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1. INTRODUCTION

The need to describe important phenomena appearing in control theory, chemistry, physics and biology
strongly are motivated the study of stochastic partial differential equations (SPDEs) in the last decades. In order
to illustrate the range of applications we give the following examples: reaction diffusion equation (see [19]),
Zakai’s equation which arises in filtering theory (see [31]), simulation of a random motion of a string cf. [18],
changes in structure of population cf. [17], Krylov equation or backward diffusion equation (see [32] and the
references therein).

SPDEs are also used to model a free field connected with the relativistic quantum theory (see [21] ) or an
electrical potential of nerve cells utilized in neurophysiology (see [20], [29]).

Other important examples of SPDEs are the Markovian lifting equation which arises in the study of stochas-
tic delay equations (see [15]), the Helmholtz parabolic equation which models the diffraction in a random
nonuniform medium (see [33]), the equation of the number of particles related to continuous branching models
with geographical structure used in chemistry and the population biology or the equation of stochastic quanti-
zation (see [13]).

Concerning the existence, uniqueness and regularity of solutions to SPDEs, important contributions are due
to Krylov and Rozovskii [25], Krylov [23], [24], Rozovsky and Lozotsky [32], Pardoux [31], Kunita [26], Da
Prato and Zabzyck [16], Nualart and Zakai [30], Tubaro [36], Vinter and Kwong [37].

The aim of this paper is to extend the results related to the existence of the solution to some classes of
nonlinear parabolic SPDEs for non-linear PDEs with Neumann boundary conditions introduced in [3] where
the measure-valued branching processes introduced in [4] and [11] are used. Our method is based on the
stochastic characteristics method in the generalized sense cf. [34, 35]. A numerical solution to the Neumann
problem in a Lipschitz domain was developed in [27] and a numerical solution for the non-linear Dirichlet
problem of a branching process was developed in [28].
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The objective of the paper is to prove the existence of the classical solutions for some classes of nonlinear
parabolic SPDEs with Neumann boundary conditions in connection with the results of [3].

The paper is organized as follows. In Section 2 we set a nonlinear parabolic SPDE with Neumann boundary
conditions, related to the problem studied in [3]. In Section 3 we introduce the stochastic characteristics system
(cf. [34,35]) and a second nonlinear problem in relation with the problem from [3]. Further, we obtain the main
results concerning the existence of the classical solutions of the problems considered.

2. SETTING OF THE PROBLEMS

Preliminaries. We present bellow a nonlinear parabolic problem with Neumann boundary condition intro-
duced in [3] in order to construct solutions in the strong sense.

Let O be a bounded, open subset of Rd , d ≥ 1, with smooth boundary Γ (for instance, of class C2 ).
We consider the following nonlinear parabolic problem from [3] :

∂u
∂ t

− 1
2

∆u+αu = 0 in (0,∞)×0,

∂u
∂ν

+β (u) = g on Γ,

u(0, ·) = f in 0,

(1)

where ∂

∂ν
denotes the outward normal derivative to the boundary Γ of O, g is a positive continuously differen-

tiable function on Γ, f ∈C(Ō), α ∈ R⋆
+ and β : R→ R− is a continuous mapping defined as

β (u) =


∫

∞

0
(e−su −1)η(ds)−bu, if u ≥ 0,

0, i f u < 0.
(2)

where η is a positive measure on R+ satisfying
∫
R+

(s∧1) η(ds)< ∞ and b ∈ R+.
We suppose that

∫
R+

(s∧1) η(ds)+b ≤ γ := inf
v∈H1(O)

||∇v||2L2(O)
+α||v||2L2(O)

||v||2L2(Γ)

. (3)

Note that the condition (3) is equivalent with the property of the function u −→ β (u)+ γ(u) to be nonde-
creasing.

The function −β appearing in 1 is called a branching mechanism. Now, we give an example of branching
mechanism verifying the condition 3.

We set

βN(u) =
m

Γ(1−m)

∫ N

0

e−su −1
sm+1 ds,

with N > 0 and 0 < m < 1. For a convenient number c < 0, the limit case is cum, since

−um =
m

Γ(1−m)

∫
∞

0

1− e−su

sm+1 ds = lim
N→∞

βN(u).

Remark 1. It is stated in the proof of Proposition 2.2 from [3] that Vt f = limn→∞(I+
t
n

A)−1 f in L2(O) for f ∈
L2(O).
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Problem 1. Let O and Γ as before and set d = 3. Let (Ω,K ,(Ft)t≥0,P) be a complete probability space
and (Wt)t≥0 be a 3-dimensional Wiener process on this space.

Considering the following non-linear parabolic SPDEs with Neumann boundary condition
dv = [L v(t,x)−αv(t,x)]dt +

3

∑
i=1

Biv(t,x)dW i
t , t ≥ 0,x ∈ O,

∂v

∂ν
+β (v) = g on Γ,

v(0, ·) = f in 0,

(4)

where

L v(t,x) =
1
2

3

∑
i=1

ai j(t,x)
∂ 2v(t,x)

∂xix j
−

3

∑
i=1

bi(t,x)
∂v(t,x)

∂xi
,

Biv(t,x) =
3

∑
i= j

αi j(t,x)
∂v(t,x)

∂x j
, i = 1, · · · ,n,

with ai j,bi,αi j smooth enough and αi j with compact support in O.
Let us denote σ1 = (αi j)

T the 3×3 matrix given by the coefficients of the white noise term and for every
i = 1, · · · ,n, αi = (αi1,αi2,αi3)

T .
Let σ2 be a matrix 3× 3 such that σ2σT

2 = (αi j)−σ1σT
1 ; we put σ = (σ1,σ2). Notice that σσT = (αi j).

We denote ∇σ1 ·σ1(t,x) the 3-dimensional vector with i-th component

3

∑
j=1

3

∑
h=1

∂αi j(t,x)
∂xh

·αh j(t,x).

Also let g and f be two enough smooth functions.

3. THE EXISTENCE RESULTS USING THE STOCHASTIC CHARACTERISTICS SYSTEM

We consider the random field ξ j(t;s,x) of stochastic characteristics introduced by Kunita (see [26]). We
define ξ j(t;s,x) the solution of the stochastic differential equationdξ (t) =

1
2

∇σ1σ1(t,ξ (t))dt −σ
T
1 (t,ξ (t))dWt ,

ξ (s) = x, x ∈ R3.

(5)

Problem (5) has for every s ≥ 0, a unique solution (see Theorem 6.1.2 from [26]); moreover the first

derivative
∂ξ (s; t,x)

∂xl
verifies a linear stochastic differential equation that by the regularity of the αi j

′s has a

bounded solution. When the initial time is s = 0 we will write ξ (t,x) = ξ (t;0,x).
Taking into account the assumptions on the coefficients of (5) by Theorem 6.1.5 from [26] we have that the

solution ξ (t;s,x) has a modification that is a C2-diffeomorfism for all t ≥ s.
Let us denote by η(s; t,x) the inverse mapping of ξ ,i.e., the unique process such that

η(s; t,ξ (t;s,x)) = ξ (t;s,η(s; t,x)) = x a.s.

The process η(s; t,x) is a solution to the Itô backward differential equation

dη(s) =
1
2

∇σ1σ1(s,η(s))ds+σ
T
1 (s,η(s))dWs
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with η(t; t,x) = x. We define the process η(t,x) := η(0; t,x).

We recall that the coefficients αi j(t,x) have compact support in O. From this and equation (5) it follows that
for any x /∈ O, ξ (t,x) = x for all t. Thus, we find that O is η- invariant in the sense of [1].

In the sequel, we impose that the following assumptions hold, taking into account the existence result
from [3] that the solution u of the problem (1) exists and belongs to C1([0,∞];H2(O)).

Assumption 1 (compatibility conditions).

⟨(σ2σ
T
2 )∇ηi(t,ξ (t,x)),∇η j(t,ξ (t,x))⟩= 0, for all i ̸= j;

⟨(σ2σ
T
2 )∇ηi(t,ξ (t,x)),∇ηi(t,ξ (t,x))⟩= 1 for all i;

1
2

Tr[(σ2σ
T
2 )∇

2
ηi(t,ξ (t,x))]+ ⟨b(t,ξ (t,x))− 1

2
∇σ1σ1(t,ξ (t,x)),∇ηi(t,ξ (t,x))⟩= 0 for all j.

Assumption 2 (regularity of u). We assume that u ∈C1([0,∞];H4(O)).

THEOREM 1. According to the assumptions from the beginning of Section 2, Assumption 1 and Assumption
2 the problem (4) admits a unique classical solution v ∈ L2[(Ω,K ,P);C([0,∞);C2(Ō))] which is adapted to
the filtration (Ft)t≥0.

Proof. We consider v(t,x) := u(t,ξ (t,x)). It is known that H4(O) ↪→C2(Ō). Applying the Itô formula (see
Theorem 3.3.1 from [26] or Proposition 2 from [36]) to u(t,ξ (t,x)) it follows that v(t,x) is the unique classical
solution of the problem (4) which belongs to L2[(Ω,K ,P);C([0,∞);C2(Ō))]. The fact v is adapted to (Ft)t≥0
follows from the adaptivity of ξ (t,x) and by Remark 1.

Conversely, if problem (4) admits a classical solution v(t,x) for a.e. ω ∈ Ω applying Itô formula to
v(t,η(t,x)) we get that problem (1) has a solution.

Problem 2. Let O and Γ be as before and d = 3. Let (Ω,K ,(Ft)t≥0,P) be a complete probability space
and (Wt)t≥0 be a 3-dimensional Wiener process on this space.

Considering the following nonlinear parabolic SPDEs with Neumann boundary condition
dv = [L v(t,x)+h(t,x)]dt +[θ T (t,x)v(t,x)+ γ

T (t,x)]dWt , t > 0,x ∈ O,

∂v

∂ν
+β (v) = g on Γ,

v(0, ·) = f in 0,

(6)

where
L v(t,x) =

1
2

∆v(t,x)+bT (t,x)∇v(t,x)+ c(t,x)v(t,x),

b(t,x) is a 3-dimensional column-vector composed of the coefficients bi(t,x), c(t,x) and h(t,x) are scalar func-
tions, θ(t,x) and γ(t,x) are 3-dimensional column-vectors composed of the coefficients θ i(t,x) and γ i(t,x)
respectively.

Definition 1. We say that v is a strong classical solution to the problem (6) if it is (Ft)t≥0 adapted and the
following relations hold almost surely



5 Classical solutions for some classes of nonlinear parabolic SPDES with Neumann boundary conditions 5


v(t,x) = v(0,x)+

∫ t

0
[L v(s.x)+h(x)]dξ +

∫ t

0
[θ T (s,x)v(s,x)+ γ

T (s,x)]dWs, t > 0, x ∈ O

∂v

∂ν
+β (v) = g on Γ,

v(0, ·) = f in 0.

Further, we assume the following conditions on the problem (6), taking into account the existence result
from [3] that the solution u of the problem (1) exists and belongs to C1([0,∞];H2(O)).

Assumption 1. (smoothness of the coefficients). We suppose that the coefficients in (6) are sufficiently
smooth to apply the Itô formula and θ i(t,x) and γ i(t,x) have compact support in O for any i.

Assumption 2. (compatibility conditions). We assume that

b(t,x)+a(t,x)∇η(t,x) = 0,

c(t,x)− 1
2
|θ(t,x)|2 +bT (t,x)∇η(t,x)+

1
2

∇
T

η(t,x)∇η(t,x)+
3

∑
i, j=1

∂ 2η(t,x)
∂xi∂x j

= α,

e−η(t,x)h(t,x)− 1
2
|θ(t,x)|2ξ (t,x)− e−η(t,x)

γ
T (t,x)θ(t,x)+L ξ (t,x)+∇

T
ξ (t,x)∇η(t,x)+

1
2

ξ (t,x)∇T
η(t,x)∇η(t,x)+

1
2

ξ (t,x)
3

∑
i, j=1

∂ 2η(t,x)
∂xi∂x j

= 0,

where
dη = θ

T (t,x)dWt , η(0,x) = 0,

dξ = γ
T (t,x)e−η(t,x)dWt , ξ (0,x) = 0.

Assumption 3. (regularity of u). We assume that u ∈C1([0,∞);H4(O)).

THEOREM 2. Under the assumptions from above the problem (6) has a unique classical solution in the
strong sense.

Proof. We consider v(t,x) = eη(t,x)u(t,x)+ eη(t,x)ξ (t,x). It is known that H4(0) ↪→ C2(Ō). Applying Itô
formula (see Theorem 3.3.1 from [26] or [32]) to eη(t,x)u(t,x)+eη(t,x)ξ (t,x) it follows that v(t,x) is the unique
solution of the problem (6) which belongs to L2[(Ω,K ,P);C([0,∞);C2(Ō))]. Using similar technique as in the
case of problem (4), we obtain the adaptivity of v.

Conversely, if the problem (6) admits a classical solution v(t,x) for a.e. ω ∈ Ω applying Itô formula to
e−η(t,x)v(t,x)−ξ (t,x)e−η(t,x) we get that problem (1) has a solution.

Remark 2. As in the case of problem (4) Theorem 2 was proved under rather strong assumptions, in partic-
ular that u ∈ C1([0,∞);H4(0)) which allow us to obtain a classical solution v for problem (6). If we consider
u ∈ C1([0,∞);H2(O)]) then it can be obtained applying Itô formula proved in [22] a generalized solution v of
problem (6) in the sense of [32].

Final remark. Our aim was to prove the existence of the classical solutions for some classes of nonlinear
parabolic SPDEs with Neumann boundary conditions considered in [3]. In the first step, we set the problem
(4) related to a class of nonlinear parabolic SPDEs with Neumann boundary conditions. Then, we get the
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existence of a classical solution for this problem, by using some results concerning the stochastic characteristics
system cf. [34, 35]. Further, we consider another class of SPDE defined in (6) and we obtained the main
result concerning the existence of the classical solution. It is a challenge to investigate numerical methods for
SDEs with jumps, in connection with the fragmentation and avalanche phenomena studied in [6–9], taking into
account the associate measure-valued branching processes from [10] and [12], an analogue SPDE similar to [4],
and the sochastic solutions to the evolution equations of non-local branching processes from [12] and [5].
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[9] Beznea L, Ionescu I.R, Lupaşcu-Stamate O. Random multiple-fragmentation and flow of particles on a surface. Journal of Evolution

Equations 2021; 21(4):1-25 DOI:10.1007/s00028-021-00732-z
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