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Abstract. In this paper, we consider the free boundary problem of a model of inviscid liquid-gas two-

phase flow with Coriolis force. In the three-dimensional cylindrical symmetry case, we construct two 

classes of global analytical solutions with the free boundary pulsating between two positive constants, 

and prove that the solutions are periodic when the adiabatic exponent 2 = . From the analytical 

solutions constructed in this paper, we find that the Coriolis force can prevent the free boundary from 

spreading out infinitely. 
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1. INTRODUCTION AND MAIN RESULTS 

In [6], Huang, Wang and Yuan considered the following model of inviscid liquid-gas two-phase flow: 

( ) 0,

( ) 0,

( ) ( ) ( , ) 0,

gt

lt

g l g g l lt

m mu

n nu

mu nu mu u nu u p m n

 + =


+ =


+ +  +  + =

 (1.1) 

where 
g gm  =  and l ln  =  are the masses of gas and liquid, respectively; 

g  and [0,1]l   represent 

the gas and liquid volume fractions satisfying 1g l + = ; 
g  and l  denote the densities of the gas and 

liquid, respectively; gu  and lu  represent the velocities of the gas and liquid, respectively; and ( , )p m n  is 

the pressure term of two phases, which was taken as 

                                                             ( , ) ( 1)( )p m n m n = − +                                                        (1.2) 

in [6], where 1   is the adiabatic index. For simplicity, the authors in [6] assumed that g lu u u= =  and 

neglected the momentum of the gas phase in the mixture momentum equation, then, (1.1) was reduced to 
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The liquid-gas two-phase flows are very important in the industry applications because they can be 

used to model boilers, condensers, pipelines for oil and natural gas, etc. We may refer to [1,11] for more 

physical background of the liquid-gas two-phase flows. For the system (1.3), the nonlinear stability and 

existence of vortex sheet solutions were obtained in [6] and some instant results were given in [12]. Dong 

and Yuen [4] constructed some special self-similar solutions for the system (1.3) in some symmetric cases. 

Recently, Dong [3] investigated the free boundary value problem for the system (1.3) with radial symmetry, 

two classes of global analytical solutions were constructed by using a self-similar ansatz and the free 
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boundary was shown to spread outward at least linearly in time, see [5] for the three-dimensional cylindrical 

symmetry case. 

On one hand, from [3,5] we can see that the free boundary for (1.3) expands out infinitely as time 

grows up, on the other hand, it was shown that the Coriolis force can suppress the blowup of smooth 

solutions for the shallow water system, see [2,9]. So a natural interesting problem arises: Can the Coriolis 

force prevent the free boundary from spreading out infinitely for the system (1.3)? In this paper, we will 

investigate this problem by constructing some analytical solutions in the case of three-dimensional 

cylindrical symmetry. To this end, we add the Coriolis force to the third equation of (1.3), then we have 
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where 0k   is a constant and (0,0,1)f = . As in [10], we can use the cylindrical symmetric transformation 
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to reformulate the system (1.4) as 
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where the scalar functions u , v  and w  represent the radial component, the angular component, and the 

axial component of the velocity u . We consider the system (1.6) in the cylinder  

  3( ) | 0 ( )C Rt r r a t=     

 and supplement (1.6) with the following initial and boundary data: 

                            0 0 0 0 0 0( , , , , ) | ( ( ), ( ), ( ), ( ), ( ))tm n u v w m r n r u r v r w r= = ,  00 r a  ,                           (1.7) 

                                                               ( ( ), ) ( ( ), ) 0m a t t n a t t= = ,                                                      (1.8) 

where ( )a t  is the free boundary separating the fluid from vacuum, 0 0a   is the initial location of the free 

boundary. The free boundary problem (1.6)-(1.8) describes the dynamic evolution of a rotational two-phase 

flow in a cylinder surrounded by vacuum. 

Our main results are stated as follows. 

Theorem 1.1 For the problem (1.6)-(1.8), there exists a class of global analytical solutions 
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where K ,   are two arbitrary positive constants, 0 0b   and 0c  satisfy 0 0( )v r b r=  and 0 0( )w r c r= , 

respectively, and ( )a t  satisfies the following ordinary differential equation: 
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with 0a  and 1a  being the initial location and slope of the free boundary. Moreover, there exist two positive 

constants 1M , 2M  such that 

                                                                    1 2( )M a t M  .                                                           (1.13) 

Theorem 1.2 For the problem (1.6)-(1.8), there exists a class of global analytical solutions 
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where 0   and 1   are two arbitrary constants, 0 0b   and 0c  satisfy 0 0( )v r b r=  and 0 0( )w r c r= , 

respectively, and ( )a t  satisfies (1.12) and (1.13). 

Theorem 1.3 When 2 = , if 0b k −  or 0 0b＞ , then the solutions constructed in Theorems 1.1 and 1.2 are 

non-trivially periodic; if 0 0k b− ＜ ＜ , then the solutions constructed in Theorems 1.1 and 1.2 are non-

trivially periodic except for the case with 4
0 2

0 0

a
b b k
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+
 and 1 0a = , if 4

0 2

0 0

a
b b k
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+
 and 1 0a = , then 

the solutions constructed in Theorems 1.1 and 1.2 are stable. 

Remark 1.1 Our results indicates that the Coriolis force can prevent the free boundary from spreading out 

infinitely. 

Remark 1.2 System (1.4) models the large-scale two-phase flow motions in a thin layer of fluids under the 

influence of the Coriolis rotational force. In recent years, Coriolis flowmeters were used to measure two-

phase flows, see [13] for instance. Consequently, studying the solutions to two-phase models with Coriolis 

force is very important. Unfortunately, there are few results in this regard. To our knowledge, the asymptotic 

limits of dissipative turbulent solutions to a compressible two-fluid model with Coriolis force were 

investigated in [7], where the Coriolis force was taken as ( )k m n f u+  . But in this paper, we omit the term 

km f u  because the liquid phase is much heavier than the gas phase. 
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2. PROOF OF THE RESULTS 

Proof of Theorem 1.1. By Lemma 3 of [14], we know that the equations (1.6) 1  and (1.6) 2  have 

solutions with the form 
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We plug (1.11) and (2.1) into (1.5) 3  and use (1.2) to have 
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Let 1 2( ) ( ) ( )f s Kf s Kf s= =  and ( )a t  satisfy (1.12), then by (2.6), we know that 

                                                 ( 1)(1 ) [ ( ) ] ( ) 0K f s f s s  − + + = ,                                            (2.7) 

where K ,   are two arbitrary positive constants. In view of (1.8), one has (1) 0f = , which together with 

(2.7) implies that 
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So we obtain the solutions (1.9)-(1.11). By using the fixed-point theorem, we can prove that the ordinary 

differential equation (1.12) has a local-in-time 
2C  solution, here we omit the details. 

We multiply (1.12) by '( )a t  and integrate it on [0, ]t  to have 
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With the aid of (2.9), we obtain 
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so (1.13) holds. By using the standard continuity argument, we know that the analytical solutions (1.9)-(1.11) 

exist globally-in-time. 

Proof of Theorem 1.2. In the proof of Theorem 1.1, if we take 
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Proof of Theorem 1.3. We only need to prove the periodic property of ( )a t . When 2 = , (1.12) 
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We define the kinetic energy and the potential energy as 
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for ( ) (0, )a t  + . Using the classical energy method for conservative systems (in section 4.3 of [8]), the 
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2
( )

( ) 2

G

a a t a

dG t

G tk
a b

k
a t

a t




−  

+
 

+ + 
  −

  

               0 2
( )

4

20 0

3

1
2 sup

2 2
2

( )
( ) 2

a a t a

G
k

a b
k
a t

a t




  +

=
 

+ + 
  −

2

4

20 0
2

2

( )

2
2 ( )

( ) 4

a

a

da t

k
a b

k
a t

a t









−

+
+

  
+ +  

  − +
 
 
 

  

                      1 2
( ) 4

20 0

3

1
2 sup

2 2
2

( )
( ) 2

a a t a

G
k

a b
k
a t

a t




−  

+
 

+ + 
  −

 

                     + .                                                                                                                                       (2.24) 



 Jianwei DONG, Yuze LI 8 

Obviously, if 4
0 2

0 0

a
b b k

−
=

+
 and 1 0a = , then the solution to (2.13) is stable. The proof of Theorem 1.3 is 

finished. 
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