
THE PUBLISHING HOUSE
OF THE ROMANIAN ACADEMY

PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A
Volume xx, Number yy/2025, pp. xx–xx

DOI:

PURE BRANCHING AND TOTAL MASS PROCESSES

Ana-Maria BOEANGIU, Adela POPESCU

Institute of Mathematics Simion Stoilow of the Romanian Academy, 21 Calea Grivitei Street, 010702 Bucharest, Romania
Ana-Maria BOEANGIU, E-mail: ana23mariamaxim@yahoo.com

Corresponding author: Adela POPESCU, E-mail: adepopescu@yahoo.com

Abstract. This paper demonstrates that the total mass process of a branching Markov process with a spatially
constant branching mechanism behaves identically to that of its corresponding pure branching process: either
a continuous time Galton-Watson process or a continuous-state branching (CB) process. The discrete time
context is also treated. The study analyses extinction in discrete-time subcritical and supercritical regimes,
derives evolution equations for non-local pure branching processes, and examines the one-dimensional CB-
process. Using potential theory and stochastic analysis, the research advances branching process theory and
population dynamics.
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1. INTRODUCTION

Branching processes describe populations where individuals reproduce and die independently, playing a
key role in probability, biology, and physics [1, 17]. They are used to model phenomena such as population
dynamics and particle systems, with implications for genetics, epidemiology, and queueing theory. Central
to these studies is the total mass process, which reflects the population size over time and highlights growth,
extinction, and stability features. This work examines the total mass processes in branching Markov processes,
emphasizing non-local branching and superprocesses under spatially constant branching.

Our first result shows that, when the branching mechanism is spatially constant, the total mass process of
a branching Markov process matches that of a pure branching process (Proposition 4). In discrete time, this
is a Galton-Watson process; in continuous time it is either a one-dimensional continuous-state branching (CB)
process [12, 20], or a Galton-Watson process in continuous time (see for instance another approach in [21]).

We also study branching Markov chains in discrete time, where the total mass process is a Galton-Watson
process defined by the initial distribution and offspring probabilities (Proposition 5). Here, extinction occurs
almost surely when the expected number of offspring is at most one (Corollary 1), while supercritical cases
yield a positive survival probability (Corollary 2) [1].

For non-local pure branching on finite configurations, we derive evolution equations and identify conditions
preserving the branching structure (Proposition 1) [4, 7]. This approach also applies to the trivial Markov
process, accentuating pure branching behavior.
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Lastly, the one-dimensional CB-process, combining linear growth, quadratic competition, and jumps, is
analyzed in Section 3. Its Markovian evolution bridges discrete and continuous frameworks, resonating with
superprocess theory [14] (see also [2]).

The paper is organized as follows: Section 1 covers mathematical preliminaries. Section 2 details the
total mass process in both discrete and continuous frameworks. Section 3 presents non-local pure branching
processes and the CB-process with illustrative examples. These results deepen the theoretical insights into
branching processes and their mass dynamics.

2. NON-LOCAL PURE BRANCHING PROCESSES ON FINITE CONFIGURATIONS

Based on [11], we consider finite configurations. The space Ê consists of all finite configurations of a Lusin
space E, namely the union Ê =

⋃
k≥0 E(k) where for k ≥ 1, E(k) denotes the unordered k-tuples (i.e. the quotient

of Ek by the permutation group) and E(0) = {0} is the empty configuration (see, e.g., [10, 16]).
A branching mechanism on Ê is specified by a sequence (bk,Bk)k≥0 where (bk)k≥0 is a sequence of bounded

positive Borel functions satisfying ∑k≥0 bk = 1 and Bk is a Markov kernel from E(k) to E with B0 = δ0; one also
sets m1 = ∥∑k≥1 k bk∥∞ (with 1 < m1 < ∞) and fixes a positive constant a with 0 < a ≤ m1/(m1 −1).

For any ϕ ∈ pB(E) with 0 ≤ ϕ ≤ 1, the integral evolution equation

ht = e−atTtϕ +a
∫ t

0
e−a(t−s)Tt−s ∑

k≥0
bk Bk(h

(k)
s )ds, t ≥ 0, (1)

has a unique solution t 7→Htϕ (jointly measurable in (t,x) and bounded between 0 and 1); here h(k)(x1, . . . ,xk)=
h(x1) · · ·h(xk) (with the convention h(0)(0) = 1). Equation (1) is equivalent to its differential form

d
dt

ht = (L−a)ht +a ∑
k≥0

bk Bk(h
(k)
t ), t ≥ 0, h0 = ϕ, (2)

where L is the generator of the spatial motion (see Remark 4.2(ii) in [7]). The nonlinear semigroup (Ht)t≥0
induces a branching semigroup of kernels (Ĥt)t≥0 on Ê via Ĥt ϕ̂ = Ĥtϕ; under additional assumptions (Theorem
4.1 in [7]), one obtains a branching right Markov process X̂ on Ê whose transitions depend on the spatial motion
X , the mechanism (bk,Bk)k≥0, and the constant a.

In the case where the spatial motion is trivial (i.e. X0
t = x for all t ≥ 0), the process X̂0 is a non-local pure

branching process and the evolution equation simplifies to

ho
t = e−at

ϕ +a
∫ t

0
e−a(t−s)

∑
k≥0

bk Bk((ho
s )

(k))ds, t ≥ 0, (3)

or equivalently, in differential form,

d
dt

ho
t =−aho

t +a ∑
k≥0

bk Bk((ho
t )

(k)), t ≥ 0, ho
0 = ϕ. (4)

The solution Ho
t ϕ defines the transition function of X̂0.

We now state an important result regarding absorbing sets.

PROPOSITION 1. Let M ∈ B(E). If bk(x)Bk,x(M̂ ∩E(k)) = 0 for all k ≥ 1 and x ∈ E \M, so that the
measure induced by bkBk at x /∈ M is supported outside M̂, then Ê \ M̂ is a finely closed absorbing subset of
Ê with respect to X̂0. Moreover, the restriction of X̂0 to M̂ remains a pure branching process, induced by the
trivial process on M and the restrictions of Bk to M.

Proof. One applies Theorem 3.2(iii) from [4] with A = E \M, noting that A is absorbing for the trivial
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process X0.

For the case of classical kernels (i.e. when BkF(x) = F(x, . . . ,x)), the evolution equation reduces to

ht = e−atTtϕ +a
∫ t

0
e−a(t−s)Tt−s

(
∑
k≥1

bk hk
s

)
ds, t ≥ 0,

and under this formulation, condition (4.3) holds for every M ∈ B(E), so that Ê \ M̂ is absorbing for any such
X̂0 (see [5]). In addition, for the pure branching process X̂0 = (X̂0

t , P̂o
µ) one may define for ϕ ∈ pB(E), ϕ ≤ 1,

ht(x) = Êo
δx

ϕ̂(X̂0
t ), x ∈ E, t ≥ 0,

so that ht solves the differential equation

d
dt

ht =−aht +a ∑
k≥0

bk Bk(h
(k)
t ), t ≥ 0, h0 = ϕ,

which coincides with (4) when L = 0. Similar equations appear in [18, 19] for locally finite configurations.
As an example, when E = {a} (a singleton), Ê is identified with N and M(E) with R+; in this setting

multiplicative functions on N have the form ŝ(k) = sk for s ∈ [0,1] while on R+ the exponential functions
es(x) = e−xs are natural. Fix a > 0.

The Galton-Watson process in continuous time on N

For s ∈ [0,1], the differential equation h′ = −ah+ a∑k≥0 bkhk with h(0) = s has a unique solution ht(s)
(alternatively written in integral form as

ht = e−at
(

s+a
∫ t

0
ear

∑
k≥0

bkhk
r dr
)
, t ≥ 0), (5)

from which one obtains a unique Markovian branching kernel ĥt on N satisfying ĥt(ŝ) = ĥt(s) and a branching
Markov process X̂ = (X̂t , P̂k) on N.

The extended weak generator

Following [11] (see also [6], page 4779), define the Markov kernel B̂ on N by setting B̂u(0) = u(0) and for
k ≥ 1, B̂u(k) = ∑ j∈N b ju( j+ k−1) for bounded u. Then we have:

PROPOSITION 2. If u = ŝ for s ∈ (0,1], then u ∈ D(L ), L u(0) = 0, and for k ≥ 1

L u(k) = ak
[
B̂u(k)−u(k)

]
= ak

∫
N
[u( j+ k−1)−u(k)]b(d j).

Indeed, for k ≥ 1 L u(k) = limt→0
ht(s)k−sk

t = ksk−1
(
−as+a∑ j≥0 b js j

)
= ak

[
B̂u(k)−u(k)

]
.

Time change representation

Considering the restriction X̂0 of X̂ to N∗ := N\{0} (assuming b0 = 0), the extended weak generator L 0

on N∗ satisfies, for u = ŝ,
L 0(u|N∗)(k) = ak

[
B̂0u(k)−u(k)

]
, k ≥ 1.
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Defining d(k) = 1
ak for k ≥ 1 and the bounded operator L ′v = B̂0v − v, by [15] there exists a pure jump

process Y on N∗ with generator L ′. With the time change At =
∫ t

0 d(Ys)ds and its right-continuous inverse
τt = inf{s > 0 : As > t}, the process Y d

t = Yτt has weak generator L 0.

PROPOSITION 3. The restriction of X̂ to N∗ is equivalent to Y d .

Proof. Since the weak generator of Y d equals 1
d L ′ and for u = ŝ we have u ∈ D(L ) with t 7→ L ĥt(u)(k)

continuous, it follows that ut := ĥt(u) solves dut
dt = L ut with u0 = u (see [3], Proposition 3.3).

3. THE ONE-DIMENSIONAL CB-PROCESS

The one-dimensional continuous-state branching process (CB-process) models population dynamics with
continuous sizes. Its branching mechanism is given by (see [20] for more details)

Ψ(λ ) =−bλ − cλ
2 +

∫
∞

0
(1− e−λu −λu)N(du), (6)

where b ∈R, c ∈R+, and N is a measure on (0,∞) with
∫

∞

0 (u∧u2)N(du)< ∞. The evolution of the CB-process
is described by the differential equation

dv
dt

= Ψ(v), v(0) = s, (7)

which has a unique solution vt(s) (alternatively, one may write an equivalent integral form by adding a linear
adjustment using a constant a > 0). The CB-process X̂ = (X̂t , P̂x) on R+ is Markovian with transition kernel
characterized by

v̂t(es) = evt(s), with es(x) = e−xs,

so that for x ∈ R+ and A ∈ B(R+),
P̂x(X̂t ∈ A) = v̂t(1A)(x).

4. NON-LOCAL PURE BRANCHING PROCESSES ON FINITE CONFIGURATIONS

A branching mechanism on Ê is defined by a sequence (bk,Bk)k≥0 where (bk)k≥0 are bounded positive
Borel functions with ∑k≥0 bk = 1, and each Bk is a Markov kernel from E(k) to E with B0 = δ0. With m1 =∥∥∑k≥1 k bk

∥∥
∞

satisfying 1 < m1 < ∞ and a constant a > 0 with a ≤ m1/(m1 − 1), for any ϕ ∈ pB(E) (with
0 ≤ ϕ ≤ 1) the evolution is given by

ht = e−atTtϕ +a
∫ t

0
e−a(t−s)Tt−s ∑

k≥0
bk Bk

(
h(k)s
)

ds, t ≥ 0, (8)

which has a unique measurable solution t 7→ Htϕ with 0 ≤ Htϕ ≤ 1 (see Proposition 4.1 in [7] and Theorem
3.1 in [9]); here h(k)(x1, . . . ,xk) = h(x1) · · ·h(xk) (with h(0)(0) = 1) and ĥ denotes the corresponding function on
Ê. Equivalently, one has the differential form

d
dt

ht = (L−a)ht +a ∑
k≥0

bk Bk
(
h(k)t
)
, t ≥ 0, h0 = ϕ,

with L the generator of the spatial motion (Remark 4.2 (ii) in [7]). The nonlinear semigroup (Ht)t≥0 induces a
branching semigroup (Ĥt)t≥0 on Ê by Ĥt ϕ̂ = Ĥtϕ , and under suitable conditions Theorem 4.1 in [7] ensures
the existence of a branching right Markov process X̂ on Ê determined by the spatial motion X , the branching
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mechanism (bk,Bk)k≥0, and the constant a. In the special case where the spatial motion is trivial (i.e. X0
t = x

for all t ≥ 0), the evolution reduces to

ho
t = e−at

ϕ +a
∫ t

0
e−a(t−s)

∑
k≥0

bk Bk
(
(ho

s )
(k))ds, t ≥ 0,

or in differential form,
d
dt

ho
t =−aho

t +a ∑
k≥0

bk Bk
(
(ho

t )
(k)), t ≥ 0, ho

0 = ϕ.

The solution (Ho
t ϕ)t≥0 then defines the transition function (Ĥo

t )t≥0 of the pure branching process X̂0. Moreover,
if for some M ∈ B(E) the condition

bk(x)Bk,x

(
M̂∩E(k)

)
= 0 for all k ≥ 1 and x ∈ E \M,

holds (meaning that for x /∈ M the measure bkBk is supported outside M̂), then Ê \M̂ is a finely closed absorbing
subset for X̂0 and its restriction to M̂ remains a pure branching process (see Proposition 1 and Theorem 3.2(iii)
in [4]). Classical kernels, for instance when BkF(x) = F(x, . . . ,x), yield the alternative evolution

ht = e−atTtϕ +a
∫ t

0
e−a(t−s)Tt−s

(
∑
k≥1

bkhk
s

)
ds, t ≥ 0,

and probabilistically bk(x) gives the probability that a particle at x produces k offspring, while Bk,x describes
their distribution. When E = {a}, so that Ê ≡ N represents particle counts and M(E) ≡ R+ total mass, mul-
tiplicative functions reduce to ŝ(k) = sk and exponential functions to es(x) = e−xs, yielding, for example, the
Galton-Watson process in continuous time described by

h′ =−ah+a ∑
k≥0

bkhk, h(0) = s,

or equivalently

ht = e−at
(

s+a
∫ t

0
ear

∑
k≥0

bk hk
r dr
)
, t ≥ 0. (9)

One can then define a branching kernel ĥt on N by ĥt(ŝ) = ĥt(s), and a Markov process X̂ on N with transition
function (ĥt)t≥0; related work on extended weak generators and time change representations can be found
in [11,13,15], with Proposition 2 and Proposition 3 characterizing the generator and showing that the restriction
of X̂ to N∗ is equivalent to an appropriate time-changed pure jump process.

5. THE TOTAL MASS OF A BRANCHING PROCESS

Define the total mass process of a branching process X̂ = (X̂t , P̂µ) by

|X̂ |t := ⟨X̂t ,1⟩, t ≥ 0.

Thus, if X̂ is a non-local branching process on Ê its total mass takes values in N, while for a superprocess on
M(E) it takes values in R+. Notice that in [8] the total mass process was used in solving a nonlinear Dirichlet
problem (with discontinuous boundary data) related to non-local branching processes.
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5.1. Spatially constant branching mechanism

Suppose that X̂ is either a non-local branching process on Ê or a superprocess on M(E). We say that the
branching mechanism is spatially constant if either (a) X̂ is a non-local branching Markov process with bk
independent of the spatial variable (for all k ≥ 0) or (b) X̂ is a superprocess whose branching mechanism Ψ is
spatially constant with c = 0.

PROPOSITION 4. If X̂ is a branching Markov process with a spatially constant mechanism, then

(i) The total mass processes of X̂ and of the associated pure branching process X̂o are equal in distribution; that
is,

P̂µ ◦ |X̂ |−1
t = P̂o

µ ◦ |X̂o|−1
t for every t ≥ 0 and µ.

(ii) Moreover, |X̂ | is itself a pure branching Markov process. Under (a) its transition function is (ĥt)t≥0 of a
continuous time Galton-Watson process on N with mechanism (bk)k≥0; under (b) it is that of a one-dimensional
CB-process on R+ with branching mechanism Ψ.

To prove this, we first show the following.

LEMMA 1. If ϕ is constant (say, ϕ = s), then Htϕ is spatially constant and equals the solution Ho
t ϕ arising

from the pure branching evolution (i.e. using the trivial spatial semigroup). In particular, Htϕ solves

Ht = e−at

(
s+a

∫ t

0
ear

∑
k≥0

bk (Hr)
k dr

)
,

which is equivalent to (9) (or the corresponding equation for superprocesses).

Proof. When (a) holds, one defines the approximating sequences Hn
t and Ho,n

t (for the full and pure pro-
cesses, respectively) by

H0
t = e−ctTtϕ, Hn+1

t = e−ctTtϕ + c
∫ t

0
e−c(t−u)Tt−u ∑

k≥0
bk Bk((Hn

u )
(k))du,

and
Ho,0

t = e−ct
ϕ, Ho,n+1

t = e−ct
ϕ + c

∫ t

0
e−c(t−u)

∑
k≥0

bk Bk((Ho,n
u )(k))du.

Since Tt1 = Bk1 = 1 and ϕ is constant, one checks inductively that Hn
t = Ho,n

t (and constant) for all n. Passing
to the limit yields Htϕ = Ho

t ϕ , proving the lemma. The superprocess case is analogous.

Proof of Proposition 4. (i) For any positive function f on N, by a monotone class argument it suffices to
take f = ŝ with s ∈ [0,1]. Then f ◦ l1 = ϕ̂s (with ϕs constant), so by Lemma 1 we have

Êµ
[

f (|X̂ |t)
]
= Ĥtϕs(µ) = Ĥo

t ϕs(µ) = Êo
µ

[
f (|X̂o|t)

]
.

(ii) To show that |X̂ | is Markovian with transition function (ĥt)t≥0, one verifies that for f = ŝ,

Êµ

[
f (|X̂ |t+t ′)

∣∣∣Ft

]
= Ĥt ′ ϕ̂s(X̂t) = ĥt ′ f (|X̂ |t).

This completes the proof.
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5.2. The total mass of a branching Markov chain

Now assume that (bk,Bk)k≥0 is a branching mechanism on Ê with spatially constant bk’s. Define the
Markovian kernel B from Ê to E by

BF := ∑
k≥0

bk Bk

(
F |E(k)

)
, F ∈ bpB(Ê),

so that any such kernel B can be written in this form; it induces a branching kernel B̂ on Ê via convolution.
If ϕ is constant, then

Bϕ̂ is constant on E, (10)

since for ϕ = s one has Bϕ̂ = ∑k≥0 bksk.
Given a probability measure ν on Ê, Kolmogorov’s theorem yields a Markov chain X̂ = (X̂k)k≥0 with

transition kernel B̂. Define the total mass process by

|X̂ |k := ⟨X̂k,1⟩, k ≥ 0,

which takes values in N. For a fixed x ∈ E, let Pk := B̂kx ◦ l−1
1 and define P on N by P f (k) =

∫
f dPk.

PROPOSITION 5. The following hold:

(i) P is a branching kernel on N.

(ii) The total mass process |X̂ | is a Markov chain on N with transition kernel P, so it is a branching process on N.

(iii) Its law coincides with that of a Galton-Watson process having ancestral distribution νo = ν ◦ l−1
1 and offspring

distribution P1.

Proof. (i) One shows that for every k ≥ 2 and s ∈ [0,1], Pk(ŝ) = (P1(ŝ))k; indeed, since ŝ◦ l1 = ϕ̂ for ϕ ≡ s,
we have Pk(ŝ) = B̂kx(ϕ̂) = (P1(ŝ))k. (ii) For f = ŝ, using that Bϕ̂ is constant by (10), one verifies that

Eν
[

f (|X̂ |n+1) | Fn
]
= B̂ϕ̂(X̂n) = P f (|X̂ |n).

(iii) Since P is a branching kernel, Pk = p∗k with p = P1; the initial law of |X̂ | is νo, so the process is a Galton-
Watson process with offspring distribution p.

Assuming ∑k≥1 k2ν(E(k))<∞, one obtains classical extinction properties. Define the extinction probability
η = Pν(X̂k = 0 for some k ≥ 0) = limkPν(X̂k = 0).

By Proposition 5, we cane describe now the asymptotic behaviour of the branching Markov chain X̂ , using
the classical results for the Galton-Watson process.

COROLLARY 1. (The subcritical case.) Assume ∑k≥1 k B̂x(E(k))≤ 1 and b0 ̸= 0; then η = 1 (a.s. extinc-
tion). If b0 = 0 then η = ν({0}).

COROLLARY 2. (The supercritical case.) If x ∈ E satisfies 1 < m := ∑k≥1 k B̂x(E(k)) < ∞, then (i) the

sequence
(

1
mn |X̂ |n

)
n≥0

converges Pν -a.s. and in L2 to a random variable |X̂ |∞ which is not identically zero,

and (ii) on the event {|X̂ |∞ > 0} one has liminfn |X̂ |n > 0.
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