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1. INTRODUCTION

Let CM"(c) be a complete and simply connected complex space form which is complex analytically iso-
metric to

* a complex projective space CP"(c) if ¢ > 0,
* a complex Euclidean space C" if ¢ =0,
* a complex hyperbolic space CH"(c) if ¢ < 0,

where ¢ denotes the constant holomorphic sectional curvature. A complex space form CM"(c) is said to be
nonflat if ¢ # 0. On a real hypersurface M in CM"(c) there exists an almost contact metric structure which is
denoted by (¢,&,1,g), where g is the induced metric from the ambient space. A real hypersurface M in CM"(c)
is said to be Hopf when the structure vector field & is principal at every point or ruled if the holomorphic
distribution kern is integrable and its leaves are totally geodesic (see [5, Proposition 8.27]).
For a real hypersurface M in CM"(c), the Levi-form Levi defined on the holomorphic distribution kern of
M is given by (see [9])
Levi(X,Y) = (dn)(X,Y) @))

for any vector fields X,Y € kern. A real hypersurface is said to be Levi-flat if Levi = 0 identically on kern. By
(8), Levi-flatness condition Levi = 0 is equivalent to

8((9A+A9)X,Y) =0 2

for any vector fields X,Y € kern, namely kermn is integrable. The most known example of a Levi-flat real
hypersurface in nonflat complex space forms is a ruled one which is obtained from various points of view
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(see [11,/23,[30]). In what follows we shall list them from geometry of submanifolds and we refer the reader
to [1,12,22] for some results from complex analysis.

Kimura and Maeda in [15]] proved that a Levi-flat real hypersurface in CP" with 1n-parallel second fun-
damental form is ruled. Note that Lim and Sohn in [[17] considered the case of dimension three under the
same conditions. Moreover, by extending the 1n-parallelism to 1n-recurrence of the second fundamental form,
Hamada in [[12] generalized results in [15]. Levi-flatness and weakly Ricci 1n-parallelism conditions were in-
vestigated in [21]]. Suh in [23]] proved that a Levi-flat real hypersurface M in a nonflat complex space form is
ruled if M satisfies g((S¢ — ¢S)X,Y) = fg(X,Y) for certain non-vanishing function f on the holomorphic dis-
tribution kern. Levi-flat real hypersurfaces in nonflat complex space forms whose shape operators are weakly
¢-invariant or satisfies (92”5(1))2 = ( were also considered in [19] and [16]], respectively. The *x-Ricci tensor is
defined by Ric" := trace{Z — R(X,9Y)¢Z} for any vector fields X,Y,Z on a real hypersurface M in CM"(c).
It was proved in [13]] that a Levi-flat real hypersurface in nonflat complex space forms is ruled provided that
its *-Ricci tensor is symmetric and it is a constant multiple of the Riemannian metric g over the holomorphic
distribution ker 7. For the three-dimensional case, it was proved in [[11]] that if a Levi-flat real hypersurface in
nonflat complex planes with constant mean curvature is strongly 2-Hopf, then it is minimal and ruled. As seen
in the above results, Levi-flatness and some geometrical conditions imply ruled hypersurfaces. But, this is not
always true. Non-ruled Levi-flat real hypersurfaces in nonflat complex planes were given in [4]] with minimality
and was given in [[10,30] where the mean curvature is not necessarily a constant. Levi-flatness on a compact
real hypersurface in a complex projective space was studied in [3]].

In this paper, we continue to study Levi-flat real hypersurfaces in nonflat complex space forms. In view
of [[15]21]], we consider n-parallelism of the structure Lie operator and prove that a Levi-flat real hypersurface
in a nonflat complex space form is ruled if the structure Lie operator L is n-parallel with respect to the Levi-
Civita connection or the GTW connection. The conclusion holds if we replace the structure Lie operator by the
shape operator.

2. REAL HYPERSURFACE

Let M be a real hypersurface immersed in a complex space form CM"(c) and N be a unit normal vector
field of M. We denote by V the Levi-Civita connection of the metric g of CM"(c) and J the complex structure.
Let g and V be the induced metric from the ambient space and the Levi-Civita connection of the metric g,
respectively. Then the Gauss and Weingarten formulas are given respectively as the following:

VxY = VxY +g(AX,Y)N, VxN = —AX 3)
for any vector fields X, Y, where A denotes the shape operator of M in CM"(¢). For any vector field X, we put
JX =X +n(X)N, JN = —£&. 4)

We can define on M an almost contact metric structure (¢,&,1,g) satisfying
9’ =-ld+n®& nE) =1, & =0, (5)

g(eX,9Y) =¢(X,Y) —n(X)n(Y), n(X) = g(X,§) (6)

for any vector fields X, Y. Moreover, applying the parallelism of the complex structure (i.e., VJ = 0) of CM"(c)
and using (3)), (@) we have
(Vx9)Y = n(Y)AX —g(AX,Y)¢, )

Vx& = pAX ()

for any vector fields X,Y. Let R be the Riemannian curvature tensor of M. Because CM"(c) is of constant
holomorphic sectional curvature ¢, the Gauss and Codazzi equations of M in CM"(c) are given respectively as
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the following:
R(X.Y)Z =2 {s(V.2)X ~ g(X.Z)Y +8(9Y.2)0X —g(9X,Z)9Y o
—2g(0X,Y)0Z} + g(AY,Z)AX — g(AX ,Z)AY,
(VxA)Y = (VyA)X = {n(X)0¥ —n(¥)0X —25(0X.¥)E} (10)

for any vector fields X,Y.
We refer the reader to [5,20] for more basic knowledge on differential geometry of real hypersurfaces in
nonflat complex space forms.

3. LEVI-CIVITA CONNECTION

As pointed out in [[13, Theorem 4.3], a Levi-flat real hypersurface in a nonflat complex space form can not
be Hopf. Therefore, throughout this paper we consider a Levi-flat real hypersurface M in a nonflat complex
space form such that the structure vector field & of M is not an eigenvector field of the shape operator A of M
at each point.

We set B = |[AE —N(A&)E|| # 0 and hence write A = a& + BU, where U is a unit vector field defined by
U := (A& — a&)/B. Now we obtain a local orthonormal frame for the tangent space of M by using U, and the
frame is called a standard non-Hopf frame for dimension three (see [ p. 445]). The so-called structure Lie
operator L is defined by

§(LX.Y) = (Zg)(X.Y)

for any vector fields X,Y. Using (8) in the above equation, we obtain L = ¢A — A¢. The structure Lie operator
is important in geometry of real hypersurfaces. One of famous characterization theorems says that a real
hypersurface in a nonflat complex space form is an open subset of a type (A) hypersurface if and only if L =0
(see [|5, Theorem 8.37]). Some recent results regarding the structure Lie operators can be seen in [[26,[27]].
In what follows let us assume that the structure Lie operator L is n-parallel with respect to the Levi-Civita
connection, i.e.,
g((VxL)Y,Z) =0 (11)

for any X,Y,Z € kern. Inserting L = ¢A — A¢ in (LI)), we obtain
g((Vx9)AY + ¢ (VxA)Y — (VxA)9Y —A(Vx9)Y,Z) =0
for any X,Y,Z € kern. Simplifying the above equation by using (/) we obtain
8((VxA)Y,0Z) +¢((VxA)9Y,Z) = n(AY)g(AX,Z) + 1 (AZ)g(AX,Y) (12)
for any X,Y,Z € kern. The interchange of X,Y,Z cyclicly in (12)) twice we obtain
¢((VyA)Z,0X) +g((VyA)PZ.X) = 1(AZ)g(AY,X) + 1 (AX)g(AY, Z) (13)

and
S((VZA)X,0) +g((VZA)0X,Y) = N(AX)g(AZ.Y) +1(AY )g(AZ,X) (14)

for any X,Y,Z € kern. The addition of (I12) to (I3) gives an equation. By using the Codazzi equation (I0) and
the symmetry of VA, subtracting this from gives

8((VxA)Y,0Z) = n(AZ)g(AX,Y) (15)

for any X,Y,Z € kern.
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On the other hand, as we have assumed that the hypersurface M is Levi-flat, so we have (2)). The covariant
derivative of (2)) gives

8((Vx(9A+A9))Y,Z) +2((9A+A9)VxY,Z) +8((9A+A9)Y,VxZ) =0

for any X,Y,Z € kern. If we denote by (VxY )4 and (VxZ)4 the ker n-components of VxY and VxZ, respec-
tively, we write VxY = (VxY)g 4+ g(VxY,&)E and VxZ = (VxZ) 4 + g(VxZ,E)E. Putting these two into the
previous equation and using (2)) we obtain

8((Vx(9A+A9))Y,Z) —n(VxY)n((¢A+A9)Z) +1(VxZ)n((9A+A9)Y) =0
for any X,Y,Z € kern. This is reduced to

g((Vx9)AY +¢(VxA)Y + (VxA)9Y +-A(Vx9)Y,Z)
—Nn(VxY)n(A9Z) +n(VxZ)n(A¢Y) = 0.

Simplifying the above equation by using (7)) we obtain

N(AY)g(AX,Z) — g((VxA)Y,0Z) +g((VxA)9Y,Z) — n(AZ)g(AX,Y)
+g(Y,0AX)N(AQZ) — g(Z,9AX)N(A¢Y) =0

for any X,Y,Z € kern. Subtracting this from and eliminating g((VxA)@Y,Z) we obtain

(16)

21(AY)g(AX,Z) —28((VxA)Y,9Z) = g(Y,9AX)g(9AG, Z) — g(Z, 9AX)g(9AS,Y)
for any X,Y,Z € kern. Putting equation (13)) into the above equation and eliminating g((VxA)Y, ¢Z) we obtain

21(AY)g(AX, Z) — 21)(AZ)g(AX.Y)

— oY, 0AX)g($AE.Z) — g(Z. 0AX)g(9AE.Y) (4n

for any X,Y,Z € kern.
Putting AE = a& + BU into and using 8 # 0 we obtain

2g(Y,U)g(AX,Z) —2g(Z,U)g(AX,Y)
=g(Y, 9AX)g(9U,Z) — g(Z,9AX)g(9U,Y)

for any X,Y,Z € kern). In the above equation setting Z = U we obtain

In this equation setting Y = ¢U we obtain g(AX,¢U) = 0 for any Y € kern. This is equivalent to ApU =
0. Using this in we have g(Y,U)g(AX,U) — g(AX,Y) =0 for any X,Y € kern and this implies that
AX = Bg(X,U)E +g(AX,U)U for any X € kern. In Levi-flatness condition (2)), setting X = U and Y = ¢U,
and using AQU = 0 we obtain g(AU,U) = 0. This, together the previous equation, implies that AU = B&,
and hence we have AX = Bg(X,U)¢& for X € kern. This is equivalent to g(AX,Y) = 0 for any X,Y € kern.
In fact, it is necessary and sufficient condition for a real hypersurface to be ruled (see [5, Proposition 8.27]
or [18], Proposition 2]).

THEOREM 1. A Levi-flat real hypersurface in nonflat complex space forms is ruled if and only if the
structure Lie operator is -parallel.

The “if” part of Theorem [I] follows from the previous statement and the “only if” part of this theorem is
trivial.
As introduced in the first section, the conclusion still holds if we replace the structure Lie operator in
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Theorem [I| by the shape operator.

4. GTW CONNECTION

The Tanaka-Webster connection, introduced independently by Tanaka in [24] and Webster in [31]], is a
unique affine connection on a non-degenerate pseudo-Hermitian CR-manifold. Tanno in [25] introduced the
notion of the generalized Tanaka-Webster connection (in short, GTW connection) on a contact Riemannian
manifold and such a connection is the same with the Tanaka-Webster connection when the associated CR-
structure is integrable. On real hypersurfaces in Kihler manifolds there exists an almost contact metric structure
(¢,&,1m,8). Cho in [6,[7] introduced the generalized Tanaka-Webster connection on a real hypersurface in
Kihler manifolds, that is,

VY = VY +g(9AX,Y)E —n(Y)PAX — k1 (X)pY (19)

for any vector fields X,Y and certain non-zero constant k, where V and A are the Levi-Civita connection
and the shape operator of the hypersurface, respectively. The generalized Tanaka-Webster connection on real
hypersurfaces coincides with the Tanaka-Webster connection when ¢A +A¢ = 2k¢.

A tensor field T of type (1,1) on real hypersurfaces is called n-parallel with respect to the GTW connection

if g((%? )T)Y, Z) = 0 for any vector fields X,Y,Z € kern. Cho in [6] proved that the shape operator of a real

hypersurface in a nonflat complex space form is GTW-parallel (i.e., ?;‘ A= 0) if and only if the hypersurface is

locally congruent to one of real hypersurfaces of type (A) or (B). GTW-parallelism for some other operators on
real hypersurfaces in nonflat complex space forms were considered in [[14,28] for the structure Jacobi operator,
in [[8] for the Ricci operator and in [29] for the h-operator.

In this section, we consider GTW mn-parallel shape operator which is much weaker than GTW-parallelism
used in [6].

Now suppose that the shape operator A of a Levi-flat real hypersurface M in a nonflat complex space form
is n-parallel with respect to the GTW connection. From a direct calculation, we have

(VEA)Y =(VxA)Y + g(0AX, AY)E — 1 (AY)pAX
—kn(X)9AY — g(9AX,Y)AE +1(Y)APAX +kn(X)AY

for any vector fields X,Y. By this, the GTW n-parallelism of the shape operator A is equivalent to
8((VxA)Y,Z) = —n(AY)g(AX,¢Z) —1(AZ)g(AX,9Y) (20)
for any X,Y,Z € kern. The interchanging of X and Y in the above equation gives
8((VrA)X,Z) = —n(AX)g(AY,9Z) — n(AZ)g(AY,9X) 21

for any X,Y,Z € kern. Subtracting from gives an equation. Simplifying this equation by the Codazzi
equation (I0) gives

—TI(AY>8(AX7 ¢Z) +77(AX)8(AYa ¢Z> - n(AZ)(g(AX7¢Y) _g(AY7 (PX)) =0

for any X,Y,Z € kern. As we have assumed that the hypersurface M is Levi-flat, we have (2). Simplifying the
above equation by (2) we get

—N(AY)g(AX,9Z) +1(AX)g(AY,9Z) =0
for any X,Y,Z € kern. This reduces to

—1N(AY)AX +1n(AX)AY =0
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for any X,Y € kern. As seen in proof of Theorem |1} Levi-flatness implies that M is not Hopf. Setting A =
o.& + BU in the above equation and using  # 0 we obtain

—g(U,Y)AX + g(U,X)AY =0

for any X,Y € kern. Setting ¥ € {£,U}" in the above equation, we obtain AY = 0 for any Y € {&,U}*.
Setting X = U and Y = ¢U in (2)) and using AQU = 0, we obtain AU = B&. Now we obtain g(AX,Y) = 0 for
any X,Y € kern.

THEOREM 2. The shape operator of a Levi-flat real hypersurface M in nonflat complex space forms is
n-parallel with respect to the GTW connection if and only if M is ruled.

Now suppose that the structure Lie operator L of a Levi-flat real hypersurface M in a nonflat complex space
form is n-parallel with respect to the GTW connection, i.e.,

Sk
s(VY'L)Y.2)=0
for any X,Y,Z € kern. By a direct calculation, the above equation transforms into

g((Vx9)AY + ¢(VxA)Y — (VxA)9Y —A(Vx9)Y,Z)
—8(9AE,Y)g(9AX,Z) — g(9AX,Y)g(9AE,Z) =0

for any X,Y,Z € kern. Simplifying the above equation by using (7)) we obtain

8((VxA)Y,0Z) +¢((VxA)9Y,Z) = n(AY )g(AX, Z)

4(AX, V)1(AZ) — g(9AE,Y)g(9AX, Z) — g(9AX, ¥ )g(9AE.2) 22
for any X,Y,Z € kern. The interchange of X, ¥, Z cyclicly in (T2) twice we obtain
Q((VyA)Z,9X) + g((VyA)OZ,X) = n(AZ)g(AY, X) .
+g(AY,Z)n(AX) — g(9AS, Z)g(9AY, X) — g(9AY,Z)g(9AS,X)
and
S((V2A)X,07) + g((VA)PX,¥) = n(AX)g(AZY) oo

+8(AZ,X)N(AY) — g(9AE,X)g(9AZ,Y) — g(9AZ,X)g(9AL,Y)

for any X,Y,Z € kern. The addition of to gives an equation. By using the Codazzi equation and
the symmetry of VA, subtracting this from (24)) gives

28((VxA)Y,0Z) = 2n(AZ)g(AX,Y) — g(¢AG,Y)(g(¢AX, Z) — g(¢AZ, X))
_g(¢A€7Z)(g(¢AXaY) +g(¢AYaX)) —g((l)Aé,X)(g((],’)AY,Z) _g(¢AZ>Y))

for any X,Y,Z € kern. On the other hand, as we have assumed that the hypersurface M is Levi-flat, so we have
(2). Simplifying the above equation by using (2) gives

28((VxA)Y,9Z) = 2n(AZ)g(AX,Y) — g(¢AG, Z)(8(9AX,Y) + g(9AY, X)) (25)

forany X,Y,Z € kern. Is is remarked that equation holds in this situation and in fact this equation depends
only on Levi-flatness condition (2). Putting (23) into (I6) we obtain

41(AY)9(AX.Z) — 41 (AZ)g(AX.Y)
—|—g(¢A§,Z>(g<¢AY,X> —g(¢AX,Y)) —g((bAé,X)(g((bAZ,X) —g((PAX,Z)) =0
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for any X,Y,Z € kern. Simplifying the above equation by using the Levi-flatness condition (2)) we obtain
N(AY)g(AX,Z) —n(AZ)g(AX,Y) =0 (26)

for any X,Y,Z € kern. The remaining analysis is similar to that of Theorem [2] so here we omit it and obtain
the following theorem.

THEOREM 3. The structure Lie operator of a Levi-flat real hypersurface M in nonflat complex space forms
is n-parallel with respect to the GTW connection if and only if M is ruled.

The combination of Theorems|T} [2] [3] and results in [16}[17] give the following corollary.

COROLLARY 1. On a Levi-flat real hypersurface M in nonflat complex space forms, the following state-
ments are equivalent mutually.

* The real hypersurface M is ruled.
» The shape operator is N-parallel with respect to the Levi-Civita connection or the GTW connection.

» The structure Lie operator is N-parallel with respect to the Levi-Civita connection or the GTW connection.
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