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Abstract: Let G be a graph and T be a spanning tree of G. We use Q(G) = D(G)+A(G) to denote the signless
Laplacian matrix of G, where D(G) is the diagonal degree matrix of G and A(G) is the adjacency matrix of
G. The signless Laplacian spectral radius of G is denoted by q(G). A necessary and sufficient condition for a
connected bipartite graph G with bipartition (A,B) to have a spanning tree T with dT (v) ≥ k for every v ∈ A
was independently obtained by Frank and Gyárfás (A. Frank, E. Gyárfás, How to orient the edges of a graph?,
Colloq. Math. Soc. Janos Bolyai 18 (1976) 353–364), Kaneko and Yoshimoto (A. Kaneko, K. Yoshimoto, On
spanning trees with restricted degrees, Inform. Process. Lett. 73 (2000) 163–165). Based on the above result,
we establish a lower bound on the signless Laplacian spectral radius q(G) of a connected bipartite graph G with
bipartition (A,B), in which the bound guarantees that G has a spanning tree T with dT (v)≥ k for every v ∈ A.
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1. INTRODUCTION

Throughout this paper, we only discuss simple, undirected and connected graphs. Let G = (V (G),E(G))
be a graph, where V (G) denotes its vertex set and E(G) denotes its edge set. For a vertex v ∈ V (G), the
neighborhood NG(v) of v in G is defined by {u ∈ V (G) : uv ∈ E(G)} and the number dG(v) = |NG(v)| is the
degree of v in G. For a vertex subset S ⊆V (G), we write NG(S) =

⋃
v∈S NG(v).

For a given graph G with vertex set V (G) = {v1,v2, . . . ,vn}, the adjacency matrix of G is defined by A(G) =
(ai j), where ai j = 1 if two vertices vi and v j are adjacent in G, and ai j = 0 otherwise. Let Q(G) = D(G)+A(G)
denote the signless Laplacian matrix of G, where D(G) = diag{dG(v1),dG(v2), . . . ,dG(vn)} is the diagonal
degree matrix of G. Let ρ1(G) ≥ ρ2(G) ≥ ·· · ≥ ρn(G) and q1(G) ≥ q2(G) ≥ ·· · ≥ qn(G) be the eigenvalues
of A(G) and Q(G), respectively. In particular, the largest eigenvalue ρ1(G) of A(G) is called the adjacency
spectral radius of G and denoted by ρ(G), and the largest eigenvalue q1(G) of Q(G) is called the signless
Laplacian spectral radius of G and denoted by q(G). Some properties on spectral radius can be found in
[2, 14, 15, 23, 24, 27, 30, 31, 33].

Let a and b be two integers with 0 ≤ a ≤ b. Then a spanning subgraph F of G is called an [a,b]-factor of G
if a ≤ dF(v)≤ b for every v ∈V (G). A spanning tree T of a connected graph G is called a spanning k-tree of G
if dT (v)≤ k for each v ∈V (G), that is, the maximum degree of a spanning k-tree of G is at most k, where k ≥ 2
is an integer. Obviously, a spanning k-tree of G is also a connected [1,k]-factor of G. A spanning tree having at
most k leaves is called a spanning k-ended tree. Kaneko [7] introduced the concept of leaf degree of a spanning
tree. Let T denote a spanning tree of a connected graph G. The number of leaves adjacent to a vertex v in T is
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called the leaf degree of v. Furthermore, the maximum leaf degree among all the vertices in T is called the leaf
degree of T . The minimum of distances between any two leaves in T is called the leaf distance of T .

Lots of scholars investigated the existence of spanning trees under some specified conditions. Ota and
Sugiyama [16] posed a sufficient condition for a graph to contain a spanning k-tree via the condition on forbid-
den subgraphs. Kyaw [13] obtained a degree and neighborhood condition for the existence of a spanning k-tree
in a graph. Win [19] showed some results on the existence of a spanning k-tree in a graph. Zhou and Wu [28]
provided an upper bound on the distance spectral radius in a graph G to ensure the existence of a spanning k-
tree in G. Zhou, Zhang and Liu [32] studied the relation between the spanning k-tree and the distance signless
Laplacian spectral radius in a graph and claimed an upper bound on the distance signless Laplacian spectral
radius in a graph G to ensure the existence of a spanning k-tree in G. Broersma and Tuinstra [3] presented a
degree condition for a graph to contain a spanning k-end tree. Ao, Liu and Yuan [1] obtained tight spectral
conditions to guarantee a graph to have a spanning k-end tree, and also posed tight spectral conditions for the
existence of a spanning tree with leaf degree at most k in a graph. Zhou, Sun and Liu [26] showed the upper
bounds for the distance spectral radius (resp. the distance signless Laplacian spectral radius) of a graph G to
guarantee that G has a spanning tree with leaf degree at most k. Wu [20] gave a lower bound on the size of a
graph G to guarantee that G has a spanning tree with leaf degree at most k, and established a lower bound on
the spectral radius of a graph G to ensure that G has a spanning tree with leaf degree at most k. Kaneko, Kano
and Suzuki [8] posed a sufficient condition for a graph to have a spanning tree with leaf distance at least 4.
Erbes, Molla, Mousley and Santana [4] investigated the existence of spanning trees with leaf distance at least
d, where d ≥ 4 is an integer. Wang and Zhang [18] showed an Aα -spectral radius condition for the existence of
a spanning tree with leaf distance at least 4 in a graph. For more results on spanning subgraphs, we refer the
reader to [6, 11, 12, 22, 25, 29].

Let G be a bipartite graph with bipartition (A,B). Let Km,n denote the complete bipartite graph with biparti-
tion (A,B), where |A|= m and |B|= n. Given two bipartite graphs G1 = (A1,B1) and G2 = (A2,B2), let G1∇G2
denote the graph obtained from G1 ∪G2 by adding all possible edges between A2 and B1.

For bipartite graphs, Kano, Matsuda, Tsugaki and Yan [10] provided a degree condition for a connected
bipartite graph to contain a spanning k-ended tree. Frank and Gyárfás [5], Kaneko and Yoshimoto [9] indepen-
dently obtained a necessary and sufficient condition for a connected bipartite graph G with bipartition (A,B) to
have a spanning tree T with dT (v)≥ k for every v ∈ A. Motivated by [5, 9] directly, it is natural and interesting
to put forward some sufficient conditions to guarantee that a connected bipartite graph with bipartition (A,B)
has a spanning tree T with dT (v) ≥ k for every v ∈ A with respect to the spectral radius. Our main result is
shown as follows.

Theorem 1.1. Let k, m and n be three integers with k ≥ 3, m ≥ 3 and n ≥ (k−1)m+1, and let G be a connected
bipartite graph with bipartition A∪B, where |A|= m and |B|= n. If

q(G)≥ q(K1,k−1∇Km−1,n−k+1),

then G contains a spanning tree T with dT (v) ≥ k for every v ∈ A unless G = K1,k−1∇Km−1,n−k+1, where
q(K1,k−1∇Km−1,n−k+1) is equal to the largest root of x4− (2m+n+k−2)x3+(m2+mn+2km+kn−3m−n−
2k+2)x2 +(km−m+ kn−n− km2 +m2 − kmn+mn)x = 0.

2. SOME PRELIMINARIES

In this section, we introduce some lemmas, which will be used in the proofs of our main results.

Lemma 2.1 (Shen, You, Zhang and Li [17]). Let G be a connected graph, and let H be a subgraph of G. Then

q(H)≤ q(G),

where the equality holds if and only if H = G.
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Let M be a real symmetric matrix whose rows and columns are indexed by V = {1,2, · · · ,n}. Assume that
M, with respect to the partition π : V =V1 ∪V2 ∪·· ·∪Vm, can be written as

M =


M11 M12 · · · M1m

M21 M22 · · · M2m
...

...
. . .

...
Mm1 Mm2 · · · Mmm

 ,

where Mi j denotes the submatrix (block) of M formed by rows in Vi and columns in Vj. Let qi j denote the
average row sum of Mi j. Then matrix Mπ = (qi j) is called the quotient matrix of M. If the row sum of each
block Mi j is a constant, then the partition is equitable.

Lemma 2.2 (You, Yang, So and Xi [21]). Let M be a real symmetric matrix with an equitable partition π , and
let Mπ be the corresponding quotient matrix. Then every eigenvalue of Mπ is an eigenvalue of M. Furthermore,
if M is nonnegative, then the largest eigenvalues of M and Mπ are equal.

Frank and Gyárfás [5], and Kaneko and Yoshimoto [9] put forward a necessary and sufficient condition for
bipartite graphs to have spanning trees with restricted degrees, independently.

Lemma 2.3 (Frank and Gyárfás [5], Kaneko and Yoshimoto [9]). Let G be a connected bipartite simple graph
with bipartition A∪B, and f : A −→ {2,3,4, . . .} be a function. Then G contains a spanning tree T such that
dT (v)≥ f (v) for every v ∈ A if and only if

|NG(S)| ≥ ∑
v∈S

f (v)−|S|+1

for any nonempty subset S ⊆ A.

3. THE PROOF OF THEOREM 1.1

Proof of Theorem 1.1. Suppose, to the contrary, that G contains no spanning tree T with dT (v) ≥ k for every
v ∈ A. By virtue of Lemma 2.3, we conclude

|NG(S)| ≤ (k−1)|S| (1)

for some nonempty subset S ⊆ A. Choose a connected bipartite graph G with partition A∪B such that its
signless Laplacian spectral radius is as large as possible, where |A|= m and |B|= n. We claim that S is a proper
subset of A, that is, S ⊂ A. Otherwise, S = A. Then it follows from (1) and S = A that |NG(A)| ≤ (k−1)|A| =
(k − 1)m. Combining this with n ≥ (k − 1)m+ 1, we deduce n− |NG(A)| ≥ (k − 1)m+ 1− (k − 1)m = 1,
which is impossible because G is connected. For convenience, we let |S| = s and |NG(S)| = r. Obviously,
1 ≤ s ≤ m− 1 and there are no edges between S and B−NG(S) in G. In terms of Lemma 2.1 and the choice
of G with bipartition A∪B, we conclude G = Ks,r∇Km−s,n−r. It is clear that G = Ks,r∇Km−s,n−r is a spanning
subgraph of G1 = Ks,(k−1)s∇Km−s,n−(k−1)s. Together with Lemma 2.1, we infer

q(G) = q(Ks,r∇Km−s,n−r)≤ q(Ks,(k−1)s∇Km−s,n−(k−1)s), (2)

where the second equality holds if and only if G = Ks,(k−1)s∇Km−s,n−(k−1)s. In what follows, we will show that
q(Ks,(k−1)s∇Km−s,n−(k−1)s)≤ q(K1,k−1∇Km−1,n−k+1) with equality if and only if s = 1.

For the bipartite graph G1 = Ks,(k−1)s∇Km−s,n−(k−1)s, the quotient matrix of the signless Laplacian matrix
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Q(G1) = Q(Ks,(k−1)s∇Km−s,n−(k−1)s) by the partition V (G1) = S∪ (A−S)∪NG1(S)∪ (B−NG1(S)) is equal to

B1 =


(k−1)s 0 (k−1)s 0

0 n (k−1)s n− (k−1)s
s m− s m 0
0 m− s 0 m− s

 .

Then the characteristic polynomial of B1 is

ϕB1(x) =x4 − (2m+n+ ks−2s)x3 +(m2 +mn+2kms+ kns−3ms−ns−2ks2 +2s2)x2

+(kms2 −ms2 + kns2 −ns2 − km2s+m2s− kmns+mns)x.

Notice that the partition V (G1) = S∪ (A− S)∪NG1(S)∪ (B−NG1(S)) is equitable. In view of Lemma 2.2,
the largest root, say q1, of ϕB1(x) = 0 satisfies q1 = q(G1) = q(Ks,(k−1)s∇Km−s,n−(k−1)s). Note that Km,(k−1)s is
a proper subgraph of G1 = Ks,(k−1)s∇Km−s,n−(k−1)s, and G1 = Ks,(k−1)s∇Km−s,n−(k−1)s is a proper subgraph of
Km,n. According to Lemma 2.1, we have

m+n = q(Km,n)> q1 = q(G1)> q(Km,(k−1)s) = m+(k−1)s. (3)

For the bipartite graph G∗ = K1,k−1∇Km−1,n−k+1, the quotient matrix of Q(G∗) in terms of the partition
V (G∗) = S∪ (A−S)∪NG∗(S)∪ (B−NG∗(S)) can be written as

B∗ =


k−1 0 k−1 0

0 n k−1 n− k+1
1 m−1 m 0
0 m−1 0 m−1

 ,

so its characteristic polynomial is

ϕB∗(x) =x4 − (2m+n+ k−2)x3 +(m2 +mn+2km+ kn−3m−n−2k+2)x2

+(km−m+ kn−n− km2 +m2 − kmn+mn)x.

Note that the partition V (G∗) = S∪ (A−S)∪NG∗(S)∪ (B−NG∗(S)) is equitable. According to Lemma 2.2, the
largest root, say q∗, of ϕB∗(x) = 0 satisfies q∗ = q(G∗) = q(K1,k−1∇Km−1,n−k+1).

Let ψ(x) = (k−2)x2 − (2km+ kn−3m−n−2ks−2k+2s+2)x− kms− km+ms+m− kns− kn+ns+
n+ km2 −m2 + kmn−mn. Notice that ϕB1(q1) = 0. By plugging the value q1 into x of ϕB∗(x)−ϕB1(x), we
obtain

ϕB∗(q1) = ϕB∗(q1)−ϕB1(q1) = q1(s−1)ψ(q1). (4)

In view of (3) and k ≥ 3, we easily see

ψ(q1)≤ max{ψ(m+n),ψ(m+(k−1)s)}. (5)

Recall that k ≥ 3 and 2 ≤ s ≤ m−1. We deduce

ψ(m+n) =(km+ kn−m−n)s+ km−m−n2 + kn−n−mn

≤(km+ kn−m−n)(m−1)+ km−m−n2 + kn−n−mn

=−n2 +(km−2m)n+ km2 −m2. (6)

Let f (x) = −x2 + (km− 2m)x + km2 −m2. Then the symmetry axis of f (x) is x = km−2m
2 , and so f (x) is
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decreasing in the interval [ km−2m
2 ,+∞]. Note that

km−2m
2

< (k−1)m < n

by k ≥ 3 and n ≥ (k−1)m+1. Then we deduce

f (n)< f ((k−1)m)

=− (k−1)2m2 +(km−2m)(k−1)m+ km2 −m2

=0.

Combining this with (6), we obtain

ψ(m+n)≤ f (n)< f ((k−1)m) = 0. (7)

By a direct computation, we get

ψ(m+(k−1)s) = (k−1)(k(k−1)s2 − (kn−2k+2)s+m−n). (8)

Let h(x) = k(k−1)x2 − (kn−2k+2)x+m−n. Recall that 2 ≤ s ≤ m−1. Then h(s)≤ max{h(2),h(m−1)}.
By a simple calculation, we have

h(2) =4k(k−1)−2(kn−2k+2)+m−n

=− (2k+1)n+4k2 +m−4

<− (2k+1)(k−1)m+4k2 +m−4

=− (2k2 − k−2)m+4k2 −4

≤−3(2k2 − k−2)+4k2 −4

=−2k2 +3k+2

<0

and

h(m−1) =k(k−1)(m−1)2 − (kn−2k+2)(m−1)+m−n

<k(k−1)(m−1)2 − (k(k−1)m−2k+2)(m−1)+m− (k−1)m

=− k(k−2)(m−1)− k+2

<0

due to k ≥ 3, m ≥ 3 and n ≥ (k−1)m+1 > (k−1)m. Thus, h(s)≤ max{h(2),h(m−1)}< 0 for 2 ≤ s ≤ m−1.
Combining this with (8), we infer

ψ(m+(k−1)s) = (k−1)h(s)< 0. (9)

Using (5), (7) and (9), we conclude

ψ(q1)≤ max{ψ(m+n),ψ(m+(k−1)s)}< 0. (10)

It follows from (3), (4), (10), k ≥ 3 and 1 ≤ s ≤ m−1 that

ϕB∗(q1) = q1(s−1)ψ(q1)≤ 0,

which yields that q(Ks,(k−1)s∇Km−s,n−(k−1)s) = q1 ≤ q∗ = q(K1,k−1∇Km−1,n−k+1) with the second equality hold-
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ing if and only if s = 1. Together with (2), we obtain

q(G)≤ q(K1,k−1∇Km−1,n−k+1)

with equality if and only if G = K1,k−1∇Km−1,n−k+1, which is a contradiction to the condition of Theorem 1.1
because G = K1,k−1∇Km−1,n−k+1 has no spanning tree T with dT (v) ≥ k for every v ∈ A. This completes the
proof of Theorem 1.1. 2
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