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Abstract. We give two new g-congruences by using the method of “creative microscoping” and Gasper’s
Karlsson—Minton type summation. In particular, we present a g-analogue of a congruence of Barman and
Saikia.
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1. INTRODUCTION

Rodriguez-Villegas [12] studied hypergeometric families of Calabi—Yau manifolds, and found a number of
possible supercongruences. For instance, he observed that, for any prime p > 2,

)
L

where (a)o=1and (a), =a(a+1)---(a+n—1) (n > 1) is the rising factorial. Mortenson [11] first confirmed
the congruence (). Later, the first author and Zeng [4] obtained a g-analogue of (T

bl O]

=

(=1)P=D2 (mod p?), (1)

N @R ok 12, (P14 2 i
Z k= (1) q (mod [p]°) for any odd prime p.
=0 (4%9%);

Here and throughout the paper, (a;¢)o = 1 and (a;q), = (1 —a)(1 —aq)--- (1 —aq"") (n > 1) is the g-shifted
factorial, and [n] = 1 +q+---+¢""! is the g-integer. For convenience, we will also adopt the condensed
notation (ay,az,...,am:q)n = (a15q)n(a2:q)n - (am; q)n-

In 2020, Barman and Saikia [[I]] gave a generalization of (T)) as follows: for d > 1 and any prime p satisfying
p=1 (mod d*>+d),

(p=1y/(a+1) (L yd+1 1 1 i
(T)dk' = (-1 sz(%)drp(diﬂ)dJr (mod p~), 2
k=0 4k

where I',(x) denotes the p-adic Gamma function (see [8]]).
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Let ®,(g) be the n-th cyclotomic polynomial in g, which can be written as

Pu(q)= [T (a2,

1<k<n
ged(k,n)=1

where { is an n-th primitive root of unity. The first aim of this note is to give the following g-analogue of
Barman and Saikia’s congruence (2)).

THEOREM 1. Let d and n be positive integers withn =1 (mod d? +d). Then, modulo ®,(q)?,

(n=1)/(d+1) (qd;qd2+d)z+1q(d2+d)k

(qd—H ;qu-&-d)z(qdz—i-d;qdz-&-d)

k=0 k
(n=1)(n+1+d—d?)
_ (= D/ (gl gy g 2D 3
(qd—H ;qd2+d)fln—1)/(d2+d)

For n prime, letting ¢ — 1 in Theorem [I] we arrive at the following congruence: for d > 1 and any prime
p=1 (mod d’>+d),

(p-1)/(@+1) (1 yd+1 (_y(p-)/@+1)(2=1y,
e CUE L (o ) o)
=0 (Z)K! (@p-1)/+a)

d+1/° = (—l)d“Fp(%)de(dLH)d“ (mod PZ)- (5)

Hence, the congruence (4) is equivalent to (2).

We shall also establish the following congruence similar to (2)).

THEOREM 2. Let d > 1 and let p be a prime with p =1 (mod d? +d). Then

(p=1)/(d+1) (1o )d+1 (—1)d+2

Tk _
k=0 1)k! 2(d*+d)

Fp(%)drp(diﬂ)dH (mod Pz)- (6)

Since (1) = —1 and I'p(1)? = (=1)?*1/2 for d = 1, the congruence (6) reduces to

Pl (12 (—1)P+D/2
2k 2
k;) = 1 (mod p°),

of which a generalization modulo p? for p > 3 has already been given by Sun [13, Theorem 1.2, (1.8) and
(1.10)].

It is easy to see that, for any prime p > 2,

(”il)/z(—%)g_zp+3 p+1 1\’
kiZ 4t \(p+1)/2

0 (mod p?). (N

k=0

The last aim of this note is to give the following generalization of (7).
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THEOREM 3. Let d and n be positive integers withn =2d +1 (mod d*> +d). Then

(n+1)/(d+1) (g4 nguqd+1quﬂ+dy 2
kgb (qu,qd”d)i(qdz*d;qﬂﬁ)k =0 (mod ®,(q)°). )

In particular, letting » be a prime and taking ¢ — 1 in Theorem [3| we are led to the conclusion.

COROLLARY 1. Let d > 1 and let p be a prime with p =2d+1 (mod d*>+d). Then

(p1)/(d+1) (L yd+1
d*zk =0 (mod p?)
k=0 (% k!

Like the proof of Theorem [2] we can also deduce the following congruence from Theorem [3]

COROLLARY 2. Let d > 1 and let p be a prime with p=2d+1 (mod d*+d). Then

(p+1)/(d+1) p k(— )d—H
d% =0 (mod p?).
- IV
k=0 (@)

2. PROOF OF THEOREM(I]

We will make use of Gasper’s Karlsson—Minton type summation (see [2} (1.9.9)]; and see [3} (5.13)] for a

generalization): for all non-negative integers nyp,...,n,,
N —N M « . L it n nm
Z b1q™, ... bug ,q)qu — (—1)V (g:q)nbY' --- bl q(zl)+...+( 7 )’ )
k=0 %bbvbm’Q)k (bl’q)nl (bm’q)nm

where N = nj + - - - + n,,. For some recent congruences and g-congruences related to (9)), see [5.[7,9].

We first build the following generalization of Theorem (1| with an extra parameter a by employing the
“creative microscoping” method devised in [6].

THEOREM 4. Let d,n > 1 be integers withn =1 (mod d* +d). Let a be an indeterminate. Then, modulo
(1—ag")(a—q"),

—1)/(d+1
(n—1)/(d+1) (aq?,a?2¢",. .. aq; qd ),
= (adflqd+1’ad 3qd+1 ) azqd“ qd+1 qd2+d)k
— _ _ 2
y (a dqd’az dqd a lqd qd +d)kq(d +d)k
(alqud+1,a3qud+l’“"a 2gd+1, g +d) (g +d; gdP+d),
_ 2 2
_ (_1)(n 1)/(d+1)(qd +d;qd +d)(n—1)/(d+1)
- _ _ 2
(ad Lgd+1 qd=3gd+1 | q2qd+1 gd+1: gd +d)(n71)/(d2+d)
(n=1)(n+1+d—d?)
q 2(d+1) (10)
X
(al=dgd+l g3—dgd+l g=24d+1; qd2+d)(nfl)/(d2+d)
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if d is odd, and

(n=1)/(d+1) d . d d-2.d 2.d d., d*+d
(a®q®,a®q%,...,a°q" ,q";q" ")
_ _ 2
= (ad=1gd+1 qd=3gd+1  qgd+1;gd*+d),
—d,d 2-d,d =2 d. d*+d\ ,(d*+d)k
(a~q?,a®q?,...,a2q%q* T)q\ "+
_ _ _ a2 2. 2
(a'~dgd+1 @d—dgdtl g~ lgd+l; gd*+d) (g+d; gd*+d),

_ 2 2
(_1)(n 1)/(d+1)(qd +d;qd +d)(n—1)/(d+1)
(adflqd“,ad*qd“, ) ..,aqu;qdz*d)

(n—1)/(d*+d)

(n=1)(n+1+d—d?)
q 2(d+1)

X
—d d+ Bz

(n—1)/(d>+d)

if d is even.

(1)

Proof. 1t is obvious that gcd(d,n) = 1, and therefore none of the numbers d,2d, ... (n— 1)d are divisible
by n. This indicates that the denominators on the left-hand side of do not have the factor 1 —aq" nor

1—a'q". Thus, fora = ¢ " or a = ¢", the left-hand side of (T0) may be written as

(n—1)/(d+1) ~(n=0)d_g=(n=Dd+2n  gon+d, d2+d)k

(¢ .q 4 "y
(q—(d—l)n+d+1 , q—(d—3)n+d+1 so. . gt gdtl qd2+d)

k=0 k

(n+1)d ,(n+1)d—2n n+d. d2+d) (d®+d)k
9. ’

(q »q - q q kq
(q(d—l)n+d+l 7 q(d—3)n+d+l e 7qzn+d+1 ;qd2+d)k(qd2+d;qd2+d)

X

k

(12)

Letting g — ¢ t4, N=(n—1)/(d + 1), m = d, b; = g @ ntdH 1+ Q=2 and n; = (n— 1) /(d> +d)

(1 < j<d)in (), we conclude that is equal to

— 2 2
(_1)(}1 1)/(d+l)(qd +d;qd +d)(n71)/(d+l)
(q—(d—l)n+d+1 7q—(d—3)n+d+l Ve ’q—2n+d+l ’ qd—H ;qd2+d)

(n—1)/(d?+d)
q(n71)+d(d2+d)(("*U/z(dzﬂl))

X )
(q(d—l)n+d+l , q(d—3)n+d+l .. gt ;qd2+d)(nfl)/(d2+d)

which is just the a = ¢~ " or a = ¢" case of the right-hand side (I0). This proves the g-congruence (10).

Similarly, for a = ¢™" or a = ¢", the left-hand side of may be expressed as

—1)/(d+1 —(n— —(n— _ 2
(n—1)/(d+1) (g (n l)d’q (n 1)d+2n7“"q ntd gd. gd>+d),
= (q, dfl)n+d+17q7(d73)n+d+l’ o ,q_”+d+1;qd2+d)k
_ 2 2
y (q(n-‘rl)d’q(n-‘rl)d 2n7 . 7quH-d;qd +d)kq(d +d)k

(q(dfl)n+d+l7q(d73)n+d+l Ve ,q”+d+1;qd2+d)k(qd2+d;qd2+d)k

(13)

Letting g+ ¢* ™ N=(n—1)/(d+1),m=d, bj=q W1+ Q=2 and ;= (n—1)/(d*> +d) (1 < j < d)
in (9), we deduce that is equal to the @ = ¢~ " or a = ¢" case of the right-hand side (II]). This establishes

(T1).

O]

Proof of Theorem|[l] Note that ®,(q) is a factor of 1 —¢” if and only if m is divisible by n. Hence, when
a = 1 the denominators of (I0) are all coprime with ®,(g). Meanwhile, when a = 1 the polynomial (1 —
aq")(a—q") = (1 —¢")? incorporates the factor ®,(q)2. The proof of (3) then follows immediately from the

a =1 case of (I0) and (TT).

O]
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3. PROOF OF THEOREM 2]

Let n > 1 be an integer with n =1 (mod d” +d). Performing the substitution g — ¢!

dual form: modulo ®,(q)?,

in (), we get its

(1=n)(nd+d?)
(n—1)/(d+1) (qd;qd2+d)i+l B (_1)(n71)/(d+1)(qd2+d;qd2+d)(nil)/(tHl)qiz(dH)

(g1 qP ) g+ q P+ )

(qd+1;qd2+d)d (14)

g (n=1)/(d>+d)

k=0
Subtracting (3) from (14)) and dividing both sides by 1 — ¢, we are led to

(n=1)/(d+1) (qd;qdz—&—d);(l-&-l (1— q(d2+d)k)

k;() (gt 1;qPHd)d (g +d; g+ ) (1 — q)

(1=n)(nd+d?) 21

—1)(n=D)/(d+1) (gd*+d, gd*+dy T (1 —g™2
E( ) (¢ 4" ") 1))@+ (1-g7) (mod ®,(¢)?).

(¢! ;qd2+d)t(in_1)/(dz+d)(1 —q)

Letting n = p be a prime and taking the limit as ¢ — 1 in the above g-supercongruence, we obtain the following
result: for any positive integer d and prime p = 1 (mod d? +d),

d+1
d>+d)

—1)(ptd)/(d+1) (p=1y)
( d) (51 (mod p?).
p—l)/(d2+d)(

The proof then follows from the congruence (3)).

4. PROOF OF THEOREM 3]

We will utilize another Karlsson—Minton type summation due to Gasper (see [2, (1.9.11)]): for all non-

negative integers ny,...,n;,,

(g big",. . g™
(q 014, ,Omq ,Q)qu:()’ (15)

k=0 (q,bl,---,meQ)k
where N > ny +--- +ny,.
We first establish the following parametric generalization of Theorem [3]

THEOREM 5. Let d,n > 1 be integers with n =2d+1 (mod d*> +d). Let a be an indeterminate. Then,
modulo (1 —aq")(a—q"),

n+1)/(d+1 —d ,d-2,—d —d. d*+d
(n+1)/(d+1) a ),

d
(a‘q g ¢,...,aqa %q
_ — N
(ad—1gd 1 qd=3gd+1 | q2qdtl gd+lqd+d),

k=0

_ _ _ _ _ _ 2
(a~ g~ a g, ... a g T+ ) g

_ _ _ o 2. 2
(@' dgdt! g3 —dgdtl | q=2qd+1; gl +d) (g +d; gd*+d),

d*+d)k

0 (16)
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if d is odd, and

(n+1)/(d+1) d —d 25— 2 d ~d. d2+d)

q ....,aq

(a k
~ (ad 1 d+1 ad 3qd+1 o aqd“ d2+d)
(

k
(> +d)k

>~

_ 2
a dqd a” qdqd+d)q

X
2 g, 2
(Cll dqd+l’a3 dqurl,...,d qurl’qd +d)k(qd +d’qd +d)

Il
o

(17)
k

if d is even.
Proof. 1t is easy to see that gcd(d,n) = 1 and so none of the numbers d,2d,...(n— 1)d are multiples of

n. This implies that the denominators of the left-hand sides of (T6) have no factors 1 —ag" and 1 —a~!g".
Therefore, for a = ¢~" or a = ¢", the left-hand side of (16)) can be expressed as

(n+1)/(d+1) (q—(n+l)d’q—(n+l)d+2n’”‘ q n+d’qd2+d)
= (qf(dfl)n+d+1,qf(d73)n+d+l . q72n+d+1 ’ qd+l;qd2+d)k
(n—1)d ,(n—1)d—2n n—d. d*+dy (d*+d)k
" (g g o d" g T g . (18)

(q(dfl)n+d+l ’ q(d73)n+d+l’ L 7q2n+d+l;qd2+d)k(qd2+d;qd2+d)k

Letting g — ¢* " N=(n+1)/(d+1),m=d, bj=q @ n+d 14 QI=2n and p; = (n—2d — 1) /(d* +d)
(1 < j<d)in (I3), we conclude that (I8)) is equal to 0, which is just the a = g™" or a = ¢" case of the right-
hand side of (16)). Namely, the congruence (16)) holds. Exactly in the same way, we can prove the g-congruence
(17). O

Proof of Theorem[3] When a = 1, the polynomial (1 —aq")(a — ¢") contains the factor ®,(q)?, which is
coprime with the denominators of the left-hand sides of (16)) and (I7). Hence, the congruence (8) immediately
follows from the a = 1 case of and (17). O
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