to physical
region when the channel coupling becomes strong.  This is a demonstration that the origine of the
multichannel quasi-resonance is a single particle resonance state from an invisible channel.

Another peculiar compression of a quasi-resonant structure comes into play if the single particle state
(π) is located near channel threshold. A R- Matrix parametrization of this formula displays a strong energy
dependence of the resonance denominator via threshold channel logarithmic derivative L
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because of their peculiar energy dependance near threshold. [The complementary width, Γ’, describes Quasi-
Resonance's coupling to other open channels.] One has to mention a phenomenological formula proposed by
Lane, [12], for Deuteron Stripping Threshold Anomaly, α/[E
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+W)], where W is Single

Particle Resonance’s spreading width and α parameters are related only to isospin proton-neutron coupling
strength. The non-linear energy dependence of the shift-function Sn and of penetration-factor Pn, results into
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a "threshold compression factor", β(E)=1/[1+γ
πn

2dS
n
/dE], [12]. The subunitary threshold factor, β(E) < 1,

results into a shift to the threshold of the resonance, E
π
→βE

π
 and in compression of the total width, Γ→βΓ.

The magnitude of the quasiresonant process is proportional both to direct channel coupling strengths

(T
an

β
T

nb

β
) and to the single channel neutron reduced width (γ

πn
2). The last property is subject of this chapter.

As mentioned before, the Single Particle State is spread out , by residual interactions, over the actual
(compound nucleus) levels.  By averaging over actual levels one obtains the result the effect is proportional
to Neutron Strength Function, S

πn
∼ <  γ

πn

2
>. [The only fluctuant quantities are neutron reduced width and

total resonance width; the other terms (T
β
,S

n
,P

n
) are monotone energy dependent and are not involded in

averaging.  The averaging method used here is Brown procedure, [13]; one has to avoid a small region at
threshold-branch point.]  The relation Threshold Effect magnitude - Neutron Strength Function was firstly
obtained by another procedure, [14],

nbnanab Γ>γ<Γ=α π
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with Γ
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 and Γ
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 as coupling strengths of the threshold channel n to open ones.
In order to extract from data the relation Threshold Effect - Neutron Strength Function one has to take

into account the energy dependence on input (a) and exit (b) channels , i.e. those of T
an

β
T

nb

β
 factors.  Let

consider the case of the exit proton channel (b=p) coupled by isospin interaction to neutron threshold
channel; the proton and neutron channels are isospin analog-ones.  The exit proton energy is fixed by its
Coulomb relation to the threshold zero-energy of neutron analogue channel, [Q(p,n) for analogue channels
has nearly same value for all nuclei in a given mass area or with same zero energy neutron state]. Therefore

the term T
np

β
 could be considered as constant for the group of nuclei displaying same zero-energy neutron

state.  For a quasiresonant threshold effect in proton elastic scattering one obtains that the product T
pn

β
T

np

β
 is

nearly constant for target nuclei within mass area with a given zero-energy Neutron Single Particle State.
The experimental threshold effect’s magnitude α

pp
 is, up to a constant factor, just Neutron Strength Function

α
pp

=const.S
πn

.
For transfer reactions populating same proton and neutron isospin analogue channels , [ e.g.  (d,p) and

(d,n) ones], it could happen that the Q-values, [Q(d,p)], change significantly for different target nuclei of
same mass area.  Consequently one has to "correct" for the input channel energy dependence, the primary
experimental data.  One can overcome this situation by remarking that the transfer analog proton and neutron
reactions have same kinematical structure; their energy dependence on input channel appears only in DWBA
Radial Integrals via input (deuteron) channel distorted wave function.  Consequently one can consider that
the input channel energy dependence of threshold experimental data is same as of the background cross-

section, α
dp

∼T
dp

β
α', with α' nearly independent on input channel energy.  The relation Threshold Effect -

Neutron Strength Function is now shifted into relation α'=const.S
πn

.
These procedures have been used in establishing relations Threshold Effect- Neutron Strength Function

both for Isotopic Threshold Effect and Deuteron Stripping Threshold Anomaly.

5.  EVIDENCE FOR RELATION OF AVERAGED NUCLEAR THRESHOLD EFFECTS AND
NEUTRON CHANNEL STRENGTH FUNCTION

Threshold effects related to Quasi-Resonant Scattering require two conditions:  (1) a zero-energy neutron
single particle resonance, and (2) direct selective coupling of neutron threshold channel to the observed
(proton) one.  The first condition does select the mass area of target nuclei, while the second one does select
the reaction populating neutron channel.  Indeed, a Single Particle State of given energy is a global property
of a whole mass region; for example the 2-p and 3-p Neutron Single Particle States are specific for A≈30 and
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A≈90 mass nuclei, respectively.  The Neutron Single Particle Resonance is then coupled selectively, by
isospin interaction, only to analogue proton channel.

a)ISOTOPIC THRESHOLD EFFECT
The possible proton reactions , satisfying to above conditions, are (p,p) proton elastic scattering and (p,n),

charge exchange reactions on mirror nuclei of A≈30 mass area, [15]; (data for 
25

Mg are taken from a work on
statistical fluctuations, [16]). Experimental data of proton scattering on A≈30 mass nuclei do indeed exhibit
an averaged threshold effect; its magnitude is proportional to 2-p wave Neutron Strength Function, [17]. The
"empirical" magnitude of the threshold effect, ∆=(σ

max
-σ

min
)/σ, is the maximal deviation in the threshold

domain of the averaged proton cross-section data normalized to its corresponding integrated value.  Another
measure of threshold effect magnitude, extracted from analysis of data, could be the ("computational")
resonant strength α. The threshold anomaly’s magnitude does follow the mass dependence of the 2-p wave
Neutron Strength Function, Fig. 1.

Fig.  1. Strengths of the Isotopic Threshold Effect, ∆ ("empirical") and α ("computational") and the 2-p wave Neutron Strength
Function, versus atomic mass number A.

The "empirical" and "computational" results on Isotopic Threshold Effect support the idea of this work,
according to the magnitude of the threshold effect is dependent on spectroscopic amplitude of the quasi-
resonant process, i.e. Neutron Strength Function.  This result was also first experimental evidence that a
Coupled Channel Resonance depends not only on channels-coupling strength but also on spectroscopical
properties of ancestral (Neutron) Single Particle State.

b) DEUTERON STRIPPING THRESHOLD ANOMALY
A cross-section anomaly in (d,p) reactions on A≈90 target nuclei was observed at threshold of (d,n)

analogue channel, [18]. The two exit channels are selectively coupled by isospin interaction; the A≈90 mass
nuclei do exhibit the 3-p wave neutron single particle state at zero energy.  The relation between the
magnitude of deuteron stripping threshold anomaly and the 3-p wave neutron strength function was analyzed
in work ]19]. It is proved, within empirical approach and computational frameworks, that the magnitude of
Deuteron Stripping Threshold Anomaly on A≈90 mass nuclei is proportional to the 3-p wave Neutron
Strength Function, in their mass dependence, Fig. 2.

6.  CONCLUSIONS

The empirical and computational analysis of the Isotopic Threshold Effect and of the Deuteron Stripping
Threshold Anomaly demonstrate their close relationship to Neutron Strength Functions. It was established
that the Nuclear Threshold Effects depend, in addition to genuine Nuclear Reaction Mechanisms, on
Spectroscopy of (Ancestral) Neutron Threshold State.  The magnitude of the effect is proportional to the
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Neutron Strength Function, in their dependence on mass number.  This result constitutes also a proof that the
origins of these threshold effects are Neutron Single Particle States at zero energy.

Fig.  2. The mass dependence of the experimental 3-p wave Neutron Strength Function (•) and of the α’s strength of Deuteron
Stripping Threshold Anomaly:  (a) "empirical" ( > ); (b), (c) "computational" ( ,◊ ο).
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