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Abstract. Let T k
r

denote the set of trees T such that i(T −S)≤ k
r |S| for any S⊂V (T ) and for any e∈E(T ) there

exists a set S∗ ⊂V (T ) with i((T −e)−S∗)> k
r |S

∗|, where r < k are two positive integers. A {C2i+1,T : 1 ≤ i <
r

k−r ,T ∈ T k
r
}-factor of a graph G is a spanning subgraph of G, in which every component is isomorphic to an

element in {C2i+1,T : 1 ≤ i < r
k−r ,T ∈ T k

r
}. Let A(G) and Q(G) denote the adjacency matrix and the signless

Laplacian matrix of G, respectively. The adjacency spectral radius and the signless Laplacian spectral radius
of G, denoted by ρ(G) and q(G), are the largest eigenvalues of A(G) and Q(G), respectively. In this paper, we
study the connections between the spectral radius and the existence of a {C2i+1,T : 1 ≤ i < r

k−r ,T ∈T k
r
}-factor

in a graph. We first establish a tight sufficient condition involving the adjacency spectral radius to guarantee the
existence of a {C2i+1,T : 1 ≤ i < r

k−r ,T ∈ T k
r
}-factor in a graph. Then we propose a tight signless Laplacian

spectral radius condition for the existence of a {C2i+1,T : 1 ≤ i < r
k−r ,T ∈ T k

r
}-factor in a graph.
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1. INTRODUCTION

In this paper, we deal with finite and undirected graphs which have neither loops nor multiple edges. Let
G be a graph. We denote by V (G) and E(G) the set of vertices and the set of edges of G, respectively. The
order of G is the number n = |V (G)| of its vertices. The size of G is the number e(G) = |E(G)| of its edges.
For v ∈ V (G), the degree of v in G is denoted by dG(v). Let i(G) and δ (G) denote the number of isolated
vertices and the minimum degree of G, respectively. For any S ⊆ V (G), G[S] is the subgraph of G induced by
S and G− S is the subgraph of G induced by V (G)− S. For any E ′ ⊆ E(G), let G−E ′ denote the subgraph
obtained from G by deleting E ′. For convenience, write G− v = G−{v} for S = {v} and G− e = G−{e} for
E ′ = {e}. As usual, let Pn, Cn, Kn and K1,n−1 denote the path, the circuit, the complete graph and the star of
order n, respectively. A connected graph without circuits is called a tree, which is denoted by T . For any two
positive integers k and r with r < k, let T k

r
denote the set of trees T such that i(T −S)≤ k

r |S| for any S ⊂V (T )

and for any e ∈ E(T ) there exists a set S∗ ⊂ V (T ) with i((T − e)−S∗) > k
r |S

∗|. For two given graphs G1 and
G2, we denote by G1 ∪G2 their union. The join G1 ∨G2 is obtained from G1 ∪G2 by joining each vertex of G1
with each vertex of G2 by an edge. Let c be a real number. Recall that ⌊c⌋ is the greatest integer with ⌊c⌋ ≤ c.
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Let H denote a set of connected graphs. A subgraph H of G is called an H -factor of G if V (H) =V (G)
and each component of H is isomorphic to an element of H . An H -factor is also referred as a component
factor. An H -factor is called a P≥k-factor if H = {Pk,Pk+1, . . .}. An H -factor is called a {C2i+1,T : 1 ≤ i <

r
k−r ,T ∈T k

r
}-factor if H = {C2i+1,T : 1 ≤ i < r

k−r ,T ∈T k
r
}. An H -factor means a star-factor in which every

component is a star. Note that a perfect matching is indeed a {P2}-factor of G.
Kaneko [6] established a criterion for a graph with a P≥3-factor. Liu and Pan [11], Dai [2], Wu [22] provided

some sufficient conditions for the existence of P≥3-factors in graphs. Ando et al [1] proved that a claw-free
graph with minimum degree at least d contains a P≥d+1-factor. Tutte [16] showed a necessary and sufficient
condition for a graph to have a {K2,Ci : i ≥ 3}-factor. Klopp and Steffen [9] investigated the existence of
{K1,1,K1,2,Ci : i ≥ 3}-factors in graphs. Zhou, Xu and Sun [32] proposed some sufficient conditions for graphs
to contain {K1, j : 1 ≤ j ≤ k}-factors. Kano and Saito [8] verified that a graph G satisfying i(G−S)≤ 1

k |S| for
any S ⊂V (G) has a {K1, j : k ≤ j ≤ 2k}-factor. Kano, Lu and Yu [7] provided sufficient conditions using isolated
vertices for component factors with every component of order at least three and proved that a graph G satisfying
i(G−S) ≤ |S|

2 for any S ⊂ V (G) contains a {K1,2,K1,3,K5}-factor. Wolf [19] claimed a characterization using
isolated vertices for a graph with a {C2i+1,T : 1 ≤ i < r

k−r ,T ∈ T k
r
}-factor. For other sufficient conditions for

the existence of graph factors in graphs, see [4, 17, 20, 23, 25, 30, 34].
Given a graph G with vertex set V (G) = {v1,v2, . . . ,vn}, the adjacency matrix A(G) = (ai j)n×n of G is a

0–1 matrix in which the entry ai j = 1 if and only if viv j ∈ E(G). Let D(G) denote the diagonal matrix of vertex
degrees of G. The signless Laplacian matrix Q(G) of G are defined by Q(G) = D(G)+A(G). The largest
eigenvalue of A(G) is called the adjacency spectral radius of G, denoted by ρ(G). The largest eigenvalue of
Q(G) is called the signless Laplacian spectral radius of G, denoted by q(G).

O [14], Zhou, Sun and Zhang [29] proved two sharp upper bounds for the adjacency spectral radius in a
graph without a {P2}-factor. Zhou and Zhang [33] gave a lower bound on the signless Laplacian spectral radius
of G to guarantee that G contains a {P2}-factor. Zhou, Sun and Liu [28], Zhou, Zhang and Sun [35] presented
two spectral radius conditions for graphs to possess P≥2-factors. Wu [21], Wang and Zhang [18], Zhou, Sun
and Liu [27], Zhou and Wu [31] provided some spectral radius conditions for the existence of spanning trees in
connected graphs. Zhou [24] proposed two spectral radius conditions for bipartite graphs to have star-factors.
Zhou and Liu [26] put forward a lower bound on the Aa-spectral radius for a connected graph to possess a
{K1, j : m ≤ j ≤ 2m}-factor. Lv, Li and Xu [12] showed a sufficient condition involving the Aα -spectral radius
for a graph to have a {K2,C2i+1 : i ≥ 1}-factor, and gave a distance signless Laplacian spectral radius condition
for a graph to have a {K2,C2i+1 : i ≥ 1}-factor. Miao and Li [13] obtained some sufficient conditions involving
the adjacency spectral radius and the distance spectral radius for the existence of {K1, j : 1 ≤ j ≤ k}-factors in
graphs.

Motivated by [19] directly, we first propose an adjacency spectral radius condition for a connected graph
with minimum degree δ to have a {C2i+1,T : 1 ≤ i < r

k−r ,T ∈ T k
r
}-factor, then we obtain a signless Laplacian

spectral radius condition for a connected graph with minimum degree δ to have a {C2i+1,T : 1 ≤ i < r
k−r ,T ∈

T k
r
}-factor.

Theorem 1.1. Let k and r be two positive integers with r < k, and let G be a connected graph of order n with
δ (G) = δ and n ≥ max

{
(k+r)(k+2r)(kδ+k+r)

k2r , 2krδ 2+(2k2+kr+2r2)δ+k2+3kr−2r2

2r(k−r)

}
. If

ρ(G)≥ ρ

(
Kδ ∨

(
Kn−⌊ kδ

r ⌋−δ−1 ∪
(⌊kδ

r

⌋
+1

)
K1

))
,

then G has a {C2i+1,T : 1 ≤ i < r
k−r ,T ∈ T k

r
}-factor unless G = Kδ ∨ (Kn−⌊ kδ

r ⌋−δ−1 ∪ (⌊ kδ

r ⌋+1)K1).

Theorem 1.2. Let k and r be two positive integers with r < k, and let G be a connected graph of order n with
δ (G) = δ and n ≥ max

{
(k+r)(k+2r)(kδ+k+r)

k2r , (k
2+2kr)δ 2+(2k2+3kr+2r2)δ+k2+3kr

2r(k−r)

}
. If

q(G)≥ q
(

Kδ ∨
(

Kn−⌊ kδ

r ⌋−δ−1 ∪
(⌊kδ

r

⌋
+1

)
K1

))
,



3 Sufficient conditions for a graph with minimum degree to have a component factor 3

then G has a {C2i+1,T : 1 ≤ i < r
k−r ,T ∈ T k

r
}-factor unless G = Kδ ∨ (Kn−⌊ kδ

r ⌋−δ−1 ∪ (⌊ kδ

r ⌋+1)K1).

2. PRELIMINARY LEMMAS

In this section, we show some lemmas, which will be used to verify our main results. Wolf [19] claimed a
characterization for a graph with a {C2i+1,T : 1 ≤ i < r

k−r ,T ∈ T k
r
}-factor.

Lemma 2.1 (Wolf [19]). Let k and r be two positive integers with r < k, and let G be a graph. Then G has a
{C2i+1,T : 1 ≤ i < r

k−r ,T ∈ T k
r
}-factor if and only if

i(G−S)≤ k
r
|S|

for any S ⊂V (G).

Lemma 2.2 (Li and Feng [10]). Let G be a connected graph and let H be a subgraph of G. Then

ρ(G)≥ ρ(H),

with equality if and only if G = H.

Lemma 2.3 (Hong [5]). Let G be a graph with n vertices. Then

ρ(G)≤
√

2e(G)−n+1,

where the equality holds if and only if G is a star or a complete graph.

Lemma 2.4 (Shen, You, Zhang and Li [15]). Let G be a connected graph. If H is a subgraph of G, then

q(G)≥ q(H),

with equality holding if and only if G = H.

Lemma 2.5 (Das [3]). Let G be a graph of order n. Then

q(G)≤ 2e(G)

n−1
+n−2.

3. THE PROOF OF THEOREM 1.1

Proof of Theorem 1.1. Assume that G has no {C2i+1,T : 1 ≤ i < r
k−r ,T ∈ T k

r
}-factor. By virtue of Lemma 2.1,

there exists some nonempty subset S of V (G) such that

i(G−S)>
k
r
|S|.

In terms of the integrity of i(G−S), we possess

i(G−S)≥
⌊k

r
|S|

⌋
+1.
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Let |S|= s. Then G is a spanning subgraph of G1 = Ks ∨ (Kn−⌊ ks
r ⌋−s−1 ∪ (⌊ ks

r ⌋+1)K1). Together with Lemma
2.2, we deduce

ρ(G)≤ ρ(G1), (1)

where the equality holds if and only if G = G1. Notice that δ (G) = δ and δ (G1) ≥ δ (G). Thus, we get
s = δ (G1)≥ δ (G) = δ . The following proof will be divided into two cases according to the value of s.

Case 1. s = δ .
In this case, G1 = Kδ ∨ (Kn−⌊ kδ

r ⌋−δ−1 ∪ (⌊ kδ

r ⌋+1)K1). Together with (1), we conclude

ρ(G)≤ ρ

(
Kδ ∨

(
Kn−⌊ kδ

r ⌋−δ−1 ∪
(⌊kδ

r

⌋
+1

)
K1

))
,

with equality holding if and only if G = Kδ ∨ (Kn−⌊ kδ

r ⌋−δ−1∪ (⌊ kδ

r ⌋+1)K1). Observe that Kδ ∨ (Kn−⌊ kδ

r ⌋−δ−1∪
(⌊ kδ

r ⌋+1)K1) has no {C2i+1,T : 1 ≤ i < r
k−r ,T ∈ T k

r
}-factor. Thus, we can get a contradiction.

Case 2. s ≥ δ +1.
Recall that G1 = Ks ∨ (Kn−⌊ ks

r ⌋−s−1 ∪ (⌊ ks
r ⌋+ 1)K1). By virtue of Lemma 2.3, ks

r − 1 < ⌊ ks
r ⌋ ≤

ks
r and

n ≥ ⌊ ks
r ⌋+ s+1 > ks

r + s, we obtain

ρ(G1)≤
√

2e(G1)−n+1

=

√
2
(

n−⌊ ks
r ⌋−1
2

)
+2s

(⌊ks
r

⌋
+1

)
−n+1

=

√(
n−

⌊ks
r

⌋
−1

)(
n−

⌊ks
r

⌋
−2

)
+2s

(⌊ks
r

⌋
+1

)
−n+1

<

√(
n−

(ks
r
−1

)
−1

)(
n−

(ks
r
−1

)
−2

)
+2s

(⌊ks
r

⌋
+1

)
−n+1

=
1
r

√
(k2 +2kr)s2 − (2krn−2r2 − kr)s+ r2n2 −2r2n+ r2. (2)

Let f (s) = (k2 + 2kr)s2 − (2krn− 2r2 − kr)s+ r2n2 − 2r2n+ r2. Since n ≥ ⌊ ks
r ⌋+ s+ 1 > ks

r + s, we possess
δ +1 ≤ s < rn

k+r . By a direct computation, we get

f (δ +1)− f
( rn

k+ r

)
=(k2 +2kr)(δ +1)2 − (2krn−2r2 − kr)(δ +1)+ r2n2 −2r2n+ r2

−
(
(k2 +2kr)

( rn
k+ r

)2
− (2krn−2r2 − kr)

( rn
k+ r

)
+ r2n2 −2r2n+ r2

)
=
( rn

k+ r
−δ −1

)( k2rn
k+ r

− (k+2r)(kδ + k+ r)
)

>0,

where the inequality holds from the fact that

n >max
{(k+ r)(k+2r)(kδ + k+ r)

k2r
,
2krδ 2 +(2k2 + kr+2r2)δ + k2 +3kr−2r2

2r(k− r)

}
≥(k+ r)(k+2r)(kδ + k+ r)

k2r

>
(k+ r)(δ +1)

r
.
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This implies that, for δ +1 ≤ s < rn
k+r , the function f (s) attains its maximum value at s = δ +1. Combining this

with (1), (2) and n > max
{

(k+r)(k+2r)(kδ+k+r)
k2r , 2krδ 2+(2k2+kr+2r2)δ+k2+3kr−2r2

2r(k−r)

}
≥ 2krδ 2+(2k2+kr+2r2)δ+k2+3kr−2r2

2r(k−r) ,
we obtain

ρ(G)≤ρ(G1)

<
1
r

√
f (δ +1)

=
1
r

√
(k2 +2kr)(δ +1)2 − (2krn−2r2 − kr)(δ +1)+ r2n2 −2r2n+ r2

=
1
r

√
(rn− kδ −2r)2 −2r(k− r)n+2krδ 2 +(2k2 + kr+2r2)δ + k2 +3kr−2r2

<
1
r
(rn− kδ −2r). (3)

Since Kn−⌊ kδ

r ⌋−1 is a proper subgraph of Kδ ∨ (Kn−⌊ kδ

r ⌋−δ−1 ∪ (⌊ kδ

r ⌋+ 1)K1), it follows from Lemma 2.2,

⌊ kδ

r ⌋ ≤
kδ

r and the hypothesis of the theorem that

ρ(G)≥ρ

(
Kδ ∨

(
Kn−⌊ kδ

r ⌋−δ−1 ∪
(⌊kδ

r

⌋
+1

)
K1

))
>ρ(Kn−⌊ kδ

r ⌋−1)

=n−
⌊kδ

r

⌋
−2

≥n− kδ

r
−2

=
1
r
(rn− kδ −2r),

which leads to a contradiction to (3). Theorem 1.1 is proved. 2

4. THE PROOF OF THEOREM 1.2

Proof of Theorem 1.2. Assume that G has no {C2i+1,T : 1 ≤ i < r
k−r ,T ∈ T k

r
}-factor. Then using Lemma 2.1,

there exists some nonempty subset S of V (G) such that

i(G−S)>
k
r
|S|.

According to the integrity of i(G−S), we obtain

i(G−S)≥
⌊k

r
|S|

⌋
+1.

Let |S|= s. Then G is a spanning subgraph of G1 = Ks ∨ (Kn−⌊ ks
r ⌋−s−1 ∪ (⌊ ks

r ⌋+1)K1). Together with Lemma
2.4, we possess

q(G)≤ q(G1), (4)

where the equality holds if and only if G = G1. Note that δ (G) = δ and δ (G1) = s ≥ δ (G). Thus, we get s ≥ δ .
In what follows, we shall consider two cases by the value of s.
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Case 1. s = δ .
In this case, G1 = Kδ ∨ (Kn−⌊ kδ

r ⌋−δ−1 ∪ (⌊ kδ

r ⌋+1)K1). In terms of (4), we obtain

q(G)≤ q
(

Kδ ∨
(

Kn−⌊ kδ

r ⌋−δ−1 ∪
(⌊kδ

r

⌋
+1

)
K1

))
,

where the equality holds if and only if G=Kδ ∨(Kn−⌊ kδ

r ⌋−δ−1∪(⌊
kδ

r ⌋+1)K1). Observe that Kδ ∨(Kn−⌊ kδ

r ⌋−δ−1∪
(⌊ kδ

r ⌋+1)K1) contains no {C2i+1,T : 1 ≤ i < r
k−r ,T ∈ T k

r
}-factor. Thus, we can obtain a contradiction.

Case 2. s ≥ δ +1.
Recall that G1 = Ks ∨ (Kn−⌊ ks

r ⌋−s−1 ∪ (⌊ ks
r ⌋+ 1)K1). It follows from Lemma 2.5, ks

r − 1 < ⌊ ks
r ⌋ ≤

ks
r and

n ≥ ⌊ ks
r ⌋+ s+1 > ks

r + s that

q(G1)≤
2e(G1)

n−1
+n−2

=
2
(n−⌊ ks

r ⌋−1
2

)
+2s

(⌊
ks
r

⌋
+1

)
n−1

+n−2

=

(
n−

⌊
ks
r

⌋
−1

)(
n−

⌊
ks
r

⌋
−2

)
+2s

(⌊
ks
r

⌋
+1

)
n−1

+n−2

<

(
n−

(
ks
r −1

)
−1

)(
n−

(
ks
r −1

)
−2

)
+2s

(
ks
r +1

)
n−1

+n−2

=

(
n− ks

r

)(
n− ks

r −1
)
+2s

(
ks
r +1

)
n−1

+n−2

=
(k2 +2kr)s2 − (2krn− kr−2r2)s+2r2n2 −4r2n+2r2

r2(n−1)
. (5)

Let g(s) = (k2 +2kr)s2 − (2krn− kr−2r2)s+2r2n2 −4r2n+2r2. Since n ≥ ⌊ ks
r ⌋+ s+1 > ks

r + s, we deduce
δ +1 ≤ s < rn

k+r . By a simple computation, we obtain

g(δ +1)−g
( rn

k+ r

)
=(k2 +2kr)(δ +1)2 − (2krn− kr−2r2)(δ +1)+2r2n2 −4r2n+2r2

−
(
(k2 +2kr)

( rn
k+ r

)2
− (2krn− kr−2r2)

( rn
k+ r

)
+2r2n2 −4r2n+2r2

)
=
( rn

k+ r
−δ −1

)( k2rn
k+ r

− (k+2r)(kδ + k+ r)
)

>0,

where the inequality holds from the fact that

n >max
{(k+ r)(k+2r)(kδ + k+ r)

k2r
,
(k2 +2kr)δ 2 +(2k2 +3kr+2r2)δ + k2 +3kr

2r(k− r)

}
≥(k+ r)(k+2r)(kδ + k+ r)

k2r

>
(k+ r)(δ +1)

r
.

This implies that, for δ +1 ≤ s < rn
k+r , the function g(s) attains its maximum value at s = δ +1. Combining this

with (4), (5) and n>max
{

(k+r)(k+2r)(kδ+k+r)
k2r , (k

2+2kr)δ 2+(2k2+3kr+2r2)δ+k2+3kr
2r(k−r)

}
≥ (k2+2kr)δ 2+(2k2+3kr+2r2)δ+k2+3kr

2r(k−r) ,
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we conclude

q(G)≤q(G1)

<
g(δ +1)
r2(n−1)

=
(k2 +2kr)(δ +1)2 − (2krn− kr−2r2)(δ +1)+2r2n2 −4r2n+2r2

r2(n−1)

=
2(rn− kδ −2r)

r
− 2r(k− r)n− (k2 +2kr)δ 2 − (2k2 +3kr+2r2)δ − k2 −3kr

r2(n−1)

<
2(rn− kδ −2r)

r
. (6)

Note that Kδ ∨ (Kn−⌊ kδ

r ⌋−δ−1 ∪ (⌊ kδ

r ⌋+ 1)K1) contains Kn−⌊ kδ

r ⌋−1 as a proper subgraph. Together with

Lemma 2.4, ⌊ kδ

r ⌋ ≤
kδ

r and the assumption of the theorem, we possess

q(G)≥q
(

Kδ ∨
(

Kn−⌊ kδ

r ⌋−δ−1 ∪
(⌊kδ

r

⌋
+1

)
K1

))
>q(Kn−⌊ kδ

r ⌋−1)

=2
(

n−
⌊kδ

r

⌋
−2

)
≥2

(
n− kδ

r
−2

)
=

2(rn− kδ −2r)
r

,

which is to a contradiction to (6). This completes the proof of Theorem 1.2. 2

5. CONCLUDING REMARKS

In this paper, we provide two sufficient conditions to ensure that a connected graph G has a {C2i+1,T : 1 ≤
i < r

k−r ,T ∈ T k
r
}-factor in terms of its adjacency spectral radius and signless Laplacian spectral radius. It is

natural and interesting to propose some other spectral sufficient conditions to guarantee that a connected graph
G has a {C2i+1,T : 1 ≤ i < r

k−r ,T ∈ T k
r
}-factor. It is also natural and interesting to put forward some spectral

sufficient conditions to ensure that a connected graph G has some other substructure.
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