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The conjecture asserts that the equivalence of the label sequence of the regular continued fraction
(RCF) expansion to the sequence (ξ )n n∈ +N  associated with it by the basic existence Theorem 1.1.2
from [6], still holds for the label sequence of any  f-expansion satisfying conditions (C) and (BD(2)).
We prove that condition  (C) and a stregthening of a Lipschitz condition used in [8]  are sufficient to
ensure  a necessary and sufficient condition under which the asserted equivalence holds. The proof
involves processes on several probability spaces and some associated  dynamical systems relating the
f-expansion considered to  r.v.s. on the probability space used in the concluding theorem.

1. INTRODUCTION

Let  { }1, 2,...=+N  and { }0 .= ∪+N N  Given an RSCC ( ){ }, , , ,W X u PW , where X  is  a countable

set, by Theorem 1.1.2 in [6] for any w W∈  there exist a probability space ( ), , wK PΩ  and a sequence

( )ξn n∈ +N   of X-valued r.v.s. on ( , )KΩ  such that

a.         ( )1ξwP i P w i= = ( , ), 

            ( )1 1 0 1ξ | ξ , ...,ξ ,ζ ,ζ , ..., ζ ζ ,  ,  w n n n nP i P i i X n+ = = ( , ),  ∈ ∈ +N
(1)

where

( )
1... 0ζ ,   ,  ζ .

nn +u w n wξ ξ= ∈ ≡N

b. The sequence ( )ζ   n n ∈ N is a W-valued homogenous Markov chain.
In particular, this theorem holds for the RSCC associated with the RCF and D-adic expansions.

Denoting by ( )n na ∈ +N the label sequence and by λ the Lebesgue measure, in these two cases the following

equations  which can be obtained by direct computation do hold:

( ) ( )1 0,a i P iλ = =    ; ( ) ( )11 1 1 ...| , ..., (0)
nn n n i ia i a i a i P uλ + = = = = (2)

In what follows we shall use the notation from [6] where is shown that with any f-expansion satisfying
conditions (BD(2)) and (C) one can associate an RSCC. Hence one may particularize (1) to such  f-
expansions.

Let [ ]0,1I =  and denote by IB  the σ-algebra of Borel sets in I. For any n ∈ +N  let nnn XiiI ∈)()( ),( ,

be the fundamental intervals of order n and En the set of their endpoints. Let be [ ],α β  the interval of
definition of f  and put 1: \ nI ≥= ∪I En. Clearly, ( ) 1λ =I .
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It is known (see, e.g.,[6]) that when f  has a second derivative in [ ]α β +N, \ , and conditions (C) and
(BD(2)) are fulfilled, hence an RSCC can be associated, the following properties hold .

c. The terms of the label sequence ( )
+

n na ∈ N
 of the f-expansion are r.v. on ( ), II B .

d. The so-called representation map ( ) ( )( )n n
w a wϕ

∈
=

+N
 is well defined in I.  Hence an f-expansion

exists for almost every point w∈ I.
e. The f-expansion  transformation fτ  defined by ( )f wτ = fractionary part of 1 ( ),f w w I− ∈ , has a

unique invariant probability µ  on IB . We have µ λ≡  while λµ d/d:=h  is Lipschitz continuous on I.
We are now able to state the conjecture formulated in [5] and [6]. Consider an f-expansion for which

conditions (BD(2)) and (C) are satisfied. Then the label sequence ( )na under λ is equivalent to the sequence

( )ξn  under P0. Hence the conjecture asserts that equations (2) hold in the general case.

Assume that the  f-expansions considered are such that  xxf d/)(d  continuously exists in [ ] ,α β ,
except perhaps  for x ∈ N , and that the hypotheses called (E) and (C) in [8] hold. Then given an f-expansion
one may also define an RSCC and the properties c.- e. also hold.

Denote  by U  the Perron-Frobenius operator of τf  under µ. For arbitrary w∈ I we associate with the f-
expansion the sequence ( )w

n n
s

∈ N
 of I-valued r.v.s on ( ), II B  defined recursively by

( )1 0, ,w w w
n n ns f a s n s w w I−= + ∈ = ∈+N . We note that ( )n na ∈ +N   and ( )w

n n
s

∈ N
are strictly stationary

under µ.

2. AN INFINITE ORDER CHAIN REPRESENTATION

We define the natural extension T of fτ  by ( ) ( ) ( )( )1, , ,  ,fT s Iωθ ω τ θ θ θ ω= ∈ . This is a one-to-one

transformation of II ×  with inverse ( ) ( ) ( )( )1
1, , fT sθθ ω ω τ ω− = . Let us denote

( )( )
1: ,..., ,n n

ni i i X n= ∈ ∈ +N .

We now define constructively a T-invariant measure. Let ,n s ∈ +N , ( )n ni X∈ , ( )s sv X∈ .Since

( ) ( ) ( )( ) ( ) ( ) ( )
1 1, ..., , , ...,n s s n

n si v i i v v v i= = , we have

( )( ) ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( ) ( )s s n n s n n sT I v i I I i I v T I I i v−× = × ≡ × .

Denote by Σn the σ-algebra generated by the fundamental intervals of order  n ∈ +N .

Let ( ) ( )( )
( ): n
n

n iI I i
∈Λ

Λ = ∪ , ( ) ( )
( ) '

' ( )
sv

s
sV I v

∈Λ
Λ ≡ ∪ , ( ) ( )( )( ): n

n
n iI I i∈ΛΛ = ∪ for any ', .n sX XΛ ⊂ Λ ⊂

Clearly,  ( )nI Λ  and ( )'
sV Λ  are typical elements of  nΣ  and sΣ , respectively. We define a set-function

 on n sµ Σ × Σ by setting

( ) ( )( ) ( ) ( )( )( )' 's
n s n f sI V I Vµ µ τΛ × Λ ≡ Λ ∩ ∈ Λ (3)

µ  so defined is uniquely determined. Clearly, { } , ,n s n sΣ × Σ ∈ +N  generates the Borel σ-algebra
on I I× . One can extend the function µ  to a measure on II BB × , which we also denote µ . By
Caratheodory’s theorem such an extension exists and is unique. Let us denote by λ  the Lebesgue measure
on II ×  .
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Theorem 1 (Properties of µ ).

i. µ  is invariant under T and 1T −  ;
ii. µ  has marginal distributions equal to µ ;
iii. µ is a symmetric measure.

To prove the last assertion, we use the ergodic Theorem 5 in [2] or [9].
Theorem 1 implies that one can replace (3) by the symmetric relation in the definition of µ .
By the Radon-Nikodym theorem there uniquely exists a measurable nonnegative random variable α on

( ), ,I II I B B λ× ×  such that

( ) ˆ
ˆ d

A
Aµ α λ= ∫∫ , ˆ

I IA B B∈ × .

In the sequel the Hölder condition has the meaning defined in [4] while the kernel associated with a
piecewise monotonic transformation has  the meaning defined in [7].

Proposition 2 (Properties of α ).

i. ( ) ( )1

0
, dx y y h xα =∫   for any  x∈ I,  and α is symmetric;

ii.α  satisfies a Hölder condition of order 1;
iii.α  is a kernel .

We can now define the infinite order chains involving T and µ . Our definitions here are formally
identical with those for the RCF expansion (see [4]).

We define the X-valued r.v.s. ,na n ∈ Z , on ( ), I II I B B× ×  by

( ) ( ), , ,n na a n= ∈ +Nθ ω θ ( ) ( )0 1, ,a aθ ω ω= ( ) ( )1, ,l la a lθ ω ω− += ∈ +N .

Hence ( )1 ,n na a T−= n ∈ Z .
We also consider the I-valued random variables ,ls l ∈ Z , defined by

( ) ( ), ,l
l fs lθ ω τ ω− = ∈ N,  ( ) ( ), ,n ns s nωθ ω θ= ∈ +N .

The doubly infinite sequences ( )n
n

T
∈ Z

, ( )n na
∈ Z  and ( )n ns

∈ Z  are respectively I × I-, X- and  I- valued

strictly stationary symmetric processes under µ . In other words, they are infinite order chains on
( ), ,I II I B B µ× × .

The introduction in the next section of probability measures ,w w Iµ ∈ , will allow us to complete the
description of probabilistic properties of our infinite order chains. It is based on classical notions as given in
[3].

3. CONDITIONAL PROBABILITY MEASURES

Whatever w∈ I  define

( ) ( )
( )

,
: d ,   w IA

x w
A x A B

h w
α

µ ≡ ∈∫

Then ( )wµ ⋅  such defined is a probability on BI. In the  RCF case ( )wµ  can be expressed in closed

form and coincides with the function denoted by ( )aγ  in [4]; ( )wµ ⋅  has most of its properties.
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Theorem 3 (Properties of wµ ).
i.  ( ) ( ) ( )

01 0 1 0| , , ... ( ) ,sa i a a I i P s iµ µ µ−= = = - . .,a s i X∈ ;

ii. ( ) ( )
00| sA I s Aµ µ µ× = - . ., Ia s A B∈ ;

iii. ( )n ns
∈ Z  is an I-valued Markov chain on ( ), ,I II I B B µ× × .

We now return to the random variables on ( )IBI ,  involved in the conjecture. By the next theorem we
see the impact of probabilistic properties of infinite order chains on the sequence ( )w

n n
s

∈ N
defined on

( ), ,I wI B µ . Below Ew denotes the mean under ,wP w I∈  .

Theorem 4 (Properties of the distribution of w
ns ).

i. ,w w Iλ µ≡ ∈ ;

ii. ( ) ( ) ( )1

0
d , ,w

w n IA s A w A B nµ µ µ= ∈ ∈ ∈∫ +N ;

iii. ( ) { }( ) ( ), ,w w n
w n w A n As A E s U w w nµ χ χ∈ = ≡ ∈ ∈ +NI .

Hence, whatever ( ),  w
n n

w s
∈

∈
N

I is an I -valued Markov chain on ( ), ,I wI B µ  with  transition operator

U .
Using the results above we can prove the next result  which is essentially used in the proof of Theorem

6 below.

Theorem 5.  We have 0λ µ=  and  ( ) ( ) ( ), 0 0 0, ,w h w w Iα α= = ∈ .

4. THE SOLUTION

As we already said, our result confirming the conjecture stated in Section 1 concerns f-expansion
satisfying Rényi’s condition on distortion and a strengthened Lipschitz condition. More precisely, we have

Theorem 6 (Main result). Consider an f-expansion for which conditions (E) and (C) hold.
i. Equations (2) are valid.  Hence the label sequence ( )n na ∈ +N under 0λ µ=  is equivalent to the

sequence ( )ξn n∈ N  under P0.

ii. The sequence  ( )0
n n

s
∈ N

 on  ( )λ,, IBI  is an I-valued homogenous Markov chain equivalent to the

Markov chain ( )ζn n∈ N  on ( )0, ,K PΩ .

 iii. The representation map ϕ  settles an isomorphism of measure spaces between ( )λ,, IBI  and
( )0, ,K PΩ .

The statement of conditions (E) and (C) can be found in [1],[8],[9].
Note that conditions (E) and (C) imply a condition slightly weaker than (BD(2)) (esssup replaces sup in

(BD(2))) so that one can say that the conjecture is proved as  formulated.
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