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Abstract. Recently, Ballantine and Merca proved some congruences modulo powers of 2 for b4(n) and congru-
ences modulo 3 for b6(n), where bt(n) denotes the number of t-regular partitions of n. Motivated by Ballantine
and Merca’s works on congruences of bt(n), we present a characterization of congruences modulo 8 for b4(n),
from which, we obtain infinite families of congruences modulo 8 for b4(n). Furthermore, we also prove infinite
families of congruences modulo 3 for b6(n) based on Newman’s identities. Those congruences involve primes
which are congruent to 1 modulo 24.
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1. INTRODUCTION

Recall that a partition of n is a non-increasing sequence of positive integers, called parts, whose sum is n.
If t ≥ 2 is an integer, then a partition is called a t-regular partition if there is no part divisible by t. As usual, let
bt(n) denote the number of t-regular partitions of n and set bt(0) = 1. The generating function of bt(n) is

∞

∑
n=0

bt(n)qn =
(qt ;qt)∞

(q;q)∞

, (1)

where here and throughout this paper, (q;q)∞ := ∏
∞
n=1(1−qn).

In recent years, congruence properties for bt(n) are investigated in many interesting papers by Andrews,
Hirschhorn and Sellers [1], Ballantine and Merca [2], Chen [4], Cui and Gu [5,6], Keith [7], Keith and Zanello
[8], Lin and Wang [9], Merca [10, 11], Xia [14] and Yao [15, 16]. For example, Andrews, Hirschhorn and
Sellers [1] proved that for n ≥ 0,

b4(9n+4)≡0 (mod 4),

b4(9n+7)≡0 (mod 12).
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They also proved the following infinite families of congruences modulo 2 for b4(n): for n,α ≥ 0,

b4

(
32α+2n+

j×32α+1 −1
8

)
≡ 0 (mod 2),

where j ∈ {11,17,19}. Merca [10] proved that b4(n) is odd if and only if n is a triangular number. He also
established some relations between b4(n) and the number of partitions into parts not congruent to 2 modulo 4.
Chen [4] proved that for n,α ≥ 1,

b4

(
52αn+

r ·52α−1 −1
8

)
≡ 0 (mod 4),

where r ∈ {13,21,29,37}. Xia [13] proved that for n,α ≥ 1,

b4

(
34αn+

j ·34α−1 −1
8

)
≡ 0 (mod 8),

where j ∈ {11,19}. In [2], Ballantine and Merca proved that for n ≥ 0,

b4(25n+8)≡ b4(25n+13)≡ b4(25n+18)≡ b4(25n+23)≡ 0 (mod 16).

Very recently, Ballantine and Merca [3] proved infinite families of congruences modulo 3 for b6(n). More
precisely, they proved the following theorem.

THEOREM 1. [3] Let α be a nonnegative integer and let pi (1 ≤ i ≤ α + 1) be primes. If pα+1 ≡ 3
(mod 4) and j ̸≡ 0 (mod pα+1), then for all n ≥ 0,

b6

(
p2

1 · · · p2
α+1n+

p2
1 · · · p2

α pα+1(24 j+5pα+1)−5
24

)
≡ 0 (mod 3).

Motivated by Ballantine and Merca’s works on congruences of b4(n) and b6(n), we investigate congruences
modulo 8 for b4(n) and congruences modulo 3 for b6(n) in this paper.

The fist goal of this paper is to present a characterization of congruences modulo 8 for b4(n). To state the
main results on congruences modulo 8 for b4(n), define

µ1(n) : =

{
1, if n = k(k−1)/2 for some positive integer k,

0, otherwise,
(2)

V1,2(n) : = ∑
m,k≥1,

2m2+k(k−1)/2=n

(−1)m, (3)

V1,4(n) : = ∑
m,k≥1,

4m2+k(k−1)/2=n

1. (4)

The main results on congruences modulo 8 for b4(n) can be stated as follows.

THEOREM 2. For n ≥ 1,

b4(n)≡ µ1(n)−2V1,2(n)+4V1,4(n) (mod 8). (5)

For example, setting n = 200 in (5), we deduce that µ1(200) = 0, V1,2 = 1, V1,4 = 1 and

b4(200)≡ 0−2×1+4×1 ≡ 2 (mod 8).

In fact, b4(200) = 122730022082.
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Based on Theorem 2, we obtain the following corollary.

COROLLARY 1. Let p be a prime with p ≡ 7 (mod 8). If n,α are nonnegative integers with p ∤ n, then

b4

(
p2α+1n+

p2α+2 −1
8

)
≡ 0 (mod 8). (6)

The second goal of this paper is to establish infinite families of congruences modulo 3 for b6(n) involving
other choices of primes.

THEOREM 3. Let p be a prime with p ≡ 1 (mod 24). If b6(5(p−1)/24)≡ 0 (mod 3), then for n,α ≥ 0
with p ∤ (24n+5), then

b6

(
p2α+1n+

5(p2α+1 −1)
24

)
≡ 0 (mod 3). (7)

If b6(5(p−1)/24) ̸≡ 0 (mod 3), then for n,α ≥ 0 with p ∤ (24n+5), then

b6

(
p3α+2n+

5(p3α+2 −1)
24

)
≡ 0 (mod 3). (8)

For example, setting p = 73 in Theorem 3 and using the fact that b6(15) = 143, we deduce that for α ≥ 0,

b6

(
733k+2n+

5(733k+2 −1)
24

)
≡ 0 (mod 3),

where 73 ∤ (24n+5).

2. PROOFS OF THEOREM 2 AND COROLLARY 1

It is easy to check that

∞

∑
m,n=1

(−1)m+nqm2+n2
=

∞

∑
m,n=1,

m>n

(−1)m+nqm2+n2
+

∞

∑
m,n=1,

n>m

(−1)m+nqm2+n2
+

∞

∑
n=1

q2n2

=2
∞

∑
m,n=1,

m>n

(−1)m+nqm2+n2
+

∞

∑
n=1

q2n2
. (9)

To prove the main results of this paper, we require the following two identities due to Gauss:

1+2
∞

∑
n=1

(−1)nqn2
=

(q;q)2
∞

(q2;q2)∞

(10)

and

∞

∑
k=1

qk(k−1)/2 =
(q2;q2)2

∞

(q;q)∞

. (11)

In light of (1), (10) and (11),

∞

∑
n=0

b4(n)qn =
(q4;q4)∞

(q2;q2)2
∞

(q2;q2)2
∞

(q;q)∞
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=
1

1+2∑
∞
n=1(−1)nq2n2

∞

∑
k=1

qk(k−1)/2

=

1+
∞

∑
j=1

(−2) j

(
∞

∑
t=1

(−1)tq2t2

) j
 ∞

∑
k=1

qk(k−1)/2

≡

(
1−2

∞

∑
n=1

(−1)nq2n2
+4

∞

∑
m,n=1

(−1)m+nq2m2+2n2

)
∞

∑
k=1

qk(k−1)/2

≡

(
1−2

∞

∑
n=1

(−1)nq2n2
+4

∞

∑
n=1

q4n2

)
∞

∑
k=1

qk(k−1)/2 (mod 8) (by (9))

=
∞

∑
n=0

(µ1(n)−2V1,2(n)+4V1,4(n))qn, (12)

which yields (5) after comparing the coefficients of qn on both sides of (12). The proof of Theorem 2 is
complete.

Now, we turn to prove Corollary 1.

It follows from (2) that if p ∤ n, then

µ1

(
p2α−1n+

p2α −1
8

)
= 0. (13)

In addition, from (3) and (4), we can rewrite V1,2(n) and V1,4(n) as

V1,2(n) = ∑
m,k≥1,

(4m)2+(2k−1)2=8n+1

(−1)m, (14)

V1,4(n) = ∑
m,k≥1,

2(4m)2+(2k−1)2=8n+1

1. (15)

From (14), we know that if 8n+ 1 is not of the form x2 + y2, then V1,2(n) = 0. Note that if N is of the form

x2 + y2, then νp(N) is even since p is a prime with p ≡ 7 (mod 8) and
(
−1
p

)
= −1. Here νp(N) denotes the

highest power of p dividing N and
(

·
p

)
denotes the Legendre symbol. It is easy to check that if p ∤ n, then

νp

(
8
(

p2α+1n+
p2α+2 −1

8

)
+1
)
= νp(8p2α+1n+ p2α+2) = 2α +1

is odd. Therefore, 8
(

p2α+1n+ p2α+2−1
8

)
+1 is not of the form x2 + y2 and

V1,2

(
p2α+1n+

p2α+2 −1
8

)
= 0. (16)

It follows from (15) that if 8n+1 is not of the form x2+2y2, then V1,4(n)= 0. The facts that νp

(
8
(

p2α−1n+ p2α−1
8

)
+1
)

is odd and
(
−2
p

)
=−1 imply that 8

(
p2α−1n+ p2α−1

8

)
+1 is not of the form x2 +2y2 and

V1,4

(
p2α−1n+

p2α −1
8

)
= 0. (17)

Congruence (6) follows from (5), (13), (16) and (17). This completes the proof of Corollary 1.
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3. PROOF OF THEOREM 3

Define

∞

∑
n=0

a(n)qn :=
(q2;q2)3

∞

(q;q)∞

. (18)

Newman [12] proved that if p is a prime with p ≡ 1 (mod 24), then

a
(

pn+
5(p−1)

24

)
= a(5(p−1)/24)a(n)−a

(
n− 5(p−1)

24
p

)
. (19)

If 3|a(5(p−1)/24), then

a
(

pn+
5(p−1)

24

)
≡−a

(
n− 5(p−1)

24
p

)
(mod 3). (20)

If p ∤ (24n+5), then n− 5(p−1)
24

p is not an integer and

a

(
n− 5(p−1)

24
p

)
= 0. (21)

It follows from (20) and (21) that if 3|a(5(p−1)/24) and p ∤ (24n+5), then

a
(

pn+
5(p−1)

24

)
≡ 0 (mod 3). (22)

Replacing n by pn+ 5(p−1)
24 in (20) yields

a
(

p2n+
5(p2 −1)

24

)
≡−a(n) (mod 3). (23)

By (23) and mathematical induction, we deduce that for n,α ≥ 0,

a
(

p2αn+
5(p2α −1)

24

)
≡ (−1)αa(n) (mod 3). (24)

Replacing n by pn+ 5(p−1)
24 in (24) and utilizing (22), we find that if 3|a(5(p−1)/24) and p ∤ (24n+5), then

for n,α ≥ 0,

a
(

p2α+1n+
5(p2α+1 −1)

24

)
≡ 0 (mod 3). (25)

It follows from (19) that if a(5(p−1)/24)≡ 1 (mod 3), then

a
(

pn+
5(p−1)

24

)
≡ a(n)−a

(
n− 5(p−1)

24
p

)
(mod 3). (26)
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Replacing n by pn+ 5(p−1)
24 in (26) yields

a
(

p2n+
5(p2 −1)

24

)
≡ a

(
pn+

5(p−1)
24

)
−a(n) (mod 3),

from which with (26), we arrive at

a
(

p2n+
5(p2 −1)

24

)
≡−a

(
n− 5(p−1)

24
p

)
(mod 3). (27)

By (27), we see that if a(5(p−1)/24)≡ 1 (mod 3) and p ∤ (24n+5), then

a

(
n− 5(p−1)

24
p

)
= 0

and

a
(

p2n+
5(p2 −1)

24

)
≡ 0 (mod 3). (28)

Replacing n by pn+ 5(p−1)
24 in (27) yields

a
(

p3n+
5(p3 −1)

24

)
≡−a(n) (mod 3). (29)

By (29) and mathematical induction, we deduce that for n,α ≥ 0,

a
(

p3αn+
5(p3α −1)

24

)
≡ (−1)αa(n) (mod 3). (30)

Replacing n by p2n+ 5(p2−1)
24 in (30) and using (28), we see that if a(5(p− 1)/24) ≡ 1 (mod 3), then for

n,α ≥ 0 with p ∤ (24n+5),

a
(

p3α+2n+
5(p3α+2 −1)

24

)
≡ 0 (mod 3). (31)

Identity (19) implies that if a(5(p−1)/24)≡ 2 (mod 3), then

a
(

pn+
5(p−1)

24

)
≡ 2a(n)−a

(
n− 5(p−1)

24
p

)
(mod 3). (32)

Replacing n by pn+ 5(p−1)
24 in (32) yields

a
(

p2n+
5(p2 −1)

24

)
≡ 2a

(
pn+

5(p−1)
24

)
−a(n) (mod 3). (33)

Substituting (32) into (33) yields

a
(

p2n+
5(p2 −1)

24

)
≡ a

(
n− 5(p−1)

24
p

)
(mod 3), (34)
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which implies that if a(5(p−1)/24)≡ 2 (mod 3) and p ∤ (24n+5), then

a

(
n− 5(p−1)

24
p

)
= 0

and

a
(

p2n+
5(p2 −1)

24

)
≡ 0 (mod 3). (35)

If we replace n by pn+ 5(p−1)
24 in , we arrive at

a
(

p3n+
5(p3 −1)

24

)
≡ a(n) (mod 3). (36)

By (36) and mathematical induction, we deduce that for n,α ≥ 0,

a
(

p3αn+
5(p3α −1)

24

)
≡ a(n) (mod 3). (37)

Replacing n by p2n+ 5(p2−1)
24 in (37) and using (35), we see that if a(5(p− 1)/24) ≡ 2 (mod 3), then for

n,α ≥ 0 with p ∤ (24n+5),

a
(

p3α+2n+
5(p3α+2 −1)

24

)
≡ 0 (mod 3). (38)

Setting t = 6 in (1), we get

∞

∑
n=0

b6(n)qn =
(q6;q6)∞

(q;q)∞

. (39)

By (39) and the fact that
(1−q6n)≡ (1−q2n)3 (mod 3),

we arrive at

∞

∑
n=0

b6(n)qn ≡ (q2;q2)3
∞

(q;q)∞

(mod 3). (40)

Combining (18) and (40) yields

b6(n)≡ a(n) (mod 3). (41)

Theorem 3 follows from (25), (31), (38) and (41). This completes the proof.

4. CONCLUDING REMARKS

As seen in Introduction, congruence properties for t-regular partition functions have received a lot of at-
tention in recent years. In this study, we give a characterization of congruences modulo 8 for b4(n) and prove
infinite families of congruences modulo 3 for b6(n). A natural question is to extend the congruences in this
paper to modulo 9, 32, 64, etc. However, it will likely require a different approach since the methods used in
this paper run into serious limitations beyond the modulus of 9.
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