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A conjecture of An Min Wang concerning the separability of quantum pure states is proved for
bipartite quantum systems.

I. INTRODUCTION

It is well know that the problem of the description of separable states of finite dimensional quantum
system is central for the quantum information theory.  The aim of the present paper is to point out that the
conjecture of An Min Wang [1] concerning the separability of pure states is valid for pure states of bipartite
quantum systems. A general condition for separability of a quantum state could be in principle obtained from
the measure of entanglement. For a bipartite pure state the natural measure of entanglement is given by the
von Neumann entropy of the reduced density matrices. Then, a bipartite state is separable if and only if this
measure of entanglement is equal to zero, i.e., if and only if the reduced states are pure states. The purity of
any state, described by a density matrix, can be verified directly using the Bloch vector, associated with that
state. One of the restrictions is on the value of the squared Euclidean norm of the Bloch vector. Exactly on
this restriction is based the An Min Wang criterion for the separability of a bipartite quantum state. The other
restrictions concern the symmetric product of the Bloch vector with itself. We shall prove that the equations
of the second set of restrictions follows from the An Min Wang restrictions and from the equations fulfilled
by the Fano parameters of any pure bipartite state. In order to prove the An Min Wang conjecture we shall
use three different parametrizations for the pure states of bipartite quantum systems: the generalized Bloch
vector parametrization [2-10]; the Fano parametrization [3-10]; the Schmidt parametrization [11,12], and the
relations between them.

 2. THE BLOCH PARAMETRIZATIONS

a) The Bloch vector.

Let H  be a finite-dimensional Hilbert space of dimension d . We denote by )(HEnd  the vectorial
space of the linear operators on H  and define on this space the Hilbert-Schmidt inner product by the
formula: )(),( BATrBA ∗=  for any )(, HEndBA ∈  (the operator ∗A is the adjoint of the operator A ). The
Lie algebra )(dsu of all selfadjoint operators )(HEndA∈ with 0=TrA is a real subspace of )(HEnd , of

dimension 12 −= dD . We shall take a base D
jj 1}{ =τ  of this subspace such that the following relations are

satisfied jkkj δττ 2),( = . Then any density matrix ρ i.e. any linear selfadjoint and positive definite operator

with 1=ρTr can be described by the formula
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The real vector D
D Rvvvv ∈= ),...,,( 21  is called the generalized Bloch vector  [2-11] and is defined in a

unique way by the density matrix ρ : ),( jjj Trv τρρτ == . But the converse correspondence is not valid

for any vector D
D Rvvvv ∈= ),...,,( 21 . The positivity of the density matrix ρ  imposes severe restrictions

on the Bloch vectors [11]. Let us denote by ∑
=

>=<
D

j
jjuvuv

1

,  the Euclidean inner product on DR  and by

><= vvv ,||||  the corresponding norm.

b) The equations satisfied by the Bloch vector of a pure state.

The Lie brackets of the generators D
jj 1}{ =τ  of the Lie algebra )(dsu  are described by the structure

constants D
lkjjklf 1,,}{ = :
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These structure constants are the components of a totally anti-symmetric tensor and fulfill the Jacoby
identity:
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A remarkable fact, specific to the Lie algebra )(dsu , is the existence of a symmetric bracket:
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d 1

24 τδττττ (2.4)

Here jkld  are the components of a totally symmetric tensor. With the aid of anti-symmetric and symmetric

tensors we define an anti-symmetric and a symmetric product on the Euclidean space DR . The anti-
symmetric product is defined by:
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The symmetric product is defined by:

∪ ∑∑
= =
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D

k

D

l
lkjklj yxdyx

1 1

)( (2.6)

Then the commutators and anticommutators becomes respectively:

[ ] ∩ ><=><>< τττ ),(2,,, yxiyx (2.7)

{ } ∪ ><+><=><>< τττ ),(2,4,,, yxIyx
d

yx (2.8)

For any density matrix  (2.1) we have:
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The quantum state described by the density matrix ρ  is a pure state if and only if:

)()(2 vv ρρ = (2.10)

Then, from (2.9) it follows that the Bloch vector v describes a pure state if and only if the squared Euclidean
norm of v is given by [11]:

)11(2,
d

vv −>=< (2.11)

and the symmetric product of v  with v is in the one- dimensional subspace generated by v :

∪ v
d

vv )1
2
1(4 −= (2.12)

3. THE FANO PARAMETRIZATION

  a) The Fano parameters.

The density matrix corresponding to a state of a bipartite quantum system which is composed from two
subsystems of dimensions  1d  and 2d  can be parametrized by the Fano parameters [3-7]:

2 2
1 2d 1d 1

1 2 2 1
1 11 2 2 1

1 1 1 1( ) , , ( )
d d 2d 2d 4 kl k l

k l
I I x I I y K

− −

= =

ρ = ⊗ + < τ > ⊗ + ⊗ < τ > + τ ⊗ τ∑ ∑  (3.1)

                           b) The equations satisfied by the Fano parameters of a pure state.

The purity condition (3.3) gives us the following equations for the Fano parameters:

(1)

1 2 2 1

2 1 1 1
1 ( ) ( ) ( ) d

d d 2d d 4
T

spjj j j spx x x Ky KK
 

− = + + 
 

∑∪ (3.2)

(2)

1 2 1 2

2 1 1 1
1 ( ) ( ) ( ) d

d d 2d d 4
T T

spjj j j spy y y K y K K
 

− = + + 
 

∪ (3.3)

 

(1) (2)

1 2 1 2 2 1

(1) (2) (1) (2)

2 2 1 11 d d
d d d d d d

1 1                      d d
4 4

jps ltqjl j l sl p jt q

spj tql spj tqlst pq st pq

K x y K x K y

K K K K f f

 
− = + + + 

 

+ −
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∑ ∑
(3.4)

4.  THE SCHMIDT PARAMETRIZATION

The Schmidt decomposition of an arbitrary bipartite pure state >Ψ|  of a 21 dd ×  system is given by:
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Here ),min( 21 ddM =  and the squared Schmidt coefficients jα are the eigenvalues of the reduced density
operators of the two subsystems:

||21 Ψ><Ψ= Trρ (4.2)

 ||12 Ψ><Ψ= Trρ (4.3)

The vectors  }{| >jφ  and }{| >jϕ  are the orthonormal eigenvectors of these reduced density operators.

Both new bases are connected to the fiducial orthonormal bases }{| >je  and }{| >jf  by unitary

transformations 1U and 2U  respectively. The state >Ψ|  is specified by the Schmidt numbers M
jj 1}{ =α and

the unitary operators 1U  and 2U .

5.  THE AN MIN WANG’S CONJECTURE

The conjecture of the An Min Wang [1] concerning the separability of a pure state of a bipartite
quantum system can be formulated in the following way: a bipartite pure state is separable if and only if the
Bloch vectors of the reduced density matrices fulfill the following equations:

)11(2,
1d

xx −>=< (5.1)

)11(2,
2d

yy −>=< (5.2)

6.  THE BLOCH VECTORS OF THE REDUCED DENSITY MATRICES

It was proved in [5] that the Bloch vectors of the reduced density matrices are given by:
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The coefficients j
sw )1(  and k

sw )2(  are defined by the following relations, for 2,1=t :

ls
ll

w l
st ≤≤

+
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2)( (6.3)
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The following sum rules are valid:
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Then, the squared Euclidean norms of the Bloch vectors of the reduced density matrices are given by:

∑ ∑
= =

−=>=<
1

1 1 1
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From the equations (6.5) and (6.6) it follows that the conditions (5.1) and (5.2) from the An Min Wang
conjecture are fulfilled if and only if

∑
=

=
M

s
s

1

2 1α (6.8)

Because of the fact that the squared Schmidt coefficient are the eigenvalues of the reduced density matrices
we have also:

∑
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M

s
s

1

1α (6.9)

The equations (6.8) and (6.9) are simultaneously valid only for one sα , say 1α , equal to 1and the rest equal
to zero.  Hence the conditions imposed by the An Min Wang conjecture (i.e. the equations (5.1) and
(5.2)) are valid if and only if the state >Ψ| is separable.

7.  ON THE PURITY OF THE REDUCED DENSITY MATRICES

If the reduced states described by the density matrices 1ρ  and 2ρ  are pure states then the equations
(5.1) and (5.2) are valid. But we need also the validity of the equations:
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Let us suppose that the pure state >Ψ|  is separable, i.e. let us suppose that:

21|| ρρ ⊗=Ψ><Ψ (7.3)

Then the equations (7.1) and  (7.2) result from the An Min Wang conditions (5.1) and (5.2) and from the
equations (3.1), (3.2) and (3.4) which are satisfied by the Fano parameters of any pure states. Indeed, from
the equations  (7.3) it follows that

TxyK = (7.4)

Let us introduce the notations:
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The equations (3.1), (3.2) and (3.4) are equivalent with the following equations respectively:

1

1 14
2 d

x x x
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= − 

 
∪ (7.7)
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∪ (7.8)

1=AB (7.9)

But for any density matrix the following equation is valid:

ρρ ≤2 (7.10)

From  (7.8) it follows that

1,1 ≤≤ BA (7.11)

Hence, from (7.7) and (7.9) we must have

1,1 == BA (7.12)

Then the relations (7.1) and (7.2) are fulfilled. In this way, we have proved that for pure separable states the
Bloch vectors of the reduced density matrices fulfill the equations (2.11) and (2.12) which are the necessary
and sufficient conditions for the purity of the reduced density matrices.
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