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Abstract. Recently, Ballantine and Merca proved some congruences modulo powers of 2 for b4(n) and congru-
ences modulo 3 for bg(n), where b;(n) denotes the number of ¢-regular partitions of n. Motivated by Ballantine
and Merca’s works on congruences of b;(n), we present a characterization of congruences modulo 8 for b4 (n),
from which, we obtain infinite families of congruences modulo 8 for b4 (n). Furthermore, we also prove infinite
families of congruences modulo 3 for bg(n) based on Newman'’s identities. Those congruences involve primes
which are congruent to 1 modulo 24.
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1. INTRODUCTION

Recall that a partition of n is a non-increasing sequence of positive integers, called parts, whose sum is n.
If + > 2 is an integer, then a partition is called a #-regular partition if there is no part divisible by 7. As usual, let
b;(n) denote the number of 7-regular partitions of n and set b,(0) = 1. The generating function of b,(n) is

S n (@59 )e
b, = -4 /> 1
r;_o (n)q @0~ (1

where here and throughout this paper, (¢;¢)« := [T, (1 —¢").
In recent years, congruence properties for b,(n) are investigated in many interesting papers by Andrews,
Hirschhorn and Sellers [1]], Ballantine and Merca [2]], Chen [4]], Cui and Gu [5}/6], Keith [[7], Keith and Zanello

[8], Lin and Wang [9], Merca [10,|11], Xia [14] and Yao [15,/16]. For example, Andrews, Hirschhorn and
Sellers [1]] proved that for n > 0,

b4(9n + 4)
b4(9n + 7)

(mod 4),

=0
=0 (mod 12).
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They also proved the following infinite families of congruences modulo 2 for b4(n): for n,a > 0,

: 200+1 _ 1
b4 <320H—2n_|_ ‘]><38) =0 (mod 2)’

where j € {11,17,19}. Merca [10] proved that b4(n) is odd if and only if n is a triangular number. He also
established some relations between b4(n) and the number of partitions into parts not congruent to 2 modulo 4.
Chen [4] proved that for n,a > 1,

r-520-1

ba <52°‘n + 2

> =0 (mod 4),

where r € {13,21,29,37}. Xia [13] proved that for n,o > 1,

"3406—1 -1
by (34°‘n+ Jg) =0 (mod 8),

where j € {11,19}. In [2], Ballantine and Merca proved that for n > 0,
b4(25n+8) = bs(25n+ 13) = bs(25n+18) = b4(25n+23) =0 (mod 16).

Very recently, Ballantine and Merca [3]] proved infinite families of congruences modulo 3 for bg(n). More
precisely, they proved the following theorem.

THEOREM 1. [3] Let a be a nonnegative integer and let p; (1 <i < a+ 1) be primes. If pg+1 =3
(mod 4) and j Z0 (mod pg1), then for all n > 0,

2...p2 24j+5 -5
Motivated by Ballantine and Merca’s works on congruences of b4(n) and bg(n), we investigate congruences
modulo 8 for b4 (n) and congruences modulo 3 for bg(n) in this paper.
The fist goal of this paper is to present a characterization of congruences modulo 8 for b4(n). To state the
main results on congruences modulo 8 for b4(n), define

1, if n = k(k — 1) /2 for some positive integer k,
pi(n) = . 2)
0, otherwise,
Vialn):= Y, (=), 3)
2m2 +’Z(i§ i ')/2:n
Vian):= ), L 4)
47)12+’:(i§i')/2:n
The main results on congruences modulo 8 for b4(n) can be stated as follows.
THEOREM 2. Forn > 1,
b4(n) =l (I’l) — 2V1,2 (n) —|—4V1’4(l’l) (mod 8) 5

For example, setting n = 200 in (3, we deduce that 11;(200) =0, V2 =1,V 4=1and
b4(200)=0—-2x1+4x1=2 (mod 8).

In fact, b4(200) = 122730022082.
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Based on Theorem 2] we obtain the following corollary.
COROLLARY 1. Let p be a prime with p =" (mod 8). If n, & are nonnegative integers with p{n, then

200+2

1
by <p2“+1n+ 1’8) =0 (mod 8). (6)

The second goal of this paper is to establish infinite families of congruences modulo 3 for bg(n) involving
other choices of primes.

THEOREM 3. Let p be a prime with p =1 (mod 24). If bs(5(p — 1)/24) =0 (mod 3), then for n,a >0
with pt (24n+5), then

5(p206+1 _

b6 <p206+1n+ 24

U) =0 (mod 3). (7

Ifbs(5(p—1)/24) #20 (mod 3), then for n,a. > 0 with p{ (24n+5), then

30042

be <p3“+2n+ 5(’)24_1)) =0 (mod 3). (8)

For example, setting p = 73 in Theorem [3|and using the fact that b(15) = 143, we deduce that for o > 0,

5(733k+2 o

1
be (733"+2n+ o )> =0 (mod 3),

where 73 1 (24n+5).

2. PROOFS OF THEOREM 2]AND COROLLARY Il

It is easy to check that

oo oo oo

Z (_1)m+nqm2+n2: Z (_1)m+nqm2+n2+ Z (_ m+n m+n Z 2n?

m7n:1 mn=1, mn=1,
m>n n>m
-2 Z (7 m—i—n m?4-n? Z 2n (9)

mn=1,
m>n

To prove the main results of this paper, we require the following two identities due to Gauss:

- w2 (@q)2
142 Y (-1)¢" = 55> (10)
Z’( \'a (4%:4%)eo
and
oo 2. .2\2
k=1 (4:9)

In light of (1), (I0) and (T1)),

- (g% qY)= (65473
Zm(n)q T (B2 (:9)-
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(k—1)/
1+2zn, 72 Zq

1+ i(_z)j <i(_1)zq2z2> iqk(k—l 2
j =1 k=1

Jj=1

3
Il
—

n2n +4Z m+n 2m+2n>i

m,n=1

—_—

-2

I
—— —
|
[\
M8

MS

l
_

n =1

(—1)"g*" +4Zq4">iq"<"—”/2 (mod 8)  (by @))
k=1

I} agk

(ul( ) =2Via(n) +4V14(n))q", (12)

n

which yields (3)) after comparing the coefficients of ¢” on both sides of (IZ). The proof of Theorem [2] is
complete.

Now, we turn to prove Corollary [I]

It follows from (2) that if p 1 n, then

206_1
) <p2°‘—‘n+ pg> =0. (13)

In addition, from (3) and @), we can rewrite V; »(n) and V; 4(n) as

Via(n) = ) (—1)™, (14)
(4771)2+(rg}:{7211)l2:8n+1
Via(n) = ) 1. (15)

mk>1,
2(4m)2 +(2k—1)2=8n+1

From (T4), we know that if 81+ 1 is not of the form x> + y?, then V; 5(n) = 0. Note that if N is of the form
x? 4y, then v,(N) is even since p is a prime with p =7 (mod 8) and (%) = —1. Here v,(N) denotes the

highest power of p dividing N and (5) denotes the Legendre symbol. It is easy to check that if p { n, then

200+2 1
Vp <8 <p20‘+1n—|— 1)8> + 1) =v,(8p** 'n+ p**t?) =20+ 1

is odd. Therefore, 8 (pz‘”ln + pm;z*l) + 1 is not of the form x> 4+ y* and

a1 P —1
Viglp n—i-ig =0. (16)

It follows from (T3) that if 87+ 1 is not of the form x? +2y?, then V} 4(n) = 0. The facts that v,, (8 (pza*ln + %) + 1)
is odd and (%) = —1 imply that 8 ( 2e-ly pe-t ) + 1 is not of the form x* +2y* and

206_1
Vig <p2a_1n—|— pg> =0. (17)

Congruence () follows from (), (13), (I6) and (I7). This completes the proof of Corollary [I| O
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3. PROOF OF THEOREM [3]

Define

< n (d5*)E
=== 18
éa(n)q @a- (18)

Newman [12] proved that if p is a prime with p =1 (mod 24), then

. n— 3e-1)
a<pn+5(pz4 1)> :a(S(p—l)/24)a(n)—a<p24>. (19)
If 3a(5(p — 1)/24), then
o n— =1
a (pn+ 5(p24 1>> =—a (1)24) (mod 3). (20)

5(p—1)

If p{(24n+5), then % is not an integer and

_ S(p—1)
P [ S ) @1)
P

It follows from (20) and (21) that if 3|a(5(p —1)/24) and p 1 (24n+5), then

S5(p—1
a (pn—i— (p24 )> =0 (mod 3). (22)
Replacing n by pn+ 5<p221) in (20) yields
5(p*—1
a <p2n+ (’924)> = a(n) (mod3). (23)

By (23)) and mathematical induction, we deduce that for n, ot > 0,

2a
a <p2“n+ 5(”241)> = (—1)%(n) (mod 3). (24)

Replacing n by pn+ 221 in (24) and utilizing 22), we find that if 3[a(5(p — 1)/24) and pt (24n+5), then
for n,a > 0,

5 2a+1 -1
a <p2a+1n+ (1724)> =0 (mod 3) (25)

It follows from (19) that if a(5(p—1)/24) =1 (mod 3), then

_ n— o1
a <pn+ 5(p24 1)) =a(n)—a (p24> (mod 3). (26)
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Replacing n by pn+ 5(’;1) in yields

a(p2n+5(p;4_1>> Ea(pn+ 5(p_1)> —a(n) (mod 3),

from which with (26)), we arrive at

2 _ 5(p=1)
a <p2n+ 5(”1)> S (”24> (mod 3). 27)
24 p

By (27), we see that if a(5(p —1)/24) =1 (mod 3) and p 1 (24n+5), then
_ (=)
Y [ vy
p

2 _
a <p2n+ 5(17241)> =0 (mod 3). (28)

and

Replacing n by pn+ S(ZI) in (27) yields

3_
a <p3n+ 5(])241)) =—a(n) (mod 3). (29)

By and mathematical induction, we deduce that for n, o > 0,

300
a <p3°‘n+ 5(19241)) =(—1)%(n) (mod 3). (30)

Replacing n by p*n + 5(”227471) in (30) and using (28)), we see that if a(5(p —1)/24) =1 (mod 3), then for
n,a > 0 with p{(24n+5),

5 3o4+2 _ 1
a <p3a+2n+ (p24)> =0 (mod 3). (31

Identity (T9) implies that if a(5(p —1)/24) =2 (mod 3), then

5(p=1)
1 _
a (pn—i— 5(1724)) =2a(n)—a <”p24) (mod 3). (32)
Replacing n by pn+ S(ZI) in yields
5(p* 1) 5(p—1)
2 S —— P —
a <p n+ > =2a| pn+ o a(n) (mod 3). (33)

Substituting into yields

2 _ 5(p—1)
a (p2n+ 5(1’241)> =a ("24) (mod 3), (34)
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which implies that if a(5(p —1)/24) =2 (mod 3) and p { (24n+5), then

_ 5=
a A S 0
p

and
> SR -1 _
alp’n+————=] =0 (mod 3). (35)
24
If we replace n by pn+ % in , we arrive at
5(p°—1
a (p3n+ (1)24)> =a(n) (mod 3). (36)

By and mathematical induction, we deduce that for n, ¢ > 0,

3o0
a <p3°‘n+ 5(])241)> =a(n) (mod 3). (37)

Replacing n by p*n + 5("227471) in (37) and using (33), we see that if a(5(p —1)/24) =2 (mod 3), then for
n,a >0 with pt (24n+5),

5 3a+2 _ 1
a <p3°‘+2n+ (”24)> =0 (mod 3). (38)
Setting r = 6 in (I)), we get
B (4°:4°)
be(n)q" = ——. (39)
;o (4:9)
By (39) and the fact that
(1-¢*)=(1-¢")> (mod 3),
we arrive at
- (@97,
be(n)q" = —~—~=(mod 3). (40)
,;) (4:9)e
Combining (I8) and (0) yields
bg(n) =a(n) (mod 3). (41)
Theorem [3| follows from (23)), (31, and {1). This completes the proof. O

4. CONCLUDING REMARKS

As seen in Introduction, congruence properties for z-regular partition functions have received a lot of at-
tention in recent years. In this study, we give a characterization of congruences modulo 8 for b4(n) and prove
infinite families of congruences modulo 3 for bg(n). A natural question is to extend the congruences in this
paper to modulo 9, 32, 64, etc. However, it will likely require a different approach since the methods used in
this paper run into serious limitations beyond the modulus of 9.
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