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We present atransparent proof of existence of a stationary probability for aMarkov chain constructed
by random iterations of functions on a complete separable metric space. Our proof is to be compared
with that given under equivalent assumptions by Diaconis and Freedman [1, pp. 58-63]. We just use
contraction properties of the two linear operators naturally associated with the Markov chain
considered.

1. PRELIMINARIES

In what follows we shall be using the notation introduced in the Appendix at the end of this paper. Let
dso N, ={1,2,..} and N={01,..}

Let W be a metric space with metric d and Borel s -algebra B,,, (X, X) an arbitrary measurable
space, u:W” X ® W a (B, A X, B, )-measurable mapping, and p a probability measure on X . Write
u, (w):=u(w,x), wiW X X and note that for any xT X we have a B,, -measurable mapping
u W ® W. The pair

(pl(ux)xTX) (1)

is caled an iterated function system (IFS), at least in the case where Xis a finite set. Actudly, (1) is a
specia random system with complete connections (cf. [7, pp.5 & 15]; see dso [3]). With IFS (1) we
associate the linear operator U defined by

Uf (w) = f(u(w) p(cx),wi w. w)
Clearly, U maps into itself the linear space of B, - measurable extended real-valued functions f

defined on W such that Uf*(w),and Uf™ (w), wi W, are not both equal to +¥ . An important special

casewhere U iswell defined for possibly unbounded functions f is described below.
Define

g 5 a(u,(w),u, (W")) ¢
L(X)=L(X;, 8F sup ——x——"—= XX
mwmmw‘\t/v a(va )

If the metric space W is assumed to be separable, then it is easy to see that the mapping x® /(x) of X
into R is (X, By)-measurable. Assume that

(= Q /(X) p(dx) < 1. (3,)
It isknown (seg, e.g., [4, p.201]) that (3) implies
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Qlog(ﬁ(x)) p(dx)<0. (39)

Conversdly, if ¢;:= ¢y*(x) p(dx)<¥ for some 4>0 and (3¢) holds, then there exists 4>0 such that
X
¢4 <1. Assume aso that for some w, I W we have

C‘ji(Wo’ux(WO)) p(dx) <¥. (4,)

X
Under assumptions (3y) and (4g), the operator U takes Lip, (W) into itself. For, (4,) holdsfor any wi W in
place of w, as
a(w, u, (w)) £a(w, w) +a( w, u(wy))+au, (W), u,(w)) £(£(x)+1)a(w,w,) +a(wy,u,(w)),
which yields

Q) 8w, U, (W) PAX) £ 2o, W) + () (Mg, U (W) () <¥, Wl W,

Next, forany f1 Lip (W) we have
|f (u W) | E]f (W)|+a(w ufw), xT X, wi W,

hence
|Uf (w) |£ Q|f(LL(W))| pax) < ¥, wi W,

while s(Uf )£1 is an immediate consequence of (3,) .

Actually, when restricted to the linear space B(W) of B, - measurable real-valued bounded functions
defined on W, U is the transition operator of a W -valued Markov chain (&), ©On a probability space
(W,K,P, ) defined by ag =w, (arbitrarily givenin W) and

ag:ulno---oull(\l\b),nT N., ©®)

where (T,) .~ isanii.d. X-valued sequence with common distribution p. The transition function Q of

(). ilee:i;\edby QW,A=t(Ww=p A, wiW Al B,, where A;={xi X|u, (W) A} and =,
isthe indicator function of A. Then
Uf (w) = ¢ FW)Q(w, dw),wiw,
forany f1 B(W) and, more generaly,
u"f (W):Qf(W')Qn(W,dW'),WT w,

forany ni N,and f1 B(W), where Q" isthe n-step transition function associated with Q.

We shall also consider the more general case where w, T W is chosen at random according to a given
probability distribution . More precisely, on a probability space (WK, F; ;) let w, be a W -valued random
variable with probability distribution &1 pr(B,,), independent of the 7,, i1 N, , which aways arei.i.d. with
common distribution p. In this case (arg)niN defined by (5) is till a W -valued Markov chain with initial
distribution & and transition function Q.
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Let usfinally note that U is a bounded linear operator of norm 1 on B(W), which is a Banach space
when endowed with the supremum norm

I 1= sup [fw)|, 1 B(W).
Another operator, closaly related to U, isdefined on pr(B, ) by
Vi (A)=Q‘| (dw) Qw, A), Al By,
forany i 1 pr(B,). Actudly, thisisakind of adjoint of U on B(W), to mean that
(i ,uf)=(vi,f),11 pr(B,), fT B(W), (6)

where (i ,f) isdefined astheintegral Q’ f di .Itiseasy to check that V can be also expressed by means of
anintegra over X . We namely have

Vi (A)=Q p()1 ul(A) Al By,

forany i1 pr(B,), wherei u'(A):=i (u'l(A)),xT X Al B, . Notethat V" (A)= Q1 (dw)Q"(w.A),

X

Al B,, or, aternatively,

Vi (A)= QP p(ax )T (U, o ou, ) (A), AT By, @

forany nT N,andi 1 pr(B,).
The probabilistic meaning of V"isthat V"é(A)=P, (a1 A) for any &1 pr(B,), AT B,, ad
nl N,. From (7) we also have that

VIE(A) =P, o (u, o ou (w)T A)

e p\ 1

forany n1 N,, AT B, ,and &1 pr (B,),with P, ,(w,1 A)=&(A).

The result below is well-known in the case where f T B(W), cf. (6). Its proof does not differ from that
workingwhen f1 B(W).

Proposition 1. If QUf di exists for some real-valued B, -measurable function f and probability

i1 pr(B,),then Q fd(V ) alsoexistsand the two integrals are equal.

We shall deal here with the asymptotic behaviour as n® ¥ of the distribution of & under P, ,. We

actualy reprove Theorem 5.1 in Diaconis and Freedman [1], which we give a smple, fully transparent proof
by only using contraction properties of the operators U and V . In Section 2 we present the impact of the
assumptions made on the contraction properties just aluded to, while Section 3 contains the proof of the

main result. The Appendix gathers well known definitions and properties of different metricsin pr (aN) .

2. AUXILIARY RESULTS

The key result on which our approach is based is
Proposition 2. Assumethat (3,) and (4,) hold. Leti,iT pr(B,) suchthat fi, (i,1)<¥. Then

a



Marius |OSIFESCU 4

i, (VI VI E ¢, (1,1).

Proof. Under our assumptions, the operator U takes Lip, (W)into itself. By Proposition 1 we then

have
iy (VI Vl'):sup{ Q fd(vi)-Q fdm )it Lipl(W)}:sup{ QUfdi - Qufdi|fi Lipl(W)}. )
Consider the function g=Uf /¢ . Notethat gl Lip, (W) sincefor any w, wT W, w'? w', we have
w)- ' flu,(w))- f w' a w),u, (w"
Jo)- oor)|_s o a)(zw()w P FEPR G ( ) ,W-X)( Dogoge 1 capwo =1
Then, by (8),

i uf - . V]
A, (Vi ,Vi)=¢ i agd - A gdi =—,f1 Lip,(W)y
fiy (Vi Vi) supy Q9 - 9 I‘g = ipy( )%

£esup{Qfd-Qf |ai )}=zH A (i

and the proof is complete. [
Clearly, the Appendix and the result just proved imply
Corollary 3. Under the assumptions in Proposition 2 we have

A vV E T, (1,1)

forany n1 N,.

3. THE PROOF

We can now prove the main result.
Theorem 4. Let (W, ¢ bea complete separable metric space. Assume that (3,) and (4,) hold. Then
the associated Markov chain (&), hasaunique stationary distribution & and

fi (Q" (w, %, 9) E%Q a(w, u, (w)) p(dx) ©

for any ni N and wi W. On (WK, P, ;) thesequence (ag) .

Proof. Step 1.Let i1 pr(B,) such that fi, (i,Vi)<¥. By Corollary 3, for any m,ni N, we can
write

isan ergodic dtrictly stationary process.

n

m-1 m-1
nL(V i,V I)Eé:onL(V K,V kl,)EKé:.OE “fiy, (i ’VI)£1 gnH (i,vi). (10)

c )
Since (W,4) iscomplete, sois (pr(BN), ﬁL), see Appendix. Hence the sequence (V“i)

(pr(By), i) tosome, say, 87 pr(B,).
Consider another i T pr(B, ) suchthat i, (i, ) <¥. Thensince

is convergent in

nl N

Ay (1, Vi)ER, (i,1)+f, (1,Vi )+, (M ,Vi)E((+D) A, (1, )+, (i, Vm),
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wealso have fi, (1, Vi ) <¥. Thisallows to conclude that (V”i) is convergent to the same d as for any

N

nl N, wehave
i (Vi o) £ (v, &)+ (v, Vi) £ (Vi 8)+ 0", G ).

To sum up, we have proved that if 1 T pr (B, ) satisfies the condition fi,, (i ,Vi ) <¥, then there exists
8=5(1) such that

n

! A, (1.1), nl N.. (12)

fi (v, 8)€

[The last inequality follows at once from (10).] The same conclusion holds, with the same o, for any other
i1 pr(B,) forwhich fi, (i, i)<¥.

It is easy to prove that d=Vo, that is, 0 is a dationary distribution for (), . We have
A.(M , VB)E£R (1, 1), 1,11 pr(B,), by the very definition of the distance fi, on account of Proposition 1.
Then A (V" ,V8)£f, (V",3)® 0 as n® ¥.Hence both V& and & ae equd to the limit in
(pr(Bw), ﬁ_) of the sequence (V) ;. thatis, 6=V8.

Step 2. Clearly, d,, (probability measure concentrated at wi W) satisfies i, (d,,, Vd,) <¥ for any

Ao (d,.vel, ) =sup{  (w)- @ Fl(Vel,)I 11 Lipy (W)} =sup{ f (w)- UF (w1 £ Lip, (W)}
(by Proposition 1)
=sup{ ) (F (w)- f(u(w)))p(e)1 1 LipgW)} £ (wets, (w)) p( X) <¥

(by (4,))-
Note that since

Ay (c, Ay ) Esup{ F (W)~ £ (W) [ FT Lip, (W)} £&(w, W) <¥
forany w', w"T W, it follows by Step 1 thet the limiting 8(d,,):= & isthesamefor al wi W.

Next, any finite linear combination T = é_ qjdwj with positive rationa coefficients such that é g =1

satisfies the condition fi, (T, VT)<¥ since, asitiseasy to see,
i, (V) £4 qfi, d,, . Vd,,).
Moreover, (pr(a,v), L) is separable since (W, & was assumed to be, see Appendix, and it appears

that the class of probability measures‘l‘:é qjdwj just considered is densein (pr(BN), L) if we start with

a countable dense subset {wj |j1 N+} in W. Cf. [5, p.83]. Let then &1 pr(B,) be arbitrary and for any
&4>0 consider a probability measure T, from that class such that

A, (& T,)<a
Wehave limfj,( 1V,"0) 0= andsince

i, (V"é, 0)ER (VT 0)+A (V"€ VT )ER (V'T,,0) +A (&1 ,), nT N,,
it follows that
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limsupfi (V"€,8) £4.

n® ¥

As &>0 isarbitrary, we conclude that the sequence (§) ., also convergesto d in (pr(BN), L)

Clearly, (9) follows from (11) with 1 =d,, wl W. For an arbitrary &1 pr(B,) a similar
conclusion holds if we assume that

Qe(d\N)Q a(w,u, (w)) p(dx) <¥ .
Step 3. The uniqueness of 8 as stationary measure, 8=V3, follows now easily. If &' pr(By)
satisfies 8'=V@d', then by Step 2 we have
LgnlnL( Vo', 6) =0
and, at the sametime, V"8¢= 8¢ nl N,. Hence &¢= 4.

Next, the ergodicity of o, thatis, (a8) 4 n, iSan ergodic strictly stationary sequence on (W K, P, ),

follows from Theorem 3(iii) in [2].
Remark. Equation (7) shows that the backward process

a(wo): wlo..-ol&n (V\b), WOT W, nT N+,

convergesin distribution under any P, , to 6 asn® ¥ , thatis,
lim P, o( &(6)T A)=3 (A), & pr(By), AT By.

One can show more, namely, that (ag),;,, converges P, ,-as. at a geometric rate to a W -valued random

variable & not depending of w, T W (hence nor of &1 pr(B, )) suchthat P, (@1 A) =3(A), Al B,.
See[2] and [1, pp.59-62).

Corollary 5. Under the assumptions in Theorem4, for any real-valued bounded non-constant Lipschitz
function f on W wehave

‘U”f(w)- Q fdé‘E li“ Qa(w,ux(w))p(dx)max(oscf,s(f)),nT N,, wi W,

1-7

with oscf =sup;,, f(w)-inf;, f(w).

For the proof it is enough to note that for

f-inf i (W)

- max (oscf .S(f))T e

g:

we have O£ g £1, and to recal the definition of i, (V"d,,,0).O

A more general version of Theorem 4 is obtained using the fact that &* is still a metricin W for
any 0 E [ltisenoughtonotethatif a,b,c3 0 andc£a+b,then c* £(a+b)*£ a® +b* .] Write then
(see Appendix) fi;, and Lipi(W) for the items associated with the metric space (W, %, which
correspond for 4=1to fi, and Lipl(W), respectively. (Remark that B, is not atered when replacing a
by d?.) Clearly, ¢(x; &)=[((x; &]* = ¢*(x),x] X, and then the conditions corresponding to (3,) and
(44) are



7 A simple proof of abasic theorem on iterated random functions

= Q F(p(dx) <1 (3,)
and
Qéa (W, U, (W) p(dx) <¥ (4,)

for some w, T W - hence foral w,T W -, respectively.
We can now dtate
Theorem 4¢. Let (W, ¢ be acomplete separable metric space. Assume that (3,) and (4,) hold. Then

the associated Markov chain (&), hasaunique stationary distribution 8 and

©

forany nT N, and wi W. On (W,K, B, ,) the sequence (ag),; , isan ergodic strictly stationary process.
Proof. It follows from Theorem 4 that (9) holds with i, in place of fi, . The vdidity of (9) will
follow from the inequality @i, | ® fi_ forany 0& X% .Weshall infact prove that
{f|f1 Lip(W),0£ f£1}1{f|f] Lip}(W),0£f£Y (12

forany 0& ¥ whichclearly implies i, 3 fi, .
To proceed note that if f1 Lip, (W) (: Lip}(W)) and O£ f £1 thenforany 0& £ we canwrite

lf(W)'f(W)l--max(;sup |f(W)' f(w) | < |f(W)' f(V\f)|0
wt w a (W W) &(&vvl v)v£1 al (W,W) a(v\vl'\,lw\'{\;n a (W W) ;
" o]
£ max 9 sup [F(w)- f(W )| , Some quantity not exceeding 17 £ max (s( f),1)£1.
&(\V/vv;vv)\/“ a(W’W) B

(We used the inequality x* >x which holds for 0& xi) Hence f1 Lip}(W), showing that (12)
holds.O]

Remarks. 1. It is obvious that the assumptions in Theorem 4¢ are weaker than those in Theorem 4, so
that the latter is areal generdization of the former.

2. P.Diaconis and D.Freedman's assumptions in their Theorem 5.1 (see [1, pp.58-59]) are (3¢) in

conjunction with a so-called “algebraic-tail” condition on ¢ and d which amounts to the existence of
positive constants a and b such that

p({x12(0> §)<ay®, p({x w a( w &y})<ay® (13

for y>0 large enough and some w, 1 W, hence for al w,T W. We are going to prove that these

assumptions are equivalent to ours in Theorem 4¢.
First, on account of the equation

E¢=Q) Ple>Y)dy (14

which holds for any non-negative random variable ¢, it is clear that (3,) and (4,) imply both (3¢) and,
viaMarkov'sinequality, (13). Second, if (13) holds, then for any a >0 we have
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p({x 14400 >v}) <ay ™%, p({x 18 (o, u, (W) > v}) <ay '

for y>0 large enough. Choosng a<min(b 1), it follows from (14) that both ¢, and
Q & Wy, u, (W)) k arefinite. But ¢, <¥ inconjunction with (3¢) implies the existence of 0& &
such that 7, ,<1. (Cf. our Section 1.) The proof is complete.

APPENDIX

Given a metric space W with metric & and Borel s -agebra B, , let us denote by pr(B,) the
collection of al probability measureson B, . In pr(B,,) adistance fi,, is defined by

fi. (1, |’)=sup{Qfd‘| i Qfdi‘ £ Lipl(W)}

forany 1,11 pr(B,), whereLip,(W)={f :W® R |(f)£ L} with
_ s | fw)- fw")|
s(f)=s(f, aF WSV‘VJP AW, W)

We speak of a ‘distance’ (cf.[8, p.9]) and not of a metric since it is possible that fi, (1, i) =¥ for some

i,i1 pr(B,) However, we have fi, (i,i)<¥ when, for instance, both 1andi have bounded supports.
Cf.[6, p.732].
A genuine well-known metricin pr(B, ) isthe Lipschitz metric fi, which is defined by

Qe - Qfdl" |1 Lip, (W), O£ f£1}

ﬁL(‘l,l')zsup{

forany 1,i1 pr(B,). If (W, ¢isa separable (complete) metric space, then (pr(B, ), fi,) is a separable
(complete) metric space, too. Another usual metric in pr(B, ) is the Prokhorov metric fi, which is defined

by
ﬁp(‘l,i):inf{é>0|i (A)E &+ (AY), Al BN}

forany i,i1 pr(B,), where A* :{ w | &(w, A)::iin):é(w, a)<é’1}. We have
%ﬁL(i,l’)E f.(,1)E /20, 1)

forany i,i1 pr(B,). Cf.[5, pp.81-82].
Clearly, i, (i, i) £f,, (1, )and fi, (i, ) £/2(1, i) forany 1, i T pr(B,).
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