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Abstract. A P≥d-factor of a graph G is a spanning subgraph F of G such that every component of F is a path of
order at least d (d ≥ 2). A graph G is called a (P≥d ,k)-factor critical graph if after deleting any k vertices of G
the remaining graph of G contains a P≥d-factor. Let ρ(G) denote the spectral radius of G. In this paper, we first
provide a characterization for a graph to be (P≥2,k)-factor critical; then we prove that an n-vertex connected
graph G is a (P≥2,k)-factor critical graph unless G = Kk ∨ (Kn−k−1 ∪K1) if ρ(G) ≥ ρ(Kk ∨ (Kn−k−1 ∪K1)),
where k and n are two positive integers with n ≥ k+2.
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1. INTRODUCTION

In this paper, we deal only with finite and undirected graphs without loops or multiple edges. Let G be a
graph with vertex set V (G) and edge set E(G). The order of a graph G is the number n = |V (G)| of its vertices.
The number of isolated vertices in G is denoted by i(G). For any S ⊆V (G), we use G[S] to denote the subgraph
of G induced by S, and write G−S = G[V (G)\S]. Let G1 and G2 be two disjoint graphs. The union G1 ∪G2 is
the graph with vertex set V (G1)∪V (G2) and edge set E(G1)∪E(G2). The join G1∨G2 denotes the graph with
vertex set V (G1)∪V (G2) and edge set E(G1)∪E(G2)∪{uv : u ∈ V (G1),v ∈ V (G2)}. For a graph G and an
integer k ≥ 2, let kG denote the disjoint union of k copies of G. Let Pn and Kn denote the path and the complete
graph of order n, respectively.

Suppose that the vertex set of G is V (G) = {v1,v2, . . . ,vn}. The adjacency matrix A(G) = (ai j)n×n of G
is a (0,1)-matrix in which the entry ai j = 1 if and only if vi and v j are adjacent. Note that A(G) is a real
nonnegative symmetric matrix. Hence, its eigenvalues are real, which can be arranged in nonincreasing order
as λ1(G) ≥ λ2(G) ≥ ·· · ≥ λn(G). In particular, the largest eigenvalue λ1(G) is called the adjacency spectral
radius (or spectral radius, for short) of G, written as ρ(G).

A path-factor is a spanning subgraph of a graph G in which every component is a path of order at least
2. Let H be a set of connected graphs. A spanning subgraph H of a graph G is called an H -factor if each
component of H is isomorphic to a member of H . An H -factor is also referred as a component factor. Let
d ≥ 2 be an integer. A {Pd ,Pd+1, . . .}-factor is simply denoted by a P≥d-factor. Note that a perfect matching can
be regarded as a {P2}-factor. A graph G is called a (P≥d ,k)-factor critical graph if after deleting any k vertices
of G the remaining graph of G contains a P≥d-factor. In fact, a (P≥d ,0)-factor critical graph G is equivalent to
G having a P≥d-factor.
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In mathematical literature, the study on component factors attracted much attention. Amahashi and Kano
[1] provided a necessary and sufficient condition for a graph having a {K1, j : 1 ≤ j ≤ k}-factor, where k ≥ 2
is an integer. Kano, Lu and Yu [8] proved that a graph G has a {K1,2,K1,3,K5}-factor if i(G− S) ≤ |S|

2 holds
for every S ⊆V (G). Zhou [24], Zhou, Xu and Sun [31] obtained some sufficient conditions for graphs having
component factors. Kano and Saito [9] investigated the existence of {K1, j : k ≤ j ≤ 2k}-factors in graphs.
Las Vergnas [10] claimed a necessary and sufficient condition for a graph to contain a P≥2-factor. Kaneko [7]
showed a characterization for a graph with a P≥3-factor. Dai, Hang, Zhang, Zhang and Wang [4] gave some
degree conditions for the existence of {P2,P5}-factors in graphs. Dai [3], Liu [12], Liu and Pan [13], Zhou, Sun
and Liu [28], Wu [21] obtained some results on the existence of P≥3-factors in graphs. Zhou [23] got a binding
number condition for the existence of (P≥3,k)-factor critical graphs. More results on graph factors and factor
critical graphs were found in [17–19, 25, 26, 30, 33].

Many researchers [5,14,15,20,34] investigated some interesting spectral properties of A(G). O [16], Zhou,
Sun and Zhang [29], Zhou and Zhang [32] established some connections between spectral radius and a {P2}-
factor in a connected graph. Li and Miao [11], Zhou, Zhang and Sun [35], Zhou, Sun and Liu [27] showed
some spectral conditions for connected graphs to contain P≥2-factors. In this paper, we study the existence of
a (P≥2,k)-factor critical graph, and provide a sufficient condition for the existence of a (P≥2,k)-factor critical
graph by using spectral radius.

Theorem 1.1. Let k and n be two positive integers with n ≥ k+2. If G is an n-vertex connected graph with
ρ(G)≥ ρ(Kk ∨ (Kn−k−1 ∪K1)), then G is a (P≥2,k)-factor critical graph unless G = Kk ∨ (Kn−k−1 ∪K1).

2. PRELIMINARY LEMMAS

In this section, we provide several necessary preliminary lemmas, which are used to verify the main results
in this paper.

Lemma 2.1 (Brouwer and Haemers [2]). Let H be a subgraph of a connected graph G. Then

ρ(G)≥ ρ(H)

with equality if and only if G = H.

Let M be an n× n real matrix, and let X = {1,2, . . . ,n}. Given a partition π : X = X1 ∪X2 ∪ ·· · ∪Xr, the
matrix M can be correspondingly partitioned as

M =


M11 M12 · · · M1r

M21 M22 · · · M2r
...

...
. . .

...
Mr1 Mr2 · · · Mrr

 ,

where Mi j denotes the submatrix (block) of M formed by rows in Xi and the columns in X j. The quotient matrix
of M with respect to π is defined by the r× r matrix Bπ = (bi j), where bi j denotes the average value of all row
sums of Mi j. The above partition π is equitable if every block Mi j of M has constant row sum bi j.

Lemma 2.2 (You, Yang, So and Xi [22]). Let M be a real symmetric matrix with an equitable partition
π , and let Bπ be the corresponding quotient matrix. Then every eigenvalue of Bπ is an eigenvalue of M.
Furthermore, if M is nonnegative, then the largest eigenvalues of M and Bπ are equal.

Lemma 2.3 (Haemers [6]) Let M be a Hermitian matrix of order s, and let N be a principal submatrix of
M of order t. If λ1 ≥ λ2 ≥ ·· · ≥ λn and µ1 ≥ µ2 ≥ ·· · ≥ µn are the eigenvalues of M and N, respectively. then
λi ≥ µi ≥ λs−t+i for i = 1,2, . . . , t.
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Las Vergnas [10] provided a characterization for a graph with a P≥2-factor.

Lemma 2.4 (Las Vergnas [10]). A graph G contains a P≥2-factor if and only if

i(G−S)≤ 2|S|

for any subset S of V (G).

Using Lemma 2.4, we verify the following result.

Lemma 2.5. A graph G is a (P≥2,k)-factor critical graph if and only if

i(G−S)≤ 2|S|−2k

for any S ⊆V (G) with |S| ≥ k.

Proof. Suppose U ⊆ S ⊆V (G) where |U |= k, and S′ = S\U and G′ = G−U . Then G′−S′ = G−S.
Suppose first that G is (P≥2,k)-factor critical. Then G′ = G−U contains a P≥2-factor, and so i(G′−S′)≤

2|S′| by Lemma 2.4. Combining this with S′ = S\U and G′−S′ = G−S, we conclude

i(G−S) = i(G′−S′)≤ 2|S′|= 2|S|−2k

for any S ⊆V (G) with |S| ≥ k.
Suppose conversely that i(G−S)≤ 2|S|−2k for any S ⊆V (G) with |S| ≥ k. Together with U ⊆ S ⊆V (G),

|U |= k, S′ = S\U , G′ = G−U and G′−S′ = G−S, we obtain

i(G′−S′) = i(G−S)≤ 2|S|−2k = 2|S\U |= 2|S′|

for any S′ ⊆ V (G′). From Lemma 2.4, G′ = G−U contains a P≥2-factor, and so G is a (P≥2,k)-factor critical
graph. This completes the proof of Lemma 2.5. 2

3. THE PROOF OF THEOREM 1.1

Proof of Theorem 1.1. Suppose, to the contrary, that G is not (P≥2,k)-factor critical. By Lemma 2.5, we
obtain

i(G−S)≥ 2|S|−2k+1

for some subset S of V (G) with |S| ≥ k. Let |S|= s. Then G is a spanning subgraph of G1 = Ks ∨ (Kn1 ∪ (2s−
2k+1)K1) for some nonnegative integer n1 with n1 = n−3s+2k−1. According to Lemma 2.1, we get

ρ(G)≤ ρ(G1) (1)

with equality if and only if G = G1. Let G∗ = Kk ∨ (Kn−k−1 ∪K1). In light of the partition V (G∗) = V (Kk)∪
V (Kn−k−1)∪V (K1), the quotient matrix of A(G∗) is equal to

B∗ =

 k−1 n− k−1 1
k n− k−2 0
k 0 0

 .

Then the characteristic polynomial of B∗ is

ϕB∗(x) = x3 − (n−3)x2 − (n+ k−2)x+ k(n− k−2).
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Notice that the partition V (G∗) =V (Kk)∪V (Kn−k−1)∪V (K1) is equitable. By Lemma 2.2, the largest root, say
ρ∗, of ϕB∗(x) = 0 is equal to ρ(G∗). In what follows, we show that ρ(G1)≤ ρ(G∗) with equality if and only if
G1 = G∗.

Obviously, G1 = G∗ if s = k. Hence, it suffices to verify that ρ(G1)< ρ(G∗) for s ≥ k+1. The following
proof will be divided into three cases.

Case 1. n1 = 0, that is, n = 3s−2k+1.
In this case, G1 = Ks ∨ (2s−2k+1)K1. In terms of the partition V (G1) =V (Ks)∪V ((2s−2k+1)K1), the

quotient matrix of A(G1) is

B1 =

(
s−1 2s−2k+1

s 0

)
.

Then the characteristic polynomial of B1 is

ϕB1(x) = x2 − (s−1)x− s(2s−2k+1).

Notice that the partition V (G1) = V (Ks)∪V ((2s−2k+1)K1) is equitable. In view of Lemma 2.2, the largest
root, say ρ1, of ϕB1(x) = 0 equals ρ(G1).

Note that n = 3s−2k+1 and ϕB1(ρ1) = 0. By plugging the value ρ1 into x of ϕB∗(x)− xϕB1(x), we get

ϕB∗(ρ1) =ϕB∗(ρ1)−ρ1ϕB1(ρ1)

=− (2s−2k−1)ρ2
1 +(2s2 −2ks−2s+ k+1)ρ1 + k(3s−3k−1).

Since ρ1 =
s−1+

√
(s−1)2+4s(2s−2k+1)

2 = s−1+
√

9s2−8ks+2s+1
2 , we obtain

ϕB∗(ρ1) =− (2s−2k−1)ρ2
1 +(2s2 −2ks−2s+ k+1)ρ1 + k(3s−3k−1)

=
s− k

2
(−8s2 +(8k+1)s+6k+1+

√
9s2 −8ks+2s+1). (2)

Claim 1. 8s2 − (8k+1)s−6k−1 >
√

9s2 −8ks+2s+1 for s ≥ k+1.
Proof. Write M1 = 8s2 − (8k+1)s−6k−1 and N1 =

√
9s2 −8ks+2s+1, where s ≥ k+1. Then

M2
1 −N2

1 =64s4 −16(8k+1)s3 +(64k2 −80k−24)s2 +(96k2 +36k)s+36k2 +12k. (3)

Let f1(x) = 64x4 − 16(8k+ 1)x3 +(64k2 − 80k− 24)x2 +(96k2 + 36k)x+ 36k2 + 12k be a real function in x
with x ∈ [k+1,+∞). Then we have

f ′1(x) = 256x3 −48(8k+1)x2 +2(64k2 −80k−24)x+96k2 +36k

and
f ′′1 (x) = 768x2 −96(8k+1)x+2(64k2 −80k−24).

Notice that
96(8k+1)

2×768
=

8k+1
16

< k+1 ≤ s.

Then f ′′1 (x) is increasing in the interval [k+1,+∞), and so

f ′′1 (x)≥ f ′′1 (k+1) = 128k2 +512k+624 > 0

for x ≥ k+1, which implies that f ′1(x) is increasing in the interval [k+1,+∞). Thus, we conclude

f ′1(x)≥ f ′1(k+1) = 16k2 +116k+160 > 0
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for x ≥ k+1, which yields that f1(x) is increasing in the interval [k+1,+∞). Recall that s ≥ k+1. Then we
obtain

f1(s)≥ f1(k+1) = 24 > 0

for s ≥ k+1. Combining this with (3), we get M1 > N1 for s ≥ k+1. Claim 1 is verified. 2

According to (2), Claim 1 and s ≥ k+1, we have ϕB∗(ρ1)< 0, which leads to ρ(G1) = ρ1 < ρ∗ = ρ(G∗).
Case 2. n1 = 1, that is, n = 3s−2k+2.
In this case, G1 = Ks∨ (2s−2k+2)K1. By virtue of the partition V (G1) =V (Ks)∪V ((2s−2k+2)K1), the

quotient matrix of A(G1) is

B2 =

(
s−1 2s−2k+2

s 0

)
.

Then the characteristic polynomial of B2 equals

ϕB2(x) = x2 − (s−1)x− s(2s−2k+2).

Obviously, the partition V (G1) =V (Ks)∪V ((2s−2k+2)K1) is equitable. According to Lemma 2.2, the largest
root, say ρ2 =

s−1+
√

9s2−8ks+6s+1
2 , of ϕB2(x) = 0 equals ρ(G1).

Note that n = 3s−2k+2 and ϕB2(ρ2) = 0. By plugging the value ρ2 into x of ϕB∗(x)−xϕB2(x), we possess

ϕB∗(ρ2) =ϕB∗(ρ2)−ρ2ϕB2(ρ2)

=(s− k)(−2ρ
2
2 +(2s−1)ρ2 +3k)

=
s− k

2
(−8s2 +(8k−7)s+6k−1+

√
9s2 −8ks+6s+1). (4)

Claim 2. 8s2 − (8k−7)s−6k+1 >
√

9s2 −8ks+6s+1 for s ≥ k+1.
Proof. Let M2 = 8s2 − (8k−7)s−6k+1 and N2 =

√
9s2 −8ks+6s+1, where s ≥ k+1. Then

M2
2 −N2

2 =64s4 −16(8k−7)s3 +(64k2 −208k+56)s2 +(96k2 −92k+8)s+36k2 −12k. (5)

Let f2(x) = 64x4 −16(8k−7)x3 +(64k2 −208k+56)x2 +(96k2 −92k+8)x+36k2 −12k be a real function in
x, where x ∈ [k+1,+∞). By a direct computation, we get

f ′2(x) = 256x3 −48(8k−7)x2 +2(64k2 −208k+56)x+96k2 −92k+8

and
f ′′2 (x) = 768x2 −96(8k−7)x+2(64k2 −208k+56).

Note that
96(8k−7)

2×768
=

8k−7
16

< k+1 ≤ s.

Then f ′′2 (x) is increasing in the interval [k+1,+∞), and so

f ′′2 (x)≥ f ′′2 (k+1) = 128k2 +1024k+1552 > 0

for x ≥ k+1. Obviously, f ′2(x) is increasing in the interval [k+1,+∞), and so

f ′2(x)≥ f ′2(k+1) = 144k2 +660k+712 > 0

for x ≥ k+1, which implies that f2(x) is increasing in the interval [k+1,+∞). Recall that s ≥ k+1. Then we
conclude

f2(s)≥ f2(k+1) = 80k2 +272k+240 > 0
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for s ≥ k+1. Together with (5), we have M2 > N2 for s ≥ k+1. This completes the proof of Claim 2. 2

In terms of (4), Claim 2 and s ≥ k+1, we obtain ϕB∗(ρ2)< 0, which yields ρ(G1) = ρ2 < ρ∗ = ρ(G∗).
Case 3. n1 ≥ 2, that is, n ≥ 3s−2k+3.
Recall that G1 = Ks ∨ (Kn1 ∪ (2s− 2k+ 1)K1), where n1 = n− 3s+ 2k− 1. The quotient matrix of A(G1)

according to the partition V (G1) =V (Ks)∪V (Kn−3s+2k−1)∪V ((2s−2k+1)K1) equals

B3 =

 s−1 n−3s+2k−1 2s−2k+1
s n−3s+2k−2 0
s 0 0

 .

By a simple computation, we conclude that the characteristic polynomial of B3 is

ϕB3(x) =x3 − (n−2s+2k−3)x2 − (n+2s2 −2ks− s+2k−2)x

+ s(2s−2k+1)(n−3s+2k−2).

Since the partition V (G1) = V (Ks)∪V (Kn−3s+2k−1)∪V ((2s − 2k + 1)K1) is equitable, by Lemma 2.2, the
largest root, say ρ3, of ϕB3(x) = 0 equals ρ(G1). Let ρ3 = ρ(G1) ≥ ρ4 ≥ ρ5 be the three roots of ϕB3(x) = 0
and Q = diag(s,n−3s+2k−1,2s−2k+1). It is easy to check that

Q
1
2 B3Q− 1

2 =

 s−1 s
1
2 (n−3s+2k−1)

1
2 s

1
2 (2s−2k+1)

1
2

s
1
2 (n−3s+2k−1)

1
2 n−3s+2k−2 0

s
1
2 (2s−2k+1)

1
2 0 0


is symmetric, and also contains (

n−3s+2k−2 0
0 0

)
as its submatrix. Since Q

1
2 B3Q− 1

2 and B3 have the same eigenvalues, by the Cauchy Interlacing Theorem (see
Lemma 2.3), we have

ρ4 ≤ n−3s+2k−2 < n− k−2. (6)

Note that Kn−1 is a proper subgraph of G∗ = Kk ∨ (Kn−k−1 ∪K1). According to Lemma 2.1, we conclude

ρ∗ = ρ(G∗)> ρ(Kn−1) = n−2 > n− k−2 > ρ4. (7)

Note that ϕB∗(ρ∗) = 0. By plugging the value ρ∗ into x of ϕB3(x)−ϕB∗(x), we obtain

ϕB3(ρ∗) =ϕB3(ρ∗)−ϕB∗(ρ∗)

=(s− k)(2ρ
2
∗ − (2s−1)ρ∗+2sn+n−6s2 +4ks−7s− k−2). (8)

Let h(ρ∗) = 2ρ2
∗ − (2s−1)ρ∗+2sn+n−6s2 +4ks−7s− k−2. Note that

2s−1
4

< s+1 < 3s−2k+1 ≤ n−2 < ρ∗

by (7). Combining this with s ≥ k+1 and n ≥ 3s−2k+3, we obtain

h(ρ∗)>h(n−2)

=2(n−2)2 +2n−6s2 +4ks−3s− k−4

≥2(3s−2k+1)2 +2(3s−2k+3)−6s2 +4ks−3s− k−4
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=12s2 − (20k−15)s+8k2 −13k+4

≥12(k+1)2 − (20k−15)(k+1)+8k2 −13k+4

=6k+31

>0. (9)

It follows from (8), (9) and s ≥ k+1 that

ϕB3(ρ∗) = (s− k)h(ρ∗)> 0.

As ρ4 < n−2 < ρ(G∗) = ρ∗ (see (7)), we infer ρ(G1) = ρ3 < ρ∗ = ρ(G∗).
From Cases 1–3, we have ρ(G1)< ρ(G∗) for s ≥ k+1. Thus, we conclude ρ(G1)≤ ρ(G∗) with equality

if and only if G1 = G∗. Combining this with (1), we have ρ(G) ≤ ρ(G∗) with equality if and only if G = G∗,
where G∗ = Kk ∨ (Kn−k−1 ∪K1). This contradicts the condition of Theorem 1.1. This completes the proof of
Theorem 1.1. 2
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