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Abstract. Let g ≥ 2 be an integer, and let Sg(n) denote the sum of the digits of a positive integer n in base g.
The goal of this work is to study exponential sums of the form ∑n≤x e

(
αSg (⌊nc⌋)+β⌊nc⌋

)
in order to prove

some statistical properties of integers n for which ⌊nc⌋ and Sg (⌊nc⌋) belong to given arithmetic progressions.
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1. INTRODUCTION

Throughout this paper, we use the notation e(x) = exp(2πix) for any real number x. For two complex-
valued functions f and h, we write f ≪ h if f = O(h), where the implied constants in the symbols O and
≪ are absolute. If these constants depend on specific parameters α,β , . . . (but no others), we denote this as
f = Oα,β ,...(h) or f ≪α,β ,... h. For a finite set A, we use #A to indicate the number of its elements. Given two
integers a and b, their greatest common divisor is denoted by (a,b). As usual, ⌊t⌋ and {t} represent the integer
and fractional parts of t, respectively. Finally, ∥t∥ denotes the distance from t to the nearest integer.

Let g ≥ 2 be an integer. We can represent every positive integer n in a unique way as

n = ∑
0≤k≤ν

nkgk, nk ∈ {0, ...,g−1} and nν ̸= 0. (1)

This representation is called the g-ary expansion of n with respect to base g, and the set {0, ...,g−1} is called
the set of digits. The sum-of-digits function is defined by

Sg(n) := ∑
j≥0

n j.

Gelfond [7] proved that the sequence (Sg(n))n is equidistributed in arithmetic progressions. In 1968, he showed
that there exists a constant λg,b > 0 such that the following holds:

#{n ≤ x : n ≡ ℓ (mod r), Sg(n)≡ a (mod b)}= x
br

+Og(x1−λg,b), (2)

where b ≥ 2 and r, ℓ,a be integers satisfying (b,g− 1) = 1. The sum of digits function has been extensively
discussed in the literature with respect to their asymptotic distributions (see for instance [2,3,7,8,17]). Gelfond
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[7] also raised the question of whether this property remains valid for certain subsequences of (Sg(n))n, a
question known as ”Gelfond problems”. Several results have been achieved in this regard. For example,
Gelfond [7] showed in the same paper that the sequence (Sg(n))n is equidistributed over the set of k-free
integers. Later, in 2010, Mauduit and Rivat [10] proved the equidistribution of the sequence (Sg(p))p≥2, where
p is a prime number. Also, in 2011, Drmota, Mauduit, and Rivat [6] were able to prove that the sequence
(Sg(P(n)))n, where P(n) is a polynomial, is equidistributed for large bases.

Another interesting class of sequences is of the form (Sg (⌊nc⌋))n, where (⌊nc⌋)n is known as the Piatetski-
Shapiro sequence for c > 1 and c /∈ N (for more details on this sequence, we refer the reader to [14]). The
sequences (Sg (⌊nc⌋))n were studied by Mauduit and Rivat, who proved their equidistribution for c ∈ (1,4/3)
in [9] and extended this result to c ∈ (1,7/5) in [11]. In 2010, Morgenbesser [12] extended these results to
all real numbers c > 0 that are not integers, enlarging the range of c, but when the base g is large. He then
gave a result concerning the uniform distribution modulo 1 for the sequence (αSg (⌊nc⌋))n when α is irrational,
always g is large. In particular, Morgenbesser [12] showed that if c > 0 is a real number that is not an integer,
and g is large, then there exists a constant σg,b,c > 0 satisfying:

#{n ≤ x : Sg(⌊nc⌋)≡ a (mod b)}= x
b
+Og,b,c

(
x1−σg,b,c

)
, (3)

where (a,b) ∈ N×N∗. To prove his result, Morgenbesser heavily relied on establishing this upper bound:

∑
n<x

e(αSg (⌊nc⌋))≪c,g (logx)x1−σc,g∥(g−1)α∥2
,

where α is a real number, and ∥ · ∥ denotes the distance to the nearest integer.
In this paper, we take a further step, we extend (3). Specifically, we aim to provide an asymptotic expansion

for the function

#{1 ⩽ n ⩽ x ; ⌊nc⌋ ≡ ℓ (mod r), Sg (⌊nc⌋)≡ a (mod b)} , (4)

where b ≥ 2 and r, ℓ,a be integers such that (b,g−1) = 1. Therefore, our initial focus revolves in establishing
an upper bound for the sum ∑n≤x e(αSg (⌊nc⌋)+β⌊nc⌋). Also, we study the distribution of k-free values of
⌊nc⌋ in congruences classes.

2. SOME TOOLS

In this section, we cite several results that will be used later in our proofs. To establish our first result,
we require an upper bound for sums of the form ∑1≤n≤x f (⌊nc⌋), where f is a g-multiplicative function. Such
sums were addressed in [9] and [11], where Mauduit and Rivat used to prove the equidistribution of Sg(⌊nc⌋)
in congruence classes. Their result is the following:

THEOREM 1. Let c∈ (1,7/5) and γ = 1/c. For any δ ∈ (0,(7−5c)/9), there exists a constant C1(γ,δ )> 0
such that for any q-multiplicative function f and any x ≥ 1, we have∣∣∣∣∣ ∑

1≤n≤x
f (⌊nc⌋)− ∑

1≤m≤xc
γmγ−1 f (m)

∣∣∣∣∣≤C1(γ,δ )x1−δ .

Furthermore, Spiegelhofer [16] made significant progress in this direction by establishing the bound 1 <
c ≤ 1.42 for the Thue–Morse sequence. The core technique involves approximating the nonlinear term ⌊nc⌋ by
a Beatty sequence ⌊nα +β⌋, effectively linearizing the problem. Then, Müllner and Spiegelhofer [13] using
the same linearization argument and a Bombieri–Vinogradov type theorem for the Thue–Morse sequence on
Beatty sequences, were able to extend this range to 1 < c < 3/2. In addition, further randomness and non-
randomness properties of (⌊nc⌋ mod m)n∈N have been established in [4].
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We also rely on the following result from [1, Theorem 2.2]

THEOREM 2. Let g ≥ 2 be an integer. For any real numbers α and β , we have the bound

∑
1≤n≤x

e(αSg(n)+βn)≪ xθg(α),

with

θg(α)≤ 1− 4∥(g−1)α∥2

g(g+
√

2−1)2 logg
. (5)

3. EXPONENTIAL SUM ESTIMATE

THEOREM 3. Let α and β be real numbers. For any real c ∈ (1,7/5), there exists a constant ϑ(α,c)> 0
such that

∑
n≤x

e(αSg (⌊nc⌋)+β⌊nc⌋)≪ x1−ϑ(α,c),

where

ϑ(α,c) = min((1−θg(α))c,δ ) ,

with δ ∈ (0,(7−5c)/9) and θg(α) as defined in (5).

Proof: Initially, recall that a function f is g-additive if, for any integer r ≥ 1, we have f (agr + b) = f (agr)+
f (b), for 1 ≤ a ≤ g− 1 and 0 ≤ b < gr. Moreover, we say that f is g-multiplicative if f (0) = 1 and, for any
r ≥ 1, we have f (agr +b) = f (agr) f (b).

Since, the sum-of-digits function Sq is g-additive, then we have

e(αSg(agr +b)+β (agr +b)) = e(αSg(agr)+αSg(b)+βagr +βb)

= e(αSg(agr)+βagr)e(αSg(b)+βb) .

Furthermore, e(αSg(0)) = 1. Hence, the function e(αSg(agr +b)+β (agr +b)) is g-multiplicative.
As e(αSg(agr +b)+β (agr +b)) is g-multiplicative, then by Theorem 1, we have

∑
1⩽n⩽x

e(αSg ⌊nc⌋+β ⌊nc⌋) = ∑
1⩽m⩽xc

γmγ−1e(αSg(m)+βm)+O(C1(γ,δ )x1−δ ). (6)

Moving on, we apply Abel’s summation formula to the last sum, then

∑
1⩽m⩽xc

mγ−1e(αSg(m)+βm) = xc(γ−1)
∑

1⩽m⩽xc
e(αSg(m)+βm)

− (γ −1)
∫ xc

1
∑

1⩽m⩽u
e(αSg(m)+βm)uγ−2du

= x1−c
∑

1⩽m⩽xc
e(αSg(m)+βm)

− (γ −1)
∫ xc

1
∑

1⩽m⩽u
e(αSg(m)+βm)uγ−2du.
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Or, by Theorem 2, we have the bound

∑
1⩽m⩽xc

e(αSg(m)+βm)≪ xcθg(α).

Moreover, ∫ xc

1
∑

1⩽m⩽u
e(αSg(m)+βm)uγ−2du ≪

∫ xc

1
uθg(α)+γ−2du

≪ xc(θg(α)+γ−1) = xcθg(α)+1−c = x1+c(θg(α)−1).

So, we deduce that

∑
1⩽m⩽xc

γmγ−1e(αSg(m)+βm)≪ x1−c+cθg(α) = x1−(1−θg(α))c. (7)

Finally, by inserting (7) in (6), we get

∑
1⩽n⩽x

e(αSg (⌊nc⌋)+β ⌊nc⌋)≪ x1−ϑ(α,c),

where ϑ(α,c) = min((1−θg(α))c,δ ).

4. DISTRIBUTION OF ⌊nc⌋ IN CONGRUENCE CLASSES

THEOREM 4. Let g,b ≥ 2 integers such that (b,g−1) = 1 and r, ℓ,a ∈ Z. For any real c ∈ (1,7/5), there
exists a constant ϑ > 0 depending on b and c, such that

#{n ≤ x : ⌊nc⌋ ≡ ℓ (mod r), Sg(⌊nc⌋)≡ a (mod b)}= x
rb

+O
(

x1−ϑ

)
.

Proof: We have by the orthogonality relation

∑
n≤x

⌊nc⌋≡ℓ (mod r)
Sg(⌊nc⌋)≡a (mod b)

1 =
1
rb

r−1

∑
i=0

b−1

∑
j=0

∑
n≤x

e
(

i
r

(
⌊nc⌋− ℓ

)
+

j
b

(
Sg(⌊nc⌋)−a

))

=
1
rb

r−1

∑
i=0

b−1

∑
j=0

e
(
−iℓ

r
− ja

b

)
∑
n≤x

e
(

jSg (⌊nc⌋)
b

+
i⌊nc⌋

r

)

=
x
rb

+
1
rb

r−1

∑
i=0

b−1

∑
j=0︸ ︷︷ ︸

i+ j ̸=0

e
(
−iℓ

r
− ja

b

)
∑
n≤x

e
(

jSg (⌊nc⌋)
b

+
i⌊nc⌋

r

)
. (8)

Next, applying Theorem 3 to the last sum in (8) with α = j/b and β = i/r, we get

∑
n⩽x

e
(

jSg (⌊nc⌋)
b

+
i⌊nc⌋

r

)
≪ x1−ϑ( j/b,c).

Hence,

1
rb

r−1

∑
i=0

b−1

∑
j=0︸ ︷︷ ︸

i+ j ̸=0

e
(
−iℓ

r
− ja

b

)
∑
n≤x

e
(

jSg (⌊nc⌋)
b

+
i⌊nc⌋

r

)
≪ x1−ϑ ,



5 On the sum of digits of Piatetski-Shapiro sequences 5

where ϑ = min
1≤ j≤b−1

ϑ( j/b,c) and the result follows.

THEOREM 5. Let g,b ≥ 2 integers such that (b,g−1) = 1. For any real c ∈ (1,7/5) and a ∈ Z, we define
the set B= {n ∈N : Sg(⌊nc⌋)≡ a (mod b)}. Then the sequence (β ⌊nc⌋)n∈B is uniformly distributed modulo 1
if and only if β ∈ R\Q.

Proof: If β ∈ Q, then the sequence (β ⌊nc⌋)n∈B takes only a finite number of values modulo 1. Conse-
quently, it is not uniformly distributed modulo 1. Conversely, if β ∈R\Q, then for every h ∈ Z\{0}, we have
hβ ∈ R\Z. By Weyl’s criterion from [5], we must show that

1
x ∑

n≤x
Sg(⌊nc⌋)≡a (mod b)

e(hβ ⌊nc⌋) = o(1),

for every integer h ̸= 0. By the orthogonality relation we have

∑
1≤n≤x

Sg(n)≡a (mod b)

e((hβ ⌊nc⌋) = 1
b

x

∑
n=1

e((hβ ⌊nc⌋)
b−1

∑
i=0

e
(

i
b

(
Sg(⌊nc⌋)−a

))

=
1
b

b−1

∑
i=0

e
(
− ia

b

) x

∑
n=1

e
(

i
b

Sg(⌊nc⌋)+hβ ⌊nc⌋
)
.

Applying Theorem 3 to the inner sum, we obtain the desired result.

5. DISTRIBUTION OF k- FREE VALUES OF ⌊nc⌋ IN CONGRUENCE CLASSES

Let k and n be integers with k ≥ 2. We say that n is k-free if there exists no prime p such that pk divides n
(i.e., n is not divisible by any k-th power of a prime). We denote by µk the characteristic function of the k-free
numbers. It is well known that the density of k-free integers is 1/ζ (k), and an elementary sieve shows

∑
n≤X

µk(n) =
X

ζ (k)
+O

(
X1/k

)
,

with ζ (.) is the Riemann zeta function.
The distribution of k-free numbers in sequences of the form ⌊nc⌋ has been extensively studied in the litera-

ture. For instance, Rieger [15] showed that for any fixed 1 < c < 3
2 the asymptotic formula

∑
n≤X

µ2(⌊nc⌋) = 6
π2 X +O

(
X

2c+1
4 +ε

)
holds for any ε > 0.

In this context, we prove the following result.

THEOREM 6. Let g,b ≥ 2 integers such that (b,g−1) = 1. For any real c ∈ (1,7/5) and a ∈ Z. Then, we
have the following asymptotic estimate:

#{n ≤ x : ⌊nc⌋ is k-free, Sg(⌊nc⌋)≡ a (mod b)}= x
bζ (k)

+O
(

x1−ϑ(1− c
k )
)
.

Proof: To simplify the writing, set the function

A(x) := ∑
n≤x

⌊nc⌋ is k-free
Sg(⌊nc⌋)≡a (mod b)

1.
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We have

A(x) = ∑
n⩽x

µk (⌊nc⌋)ν (⌊nc⌋) ,

where

µk (⌊nc⌋) =

{
1, if ⌊nc⌋ is k-free,
0, otherwise.

and ν (⌊nc⌋) =

{
1, if Sg (⌊nc⌋)≡ a (mod b),
0, otherwise.

.

Moreover, we utilize the identity µk (⌊nc⌋) = ∑dk|⌊nc⌋ µ(d), where µ(·) is the Möbius function. Therefore, we
have for x1 = xc/k, and x2 < x1 that we choose later

A(x) = ∑
n≤x

ν (⌊nc⌋) ∑
dk|⌊nc⌋

µ(d) =
x1

∑
d=1

µ(d) ∑
n≤x

dk |⌊nc⌋

ν (⌊nc⌋)

=
x2

∑
d=1

µ(d) ∑
n≤x

dk |⌊nc⌋

ν (⌊nc⌋)+
x1

∑
d=x2+1

µ(d) ∑
n≤x

dk |⌊nc⌋

ν (⌊nc⌋)

= ∑
1
+∑

2
. (9)

Given that (b,g−1) = 1, we apply Theorem 4 with ℓ= 0 and r = dk to derive

∑
n≤x

dk |⌊nc⌋

ν (⌊nc⌋) = x
dkb

+O(x1−ϑ ).

Therefore, we estimate ∑1 as follows

∑
1
=

x2

∑
d=1

µ(d)
[ x

dkb
+O(x1−ϑ )

]
=

x
b

x2

∑
d=1

µ(d)
dk +O

(
x1−ϑ

x2

∑
d=1

µ(d)

)

=
x
b

+∞

∑
d=1

µ(d)
dk +O

(
x1−ϑ x2

)
− x

b

+∞

∑
d=x2+1

µ(d)
dk

=
x

bζ (k)
+O

(
x1−ϑ x2

)
− x

b

+∞

∑
d=x2+1

µ(d)
dk .

The last term can be bounded as follows. Indeed, since the series and the integral are convergent, we get for
R −→ ∞ ∣∣∣∣∣ R

∑
d=x2+1

µ(d)
dk

∣∣∣∣∣≤ R

∑
d=x2+1

1
dk ≤

∫ R

x2

1
tk dt =

x1−k
2 −R1−k

1− k
.

Thus,

∑
1
=

x
bζ (k)

+O
(

x1−ϑ x2

)
+O

(
xx1−k

2

)
. (10)



7 On the sum of digits of Piatetski-Shapiro sequences 7

Moreover, applying Theorem 4 once again, we get

∣∣∣∣∣∑2

∣∣∣∣∣=
∣∣∣∣∣∣∣

x1

∑
d=x2+1

µ(d) ∑
n≤x

dk |⌊nc⌋

ν (⌊nc⌋)

∣∣∣∣∣∣∣≤
x1

∑
d=x2+1

x
dkb

≤ x
b

∫ x1

x2+1

1
tk dt

≪ xx1−k
2 . (11)

Now, by inserting equations (10) and (11) in (9), we obtain

A(x) =
x

bζ (k)
+O

(
x1−ϑ x2

)
+O

(
xx1−k

2

)
.

Finally, setting x2 = ⌊xc⌋ϑ/k, we obtain the result.
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