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We present a transparent proof of existence of a stationary probability for a Markov chain constructed
by random iterations of functions on a complete separable metric space. Our proof is to be compared
with that given under equivalent assumptions by Diaconis and Freedman [1, pp. 58-63]. We just use
contraction properties of the two linear operators naturally associated with the Markov chain
considered.

1. PRELIMINARIES

In what follows we shall be using the notation introduced in the Appendix at the end of this paper. Let
also {1,2,...}+ =N and {0,1,...}=N

Let W  be a metric space with metric δ  and Borel σ -algebra WB , ( ),X X  an arbitrary measurable

space, WXWu →×:  a ( )W W,⊗B X B -measurable mapping, and p a probability measure on X . Write

( ) : ( ), , ,xu w u w,x w W x X= ∈ ∈  and note that for any Xx ∈  we have a WB -measurable mapping
.W:Wu x →  The pair

( , ( ) )x x Xp u ∈ (1)

is called an iterated function system (IFS), at least in the case where X is a finite set. Actually, (1) is a
special random system with complete connections (cf. [7, pp.5 & 15]; see also [3]). With IFS (1) we
associate the linear operator U defined by

( ) ( )( ) ( )d .xX
Uf w f u w p x , w W= ∈∫ (2)

Clearly, U  maps into itself the linear space of -WB measurable extended real-valued functions f
defined on W  such that ( ),Uf w+ and ( )Uf w− , Ww∈ , are not both equal to ∞+ . An important special
case where U  is well defined for possibly unbounded functions f  is described below.

Define

,

ä( ( '), ( "))( ) ( ; ä) sup , .
ä( ', ")

x x

w w
w w W

u w u wx x x X
w w′ ′′≠

′ ′′∈

= = ∈l l

If the metric space W  is assumed to be separable, then it is easy to see that the mapping )(xx l→  of X
into R  is ( ), RX B -measurable. Assume that

.1)d()(: <= ∫X
xpxll ä(3 )

It is known (see, e.g., [4, p.201]) that (3δ) implies
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( )( ) ( )log d 0
X

x p x <∫ l . ä(3 )′

Conversely, if ( ) ( )â
â : d

X

x p x= < ∞∫l l  for some â 0>  and ä(3 )′  holds, then there exists á 0>  such that

á 1.<l  Assume also that for some Ww ∈0 we have

( )( ) ( )0 0ä d .x
X

w ,u w p x < ∞∫ ( )ä4

Under assumptions (3δ) and (4δ), the operator U  takes ( )1Lip W  into itself. For, ( )ä4  holds for any Ww∈ in
place of 0w  as

0 0 0 0 0 0 0ä ( , ( )) ä ( , ) ä ( , ( )) ä ( ( ), ( )) ( ( ) 1 )ä ( ) ä ( ( ))x x x x xw u w  w w  w u w u w u w   x w,w w ,u w ,≤ + + ≤ + +  l

which yields

0 0 0ä( , ( )) (d ) 2ä( , ) ä( , ( )) (d ) , .x xX X
w u w p x w w w u w p x w W≤ + < ∞ ∈∫ ∫

Next, for any ( )1 Lipf W∈  we have

( ( )) ( ) ä( , ( )), , ,x xf u w  f w w u w x X w W≤ + ∈ ∈

hence

( ) ( ( )) (d ) , ,xX
Uf w f u w  p x w W≤ < ∞ ∈∫

while ( )s 1Uf ≤  is an immediate consequence of ( )ä3 .

Actually, when restricted to the linear space ( )B W  of -WB measurable real-valued bounded functions
defined on ,W  U  is the transition operator of a W -valued Markov chain (æ )n n∈N  on a probability space

),,( ,0 pwPKΩ  defined by 0 0æ w=  ( arbitrarily given in W ) and

1î î 0æ ( ), ,
nn u u w n += ∈NoLo (5)

where ( )î n n +∈N
 is an i.i.d. X -valued sequence with common distribution p . The transition function Q of

( )æn n∈N
 is defined by ( , ) ÷ ( ) ( ), ,A w WQ w A U w p A  w W A ,= = ∈ ∈B  where ( ){ }:w xA  x X| u w A= ∈ ∈  and ÷A

is the indicator function of A . Then

( ) ( ') ( , d '), ,
W

Uf w f w  Q w w w W= ∈∫
for any ( )f B W∈ and, more generally,

( ') ( , d '), ,( )n n

W
U f w  Q w  w  w Wf  w ∈= ∫

for any +∈ Nn and ( ),f B W∈  where nQ  is the n -step transition function associated with Q .
We shall also consider the more general case where Ww ∈0 is chosen at random according to a given

probability distribution . More precisely, on a probability space ë,( , , )pPΩ K  let 0w be a W -valued random
variable with probability distribution ë pr( ),W∈ B  independent of the î ,   i i +∈ N , which always are i.i.d. with

common distribution p . In this case ( )æn n∈N
 defined by (5) is still a W -valued Markov chain with initial

distribution ë  and transition function Q .
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Let us finally note that U is a bounded linear operator of norm 1 on ( )B W , which is a Banach space
when endowed with the supremum norm

( )|| || sup ( ) ,
w W

f f w f B W
∈

= ∈ .

Another operator, closely related to ,U  is defined on pr( )WB by

ì ( ) ì (d ) ( , ), ,W
W

V A w  Q w A A  = ∈∫ B

for any ì pr( ).W∈ B  Actually, this is a kind of adjoint of U on ,B(W)  to mean that

( ) ( ) ( ) ( )ì , ì , ì pr , ,WUf V f , f B W= ∈ ∈B (6)

where ( )ì , f  is defined as the integral dì
W

f∫ . It is easy to check that V can be also expressed by means of

an integral over X . We namely have

( ) ( ) ( )1ì d  ì  ,  ,x WX
V A p x u A A−= ∈∫ B

for any ì pr( ),W∈ B  where ( ) ( )( )1 1ì : ì .x x Wu A u A , x X, A− −= ∈ ∈B  Note that ( ) ( ) ( )ì dn n

W
V A w  Q w,A ,= ∫

,WA ∈B  or, alternatively,

( ) ( ) ( ) ( ) ( )
1

1

1ì d d ì , ,
n

n
n x x WX X

V A p x p x u u A A
−

= ∈∫ ∫L L oLo B (7)

for any n +∈ N and ( )ì pr W∈ B .

The probabilistic meaning of nV is that ( ) ( )ë,ë æn
p nV A P A= ∈  for any ( )ë pr , W WA∈ ∈B B , and

.n +∈ N  From (7) we also have that

( ) ( )( )1ë , î î 0ë
n

n
pV A P u u w A= ∈oLo

for any ,  Wn A+∈ ∈N B , and ë pr ( )W∈ B , with ( ) ( )ë , 0 ë .pP w A A∈ =

The result below is well-known in the case where ( )f B W∈ , cf. (6). Its proof does not differ from that

working when ( ).f B W∈

Proposition 1. If dì
W

Uf∫  exists for some real-valued WB -measurable function f and probability

( )ì pr W∈ B , then ( )dì
W

f V∫  also exists and the two integrals are equal.

We shall deal here with the asymptotic behaviour as ∞→n of the distribution of æn  under ë, pP . We
actually reprove Theorem 5.1 in Diaconis and Freedman [1], which we give a simple, fully transparent proof
by only using contraction properties of the operators U  and V . In Section 2 we present the impact of the
assumptions made on the contraction properties just alluded to, while Section 3 contains the proof of the
main result. The Appendix gathers well known definitions and properties of different metrics in ( )pr .WB

2. AUXILIARY RESULTS

The key result on which our approach is based is
Proposition 2. Assume that ( )ä3  and ( )ä4  hold . Let ( )ì , í  pr W∈ B  such that ( )ñ ì , í .H < ∞  Then
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( )ñ ( ì , í ) ñ ì , íH HV V ≤ l .

Proof. Under our assumptions, the operator U  takes ( )1Lip W into itself. By Proposition 1 we then
have

( ) ( ) ( ){ } ( ){ }1 1ñ ( ì ,  í ) sup  d ì d í | Lip sup  dì dí | Lip .H W W W W
V V f V f V f W Uf Uf f W= − ∈ = − ∈∫ ∫ ∫ ∫ (8)

Consider the function /g Uf= l . Note that ( )1Lipg  W∈ since for any ,"' ," ,' wwWww ≠∈ we have

( ) ( )
( )

( )( ) ( )( )
( )

( ) ( )( )
( ) ( )

ä1 1 1d d ( ) (d ) 1.
ä ä äX X X

f u w' f u w" u w' ,  u w"   g w' g w"  x x x xp x p x x p x
w', w" (w',w") w',w"

−−
= ≤ ≤ =∫ ∫ ∫ l

l l l

Then, by (8),

( ) ( )

( ){ }
1

1

ñ ì , í sup dì dí , Lip

sup  d ì dí Lip  ñ ( ì , í ) ,

H
W W

HW W

Uf
V V g g g f W

f f f W

 
= − = ∈ 

 

≤ − ∈ =

∫ ∫

∫ ∫

l
l

l l

and the proof is complete. �
Clearly, the Appendix and the result just proved imply
Corollary 3. Under the assumptions in Proposition 2 we have

( )ñ ( ì í ) ñ ì ín n n
L HV ,V  ,≤ l

for any .n +∈ N

3. THE PROOF

We can now prove the main result.
Theorem 4. Let ( , ä)W  be a complete separable metric space. Assume that ( )ä3  and ( )ä4  hold . Then

the associated Markov chain  (æ )n n∈N has a unique stationary distribution ð  and

( )( ) ( )( ) ( )ñ , , ð ä , d
1

n
n

L x
X

Q w   w u w p x⋅ ≤
− ∫
l

l
(9)

for any n ∈ N  and .w W∈  On ),,( , pPπΩ K  the sequence ( )æn n∈N
 is an ergodic strictly stationary process.

Proof.  Step 1. Let ì  pr( )W∈ B  such that ñ ( ì , ì ) .H V < ∞  By Corollary 3, for any ,m n +∈ N  we can
write

( ) ( ) ( ) ( )
1 1

1

0 0

ñ ì , ì ñ ì , ì ñ ì , ì ñ ì , ì .
1

m m n
n m n n k n k n k

L L H H
k k

V V V V V V
− −

+ + + + +

= =

≤ ≤ ≤
−∑ ∑ l

l
l

(10)

Since ( ),äW  is complete, so is ( )( )pr , ñW LB , see Appendix. Hence the sequence ( )ìn

n
V

∈N
 is convergent in

( )( )pr , ñW LB  to some, say, ( )ð pr .W∈ B

Consider another ( )í pr W∈ B  such that ( )ñ ì , í .H < ∞  Then since

( ) ( ) ( ) ( ) ( )ñ í , í ñ í , ì ñ ì , ì ñ ì , í 1  ñ (  ì ,  í ) ñ (  ì ,  ),H H H H H HV V V V V≤ + + ≤ + +l µ
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we also have ( )ñ í , í .H V < ∞  This allows to conclude that ( )ín

n
V

∈N
 is convergent to the same ð  as for any

n +∈ N  we have

( ) ( ) ( ) ( )ñ í ,  ð ñ ì ,  ð ñ ì ,  í ñ ì ,  ð ñ (ì ,  í ).n n n n n n
L L L L HV V V V V≤ + ≤ +l

To sum up, we have proved that if ( )ì pr W∈ B satisfies the condition ( )ñ ì , ì ,H V < ∞  then there exists
ð ð ( ì )=  such that

( ) ( )ñ ì ,  ð ñ  ì , ì ,   .
1

n
n

L HV V n +≤ ∈
−

Nl

l
(11)

 [The last inequality follows at once from (10).] The same conclusion holds, with the same ð , for any other
( )í  pr W∈ B  for which ( )ñ ì ,  í .H < ∞

It is easy to prove that ð ð,V=  that is, ð  is a stationary distribution for (æ )n n∈N . We have

( )ñ ( ì , ð) ñ ( ì ,  í ) ,  ì , í  prL L WV V ≤ ∈ B , by the very definition of the distance ñL  on account of Proposition 1.

Then 1ñ ( ì , ð) ñ ( ì ,  ð ) 0n n
L LV V V+ ≤ →  as .n → ∞ Hence both ðV  and ð  are equal to the limit in

( )( )pr , ñW LB  of the sequence (ì )n nV ∈N ,  that is, ð ðV= .

Step 2.  Clearly, wδ  (probability measure concentrated at w W∈ ) satisfies ñ ( ,  )H w wVδ δ < ∞  for any
w  since

( ) ( ) ( ) ( ){ } ( ) ( ) ( ){ }

( ) ( )( )( ) ( ) ( ){ } ( )( ) ( )

1 1

1

ñ , sup d | Lip sup  | Lip

                                                                                                (by Proposition 1) 

sup  d | Lipä , d

H w w w
W

x x
X

V f w f V f W f w Uf w f W

f w f u w p x f W w u w p x

= − ∈ = − ∈

= − ∈ ≤

∫

∫

δ δ δ

ä

 

                                                                                                 (by (4 )). 
X

< ∞∫

Note that since

( ) ( ) ( ) ( ){ } ( )' " 1ñ , sup  ' " | Lip ä ', "H w w f w f w f W w wδ δ ≤ − ∈ ≤ < ∞

for any ', " ,w w W∈  it follows by Step 1 that the limiting ð( ) : ðwδ =  is the same for all .w W∈

Next, any finite linear combination ì
jj wq= ∑ δ with positive rational coefficients such that 1jq =∑

satisfies the condition ñ ( ì ,  ì )H V < ∞  since, as it is easy to see,

( )ñ ì , ì ñ ( , )
j jH j H w wV q V≤ ∑ δ δ .

Moreover, ( )( )pr ,W LB  is separable since ( , ä)W  was assumed to be, see Appendix, and it appears

that the class of probability measures ì
jj wq= ∑ δ  just considered is dense in ( )( )pr ,W LB  if we start with

a countable dense subset { }|  jw j +∈ N  in W . Cf. [5, p.83]. Let then ( )ë  pr W∈ B  be arbitrary and for any

å 0>  consider a probability measure åì  from that class such that

åñ (ë, ì ) å.L <

We have ålimñ ( ì , ð) 0n
n L V→ ∞ =  and since

å å å åñ ( ë,  ð) ñ ( ì , ð) ñ ( ë, ì ) ñ ( ì , ð ) ñ (ë,ì ),  ,n n n n n
L L L L LV V V V V n +≤ + ≤ + ∈N

it follows that
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limsupñ ( ë ,ð ) ån
L

n
V

→ ∞
≤ .

As å 0>  is arbitrary, we conclude that the sequence (ë)n nV ∈N  also converges to ð  in ( )( )pr ,W LB

Clearly, (9) follows from (11) with ì ,  .w w Wδ= ∈  For an arbitrary ( )ë  pr W∈ B  a similar
conclusion holds if we assume that

( ) ( )( ) ( )ë d  ä , dx
W X

w w u w p x < ∞∫ ∫ .

Step 3. The uniqueness of ð  as stationary measure, ð ðV= , follows now easily. If ( )ð' pr W∈ B

satisfies ð ' ð',V=  then by Step 2 we have

limñ ( ð', ð) 0n
L

n
V

→ ∞
=

and, at the same time, ð ð ,  .nV n +′ ′= ∈ N  Hence ð ð.′ =
Next, the ergodicity of ð , that is,  (æ )n n +∈N  is an ergodic strictly stationary sequence on ),,( , pPπΩ K ,

follows from Theorem 3(iii) in [2]. �
Remark. Equation (7) shows that the backward process

( ) ( )
10 0 0æ ,  ,  ,

nn w u u w w W nξ ξ += ∈ ∈ NoLo

converges in distribution under any ë, pP  to ð  as n → ∞ , that is,

( )ë , 0lim ( æ ( ) ) ð ( ),  ë  pr ,  .p n W W
n

P w A A A
→ ∞

∈ = ∈ ∈B B

One can show more, namely, that '(æ )n n∈N  converges ë, pP -a.s. at a geometric rate to a W -valued random

variable æ∞  not depending of Ww ∈0  (hence nor of ( )ë  pr W∈ B ) such that ë, (æ ) ð( ),pP A A A∞ ∈ = .W∈B

See [2] and [1, pp.59-62].
Corollary 5. Under the assumptions in Theorem 4, for any real-valued bounded non-constant Lipschitz

function f  on W we have

( ) ( )( ) ( ) ( )( ) +dð ä , d max osc , s , , ,
1

n
n

x
W X

U f w f w u w p x f f n w W− ≤ ∈ ∈
−∫ ∫ Nl

l

with osc sup ( ) inf ( ).w W w Wf f w f w∈ ∈= −

For the proof it is enough to note that for

( )
( )( ) ( )1

inf
: Lip

max osc ,s
w Wf f w

g W
f f

∈−
= ∈ ,

we have 0 1,g≤ ≤  and to recall the definition of ñ ( ,ð).n
L wV δ �

A more general  version of Theorem 4 is obtained using the fact that áä  is still a metric in W  for
any 0á 1.< ≤  [It is enough to note that if ,  ,  0a b c ≥  and c a b≤ + , then á á á á( )c a b a b≤ + ≤ +  .] Write then
(see Appendix) á,ñ L  and ( )á

1Lip W  for the items associated with the metric space á( , ä )W , which

correspond for á 1=  to ñL  and  ( )1Lip W , respectively. (Remark that WB  is not altered when replacing ä

by αδ .) Clearly, á á á( ; ä ) [ ( ; ä)] : ( ), ,x x x x X= = ∈l l l  and  then the conditions corresponding to ä(3 )  and
)4( δ  are
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á
á :  ( ) (d ) 1

X
x p x= <∫l l á(3 )

and

0 0ä ( , ( )) (d )xX
w u w p xα < ∞∫ )4( α

for some 0w W∈  −hence  for all 0w W∈ −, respectively.
We can now state
Theorem ′4 . Let ( , ä)W  be a complete separable metric space. Assume that á(3 )  and á(4 )  hold. Then

the associated Markov chain (æ )n n∈N  has a unique stationary distribution ð  and

áá

á

ñ ( ( , ), ð)  ä ( ,  ( )) (d )
1

n
n

L x
X

Q w w u w p x⋅ ≤
− ∫
l

l
(9)

for any n +∈ N  and .Ww∈  On ) , ,( , pPπΩ K  the sequence (æ )n n∈N  is an ergodic strictly stationary process.

Proof. It follows from Theorem 4 that (9) holds with á,ñ L  in place of ñL . The validity of (9) will
follow from the inequality ,ñ ñL Lα ≥  for any 0á 1< ≤ . We shall in fact prove that

( ) ( )á
1 1{  |  Lip , 0 1} {  |  Lip , 0 1}f f W f f f W f∈ ≤ ≤ ⊂ ∈ ≤ ≤ (12)

for any 0á 1,< ≤  which clearly implies á,ñ ñL L≥ .

To proceed note that if ( ) ( )( )1
1 1 Lip  Lip  and 0 1,f W W f∈ = ≤ ≤ then for any 0á 1< ≤  we can write

ä ( ', ")  1 ä ( ', ")  1

ä ( ', ")  1

á á á
' " ' " ', "

' "

 ( ') ( ")  ( ') ( ") |  ( ') ( ") |sup max sup , sup
ä ( ', ") ä ( ', ") ä ( ', ")

 ( ') ( ") 
max sup , some quantity not ex

ä( ', ")

w w w w

w w

w w w w w w

w w

f w f w f w f wf w f w
w w w w w w

f w f w
w w

≤ >

≤

≠ ≠

≠

 − −− ==


 

−
≤ ( )( )ceeding 1  max s ,1 1.f

 
  ≤ ≤
 
 

 (We used the inequality áx x>  which holds for 0á, 1.)x< <  Hence ( )á
1 Lip ,f W∈  showing that (12)

holds.�
Remarks. 1. It is obvious that the assumptions in Theorem 4′  are weaker than those in Theorem 4, so

that the latter is a real generalization of the former.
2. P.Diaconis and D.Freedman’s assumptions in their Theorem 5.1 (see [1, pp.58-59]) are ( )ä3  ′  in

conjunction with a so-called “algebraic-tail” condition on l  and δ  which amounts to the existence of
positive constants  a  and b  such that

{ }( ) { }( )0 0| ( ) , | ä( ,  ( ))b b
xp x x y ay p x w u w y ay− −> < > <l (13)

for 0>y  large enough and some ,0 Ww ∈  hence for all .0 Ww ∈  We are going to prove that these
assumptions are equivalent to ours in Theorem 4′ .

First, on account of the equation

0
ç   (ç ) dE P y y

∞
= >∫ (14)

which holds for any non-negative random variable ç , it is clear that )3( α  and )4( α  imply both ( )ä3  ′ and,
via Markov’s inequality, (13). Second, if (13) holds, then for any á 0>  we have
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{ }( ) { }( )á / á á / á
0 0 | ( ) ,  | ä ( ,  ( ))b b

xp x x y ay p x w u w y ay− −> < > <l

for 0>y  large enough. Choosing á min( , 1),b<  it follows from (14) that both αl  and
á

0 0  ä ( ,  ( ) ) dxX
w u w x∫  are finite. But ∞<αl  in conjunction with ( )ä3  ′  implies the existence of 0á á′< <

such that 1.α ′ <l  (Cf. our Section 1.) The proof is complete.

APPENDIX

Given a metric space W with metric ä  and Borel σ -algebra WB , let us denote by )(pr WB  the
collection of all probability measures on WB . In )(pr WB  a distance ñH  is defined by

( ){ }1ñ ( ì ,  í ) sup dì dí    LipH W W
f f f W= − ∈∫ ∫

for any ( ) 1ì , í  pr , where Lip ( ) { :  | s( ) 1}W W f W f∈ = → ≤RB  with

''
' "

', 

|  ( ') ( ") |s( ) s( , ä): sup .
ä( ', ")w w

w w W

f w f wf f
w w≠

∈

−= =

We speak of a ‘distance’ (cf.[8, p.9]) and not of a metric since it is possible that ñ ( ì ,  í )  H = ∞  for some

( )ì , í  pr W∈ B  However, we have ñ ( ì , í )H < ∞  when, for instance, both ì and í  have bounded supports.
Cf.[6, p.732].

A genuine well-known metric in pr( )WB  is the Lipschitz metric ñL which is defined by

( ){ }1ñ ( ì , í ) sup dì dí  |  Lip , 0 1L W W
f f f W f= − ∈ ≤ ≤∫ ∫

for any ì , í  pr( ).W∈ B  If ( , ä)W  is a separable (complete) metric space, then (pr( ), ñ )W LB  is a separable
(complete) metric space, too. Another usual metric in pr( )WB  is the Prokhorov metric ñP  which is defined
by

{ }åñ ( ì , í ) inf å 0 | ì ( ) å í ( ), P WA A A= > ≤ + ∈B

for any ì , í  pr( ),W∈ B  where { }å   | ä( ,  ) : infä( ,  ) å .
a A

A w w A w a
∈

= = <  We have

1 / 21 ñ ( ì , í ) ñ ( ì , í ) ñ (ì , í )
2 L P L≤ ≤

for any ì , í  pr( )W∈ B . Cf. [5, pp.81-82].

Clearly, 1 / 2ñ ( ì ,  í ) ñ (ì ,  í )and ñ ( ì ,  í ) ñ ( ì ,  í )L H P H≤ ≤  for any ( )ì ,  í   pr W∈ B .
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