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Abstract. A P ;-factor of a graph G is a spanning subgraph F of G such that every component of F is a path of
order at least d (d > 2). A graph G is called a (P54, k)-factor critical graph if after deleting any k vertices of G
the remaining graph of G contains a P 4-factor. Let p(G) denote the spectral radius of G. In this paper, we first
provide a characterization for a graph to be (P>, k)-factor critical; then we prove that an n-vertex connected
graph G is a (P>2,k)-factor critical graph unless G = K; V (K,_x—1 UK)) if p(G) > p(Ki V (Ky—k—1 UK1)),
where k and n are two positive integers with n > k+ 2.
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1. INTRODUCTION

In this paper, we deal only with finite and undirected graphs without loops or multiple edges. Let G be a
graph with vertex set V(G) and edge set E(G). The order of a graph G is the number n = |V (G)] of its vertices.
The number of isolated vertices in G is denoted by i(G). For any S C V(G), we use G[S] to denote the subgraph
of G induced by S, and write G — S = G[V(G) \ S]. Let G; and G, be two disjoint graphs. The union G| UG, is
the graph with vertex set V(G;) UV (G,) and edge set E(G1) UE(G). The join G1 V G, denotes the graph with
vertex set V(G1)UV(G,) and edge set E(G|) UE(G2)U{uv:u € V(Gy),v € V(Gz)}. For a graph G and an
integer k > 2, let kG denote the disjoint union of k copies of G. Let P, and K}, denote the path and the complete
graph of order n, respectively.

Suppose that the vertex set of G is V(G) = {vi,v2,...,v,}. The adjacency matrix A(G) = (aij)uxn of G
is a (0,1)-matrix in which the entry a;; = 1 if and only if v; and v; are adjacent. Note that A(G) is a real
nonnegative symmetric matrix. Hence, its eigenvalues are real, which can be arranged in nonincreasing order
as 11(G) > 22(G) > --- > A,(G). In particular, the largest eigenvalue A;(G) is called the adjacency spectral
radius (or spectral radius, for short) of G, written as p(G).

A path-factor is a spanning subgraph of a graph G in which every component is a path of order at least
2. Let JZ be a set of connected graphs. A spanning subgraph H of a graph G is called an 7 -factor if each
component of H is isomorphic to a member of 7. An .77 -factor is also referred as a component factor. Let
d > 2 be an integer. A {Py,Py+1,...}-factor is simply denoted by a P>;-factor. Note that a perfect matching can
be regarded as a { P, }-factor. A graph G is called a (P-4, k)-factor critical graph if after deleting any k vertices
of G the remaining graph of G contains a P>,-factor. In fact, a (P-4,0)-factor critical graph G is equivalent to
G having a P-4-factor.
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In mathematical literature, the study on component factors attracted much attention. Amahashi and Kano
[1] provided a necessary and sufficient condition for a graph having a {K; ; : 1 < j < k}-factor, where k > 2
is an integer. Kano, Lu and Yu [{8] proved that a graph G has a {Kj »,K; 3,Ks }-factor if i(G —S) < @ holds
for every S C V(G). Zhou [24], Zhou, Xu and Sun [31]] obtained some sufficient conditions for graphs having
component factors. Kano and Saito [9] investigated the existence of {K; ; : k < j < 2k}-factors in graphs.
Las Vergnas [10]] claimed a necessary and sufficient condition for a graph to contain a P>,-factor. Kaneko [7]]
showed a characterization for a graph with a P>3-factor. Dai, Hang, Zhang, Zhang and Wang [4]] gave some
degree conditions for the existence of { P,, Ps }-factors in graphs. Dai [3], Liu [[12], Liu and Pan [[13]], Zhou, Sun
and Liu [28]], Wu [21]] obtained some results on the existence of P>3-factors in graphs. Zhou [23]] got a binding
number condition for the existence of (P-3,k)-factor critical graphs. More results on graph factors and factor
critical graphs were found in [[17-19}/2526130,/33]].

Many researchers [5,14,15,201/34] investigated some interesting spectral properties of A(G). O [16], Zhou,
Sun and Zhang [29], Zhou and Zhang [32] established some connections between spectral radius and a {P» }-
factor in a connected graph. Li and Miao [11]], Zhou, Zhang and Sun [35]], Zhou, Sun and Liu [27] showed
some spectral conditions for connected graphs to contain P-,-factors. In this paper, we study the existence of
a (P>, k)-factor critical graph, and provide a sufficient condition for the existence of a (P>,,k)-factor critical
graph by using spectral radius.

Theorem 1.1. Let k£ and n be two positive integers with n > k4 2. If G is an n-vertex connected graph with
pP(G) > p(Ki V (Ky—r—1UK7)), then G is a (P>y,k)-factor critical graph unless G = K; V (K,_x—1 UK}).

2. PRELIMINARY LEMMAS

In this section, we provide several necessary preliminary lemmas, which are used to verify the main results
in this paper.

Lemma 2.1 (Brouwer and Haemers [2]). Let H be a subgraph of a connected graph G. Then
p(G) > p(H)

with equality if and only if G = H.

Let M be an n X n real matrix, and let X = {1,2,...,n}. Given a partition 7 : X = X; UX, U---UX,, the
matrix M can be correspondingly partitioned as

My My -+ M,

My, My -+ M,
M= ) . ) ;

Mrl Mr2 Mrr

where M;; denotes the submatrix (block) of M formed by rows in X; and the columns in X;. The quotient matrix
of M with respect to 7 is defined by the r X r matrix B; = (b;;), where b;; denotes the average value of all row
sums of M;;. The above partition 7 is equitable if every block M;; of M has constant row sum b;;.

Lemma 2.2 (You, Yang, So and Xi [22[]). Let M be a real symmetric matrix with an equitable partition
7, and let By be the corresponding quotient matrix. Then every eigenvalue of By is an eigenvalue of M.
Furthermore, if M is nonnegative, then the largest eigenvalues of M and B are equal.

Lemma 2.3 (Haemers [[6]) Let M be a Hermitian matrix of order s, and let N be a principal submatrix of
M ofordert. If Ay > A, > --- > A, and g > U > --- > U, are the eigenvalues of M and N, respectively. then
li > Mi > As—t-i—i fori= 1,2,. .t
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Las Vergnas [10] provided a characterization for a graph with a P>,-factor.

Lemma 2.4 (Las Vergnas [10]). A graph G contains a P>»-factor if and only if
i(G—S) <2|S]
for any subset S of V(G).

Using Lemma 2.4, we verify the following result.

Lemma 2.5. A graph G is a (P>,,k)-factor critical graph if and only if
i(G—S) <2|S| -2k

for any S C V(G) with |S| > k.

Proof. Suppose U C S C V(G) where |[U| =k,and ' =S\U and G =G —U. Then G'—§' =G —S.
Suppose first that G is (P2, k)-factor critical. Then G’ = G — U contains a P>,-factor, and so i(G' — ') <
2|§'| by Lemma 2.4. Combining this with S’ = S\ U and G’ — §' = G — S, we conclude

i(G—S8)=i(G —8) <2|8| =2|S] -2k

for any S C V(G) with |S| > k.
Suppose conversely that i(G — S) < 2|S| — 2k for any S C V(G) with |S| > k. Together with U C S C V(G),
U=k, 8 =S\U,G =G—U and G’ —§' = G — S, we obtain

i(G'—S)=i(G-S8) <2|S|-2k=2|S\U| =2|5|

for any S’ C V(G'). From Lemma 2.4, G’ = G — U contains a P>y-factor, and so G is a (P2, k)-factor critical
graph. This completes the proof of Lemma 2.5. O

3. THE PROOF OF THEOREM 1.1

Proof of Theorem 1.1. Suppose, to the contrary, that G is not (P>y,k)-factor critical. By Lemma 2.5, we
obtain
i(G—S)>2|S|—2k+1

for some subset S of V(G) with |[S| > k. Let |S| =s. Then G is a spanning subgraph of G| = K, V (K, U (2s —
2k+1)K;) for some nonnegative integer ny with ny = n—3s+ 2k — 1. According to Lemma 2.1, we get

p(G) <p(G) (1

with equality if and only if G = G. Let G, = K; V (K,—x—1 UK)). In light of the partition V(G,) =V (K;) U
V(Ky—x—1) UV (K}), the quotient matrix of A(G.,) is equal to

k—1

B, =

> x|
[

n—k—1
n—k—2
0

Then the characteristic polynomial of B, is

3, (x) =x> —(n=3)x* — (n+k—2)x+k(n—k—2).
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Notice that the partition V(G,) = V(Ky) UV (K,—x—1) UV (K}) is equitable. By Lemma 2.2, the largest root, say
Ps, of g, (x) =0 is equal to p(G,). In what follows, we show that p(G;) < p(G,) with equality if and only if
G| =G..

Obviously, G; = G, if s = k. Hence, it suffices to verify that p(G;) < p(G,) for s > k+ 1. The following
proof will be divided into three cases.

Case 1. n; =0, that is, n = 3s — 2k + 1.

In this case, G; = K,V (25 — 2k + 1)K;. In terms of the partition V(G;) = V(K;) UV ((2s — 2k + 1)K ), the
quotient matrix of A(Gy) is

B — ( s—1 2s—2k+1 >
s 0
Then the characteristic polynomial of B; is
@p,(x) =x* — (s— Dx—s(2s — 2k +1).

Notice that the partition V(G;) = V(K;) UV ((2s — 2k + 1)K;) is equitable. In view of Lemma 2.2, the largest
root, say pi, of @p, (x) = 0 equals p(Gy).
Note that n = 35 — 2k + 1 and @, (p1) = 0. By plugging the value p; into x of @p, (x) — x@p, (x), we get

@5.(p1) =@5.(P1) — P15, (P1)
= — (25— 2k—1)pi + (25* —2ks — 25+ k+ 1)p; +k(3s — 3k —1).

; s=144/ (s—1)2+4s5(25—2k+1 BRIy -y yor
Since p; = VA )2 ( ) _ 5149 B i2r]

, we obtain

0. (p1) =— (25 — 2k — 1)p? + (25> — 2ks — 25+ k+ 1)p; + k(35 — 3k — 1)

—k
252 (—852 + (8k+1)5+ 6k + 1+ /95 — 8ks + 25+ 1). 2)

Claim 1. 85> — (8k+1)s — 6k — 1 > /952 — 8ks +2s+ 1 for s > k+ 1.
Proof. Write My = 8s*> — (8k+1)s —6k— 1 and N; = v/9s2 — 8ks + 25+ 1, where s > k+ 1. Then

M} — N7 =64s* — 16(8k + 1)s° + (64k*> — 80k — 24)s* 4 (96k* + 36k)s + 36k* + 12k. 3)

Let fi(x) = 64x* — 16(8k + 1)x® + (64k2 — 80k — 24)x2 + (96K + 36k)x + 36k2 + 12k be a real function in x
with x € [k+1,+0c0). Then we have

f1(x) = 256x° — 48(8k + 1)x* 4 2(64k> — 80k — 24)x + 96k> 4 36k
and
" (x) = 768x> —96(8k + 1)x + 2(64k> — 80k — 24).

Notice that
96(8k+1) B 8k+1

2x768 16

Then f{’(x) is increasing in the interval [k + 1,+4-0), and so

<k+1<s.

") > fl(k+1) = 128k> +512k+624 > 0
for x > k+ 1, which implies that f](x) is increasing in the interval [k + 1,4-c0). Thus, we conclude

fl(x) > fl(k+1) = 16k> + 116k +160 > 0
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for x > k+ 1, which yields that fj(x) is increasing in the interval [k + 1,+c0). Recall that s > k+ 1. Then we
obtain
fils) > filk+1)=24>0
for s > k+ 1. Combining this with (3], we get M| > N for s > k+ 1. Claim 1 is verified. O
According to (2)), Claim 1 and s > k+ 1, we have ¢g, (p1) < 0, which leads to p(G1) = p1 < p« = p(Gy).
Case 2. n; = 1, thatis, n = 35 — 2k + 2.
In this case, G| = K, V (25 — 2k +2)K,. By virtue of the partition V(G;) =V (K;) UV ((2s — 2k +2)K), the
quotient matrix of A(G)) is

B, — < s—1 2s—2k+2 >
s 0

Then the characteristic polynomial of B, equals
@8,(x) = x> — (s — )x — 5(25 — 2k +2).

Obviously, the partition V(G1) =V (K;) UV ((2s —2k+2)K; ) is equitable. According to Lemma 2.2, the largest
s—1+vV 9522_8ks+6s+1 , of ©s, (X) =0 equals P(Gl)

Note that n = 35 — 2k +2 and @, (p2) = 0. By plugging the value p; into x of @p, (x) —x@g, (x), we possess

root, say py =

®5.(P2) =95, (p2) — P295,(P2)
=(s—k)(=2p3 + (25— 1)p2 +3k)
s—k

== (=852 + (8k —7)s+ 6k — 1+ /952 — 8ks + 65+ 1). (4)

Claim 2. 85> — (8k —7)s — 6k + 1 > /952 — 8ks +6s+ 1 for s > k+ 1.
Proof. Let My = 85> — (8k —7)s — 6k + 1 and N, = v/9s2 — 8ks + 65+ 1, where s > k+ 1. Then

M3 — N7 =64s* — 16(8k —7)s> 4 (64k> — 208k + 56)s° 4 (96k> — 92k + 8)s + 36k> — 12k. 5)

Let f>(x) = 64x* — 16(8k —7)x> + (64k> — 208k + 56 )x> + (96k*> — 92k + 8)x + 36k> — 12k be a real function in
x, where x € [k+ 1,+4c0). By a direct computation, we get
f(x) =256x° — 48(8k — 7)x* 4 2(64k*> — 208k 4 56)x + 96k* — 92k + 8
and
7 (x) = 768x* — 96(8k — 7)x + 2(64k* — 208k + 56).
Note that 96(8k—7) k7
= 1<s.
2 % 763 6 “kTlss

Then f}/(x) is increasing in the interval [k + 1,+4-c0), and so

Y (x) > f3 (k+1) = 128k> + 1024k + 1552 > 0
for x > k+ 1. Obviously, f}(x) is increasing in the interval [k + 1,4-c), and so
fx) > frlk+1) = 144k> + 660k +712 > 0

for x > k+ 1, which implies that f>(x) is increasing in the interval [k 4 1,+o0). Recall that s > k + 1. Then we
conclude
fo(s) > fo(k+1) = 80k> +272k 4240 > 0
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for s > k+ 1. Together with (5)), we have M, > N, for s > k+ 1. This completes the proof of Claim 2. O
In terms of (4), Claim 2 and s > k+ 1, we obtain ¢p, (p2) < 0, which yields p(G;) = p2 < px = p(G).
Case 3. n; > 2, thatis, n > 3s — 2k + 3.

Recall that G| = K V (K, U (2s —2k+1)K;), where ny = n— 3s+ 2k — 1. The quotient matrix of A(G)
according to the partition V(G;) =V (K) UV (K,_3512k—1) UV ((2s — 2k + 1)K} ) equals

s—1 n—3s+2k—1 2s—2k+1
B3 = Ky n—3s+2k—2 0
s 0 0

By a simple computation, we conclude that the characteristic polynomial of Bj is

O, (x) =x> — (n— 25+ 2k — 3)x* — (n+ 25> — 2ks — s+ 2k — 2)x
+5(2s—2k+1)(n—3s+2k—2).
Since the partition V(G;) = V(K;) UV (K,—3512k—1) UV ((2s — 2k + 1)K;) is equitable, by Lemma 2.2, the

largest root, say ps3, of @p,(x) =0 equals p(Gy). Let p3 = p(G1) > ps > ps be the three roots of @p,(x) =0
and Q = diag(s,n —3s+ 2k — 1,25 —2k+1). It is easy to check that

s—1 s%(n—3s+2k—1)% s%(2s—2k—|—1)%
1 1
QB30 2= | s2(n—3s+2k—1)2  n—3s+2k—2 0
s2(25—2k+1)2 0 0

is symmetric, and also contains

n—3s+2k—-2 0
0 0

as its submatrix. Since Q%Bg Q*% and B3 have the same eigenvalues, by the Cauchy Interlacing Theorem (see
Lemma 2.3), we have

ps<n—3s+2k—-2<n—k—-2. 6)
Note that K;,_; is a proper subgraph of G, = KV (K,,—x—1 UK ). According to Lemma 2.1, we conclude
ps=p(Gs) >p(Ky-1) =n—2>n—k—2>ps. )
Note that @p, (ps) = 0. By plugging the value p, into x of @p,(x) — ¢p, (x), we obtain

@8, (P+) =08,(P+) — ¢, (Px)
=(s—k)(2p% — (25 — 1)py +25n+n — 65> +4ks — Ts —k — 2). (8)

Let h(p.) = 2p2 — (25 — 1)p, 4 2sn +n — 65> + 4ks — 7s — k — 2. Note that
2s—1

<s+1<3s—-2k+1<n-2<p,
by (7). Combining this with s > k+ 1 and n > 3s — 2k + 3, we obtain

h(p.) >h(n—2)
=2(n—2)>42n— 65> +4ks —3s —k — 4
>2(3s —2k+ 1) +2(3s — 2k +3) — 65> +dks — 35—k —4



7 Spectral radius and path-factor critical graphs 7

=125* — (20k — 15)s + 8k* — 13k +4

>12(k+1)* — (20k — 15)(k+1) + 8k* — 13k +4

=6k +31

>0. )

It follows from (8), (9) and s > k+ 1 that

@5, (ps) = (s —k)h(p.) > 0.

As ps <n—2 < p(G,) = psx (see (7)), we infer p(G;) = p3 < ps = p(Gs).

From Cases 1-3, we have p(G) < p(G,) for s > k+ 1. Thus, we conclude p(G;) < p(G,) with equality
if and only if G| = G.. Combining this with (I]), we have p(G) < p(G,) with equality if and only if G = G,,
where G, = K; V (K,,—r—1 UK}). This contradicts the condition of Theorem 1.1. This completes the proof of
Theorem 1.1. O
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