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Abstract. This paper focuses on integrating optimization algorithms to address practical challenges in
nonlinear systems, emphasizing the design of robust and accurate control for a two-wheeled unstable
transporter. The laboratory equipment is a research and industrial system designed to test various
control algorithms in complex and unstable environments. The system response determined using the
default model parameters, provided by the nonlinear mathematical model, was found to differ
considerably from real-time experimental results. Therefore, the nonlinear mathematical model had to
be modified to be more accurate so that simulation results correspond to the actual behaviour of
equipment in real-time. Three optimization algorithms were employed to establish the optimal
parameters of the nonlinear mathematical model of the system, considering three key signals: the
average rotational velocity of the wheel (0), the yaw angle from the vertical axis (y) and the angle of
rotation around the vertical axis (¢). A comparative analysis confirms that the proposed methodology
can be delivered in practical applications and demonstrates its capability to provide high-
performance, flexible, and stable solutions developed for nonlinear systems. The results of this
research highlight the need for integrating optimization algorithms in solving real-world engineering
problems

Keywords: nonlinear mathematical model, metaheuristic algorithms, control design, two-wheeled
unstable transporter.

1. INTRODUCTION

As discussed in many seminal books on mechatronics [1-5], mechatronic systems are the integration of
mechanical engineering, electrical engineering, and computer science to have systems that work well and
efficiently. The purpose of such intelligent systems is to correlate intelligence, versatility, and malleability to
address diverse operational requirements. Mechatronic systems combine sensors, actuators, controllers and
software to achieve real-time feedback, allowing for controlled and automated functions in both simple and
complex systems. Mechatronics is primarily focused on the integration of hardware and software
components. This synergy enables reduced costs, energy efficiency, and enhanced productivity. Moreover,
the ability of these systems to be tailored to suit a wide range of environments makes them powerful tools.
The importance of the role of mechatronic systems is further emphasized as industries move towards smart
and sustainable solutions. Future mechatronic systems are expected to be more autonomous, interconnected
and capable of complex operational requirements with emerging technologies such as artificial intelligence
(AI), machine learning, and the Internet of Things (IoT) where the innovation will cross regional and sectoral
barriers.

The Two-Wheeled Unstable Transporter (Tw-UnTrans), described in [6], is an educational platform
that demonstrates real-time control of a mobile vehicle. The control system is also quite complicated and
thus two separate control algorithms need to be implemented. A main controller, which usually draws on
Linear Quadratic Regulators (LQR), makes sure that the transporter maintains its upright unstable
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equilibrium. The secondary algorithm enables the transporter to track a planned path. The Tw-UnTrans is an
educational platform that provides live experience with real-time control systems, allowing for different
strategies such as Proportional-Integral-Derivative (PID), LQR, Sliding Mode, Fuzzy Logic and Adaptive
Control. Real time feedback from this modular design permits research and development to be flexible. It is
however an unstable system; the feedback control must be exact and precise. In addition, it is easily
disturbed by noise or other external factors, making software-hardware integration a complex and highly
resource-consuming process. Taking this into account, the Tw-UnTrans serves as a practical and
comprehensive platform for the study and development of advanced control strategies.

This paper proposes a control design methodology based on optimization techniques to improve the
performance and efficacy of a Tw-UnTrans system. As shown in [7], regarding the nonlinear mathematical
model (MM), the analysis identified several major discrepancies, so the nonlinear MM had to be revised to
make the output signals be as close as possible to the real-time simulation of the equipment. Thus, it
becomes imperative to find sets of parameters that guarantee that the results from the simulations are as close
as possible to the real-time experimental results. In order to optimally tune the performance and efficacy of
the model, three metaheuristic algorithms are utilized in the study, such as: Flying Foxes Optimization (FFO)
[8-11], Grey Wolf Optimizer (GWO) [9], [12—-14] and Particle Swarm Optimization (PSO) [9], [15-17].
These metaheuristic algorithms guarantee that the model parameters are adjusted to stability, robustness, and
adaptability requirements. By integrating such advanced optimization techniques, the performance of the
whole system can be significantly enhanced even when encountering uncertainties and different operating
conditions.

This paper makes the following contributions based on the mathematical modeling and dynamical
analysis discussed as follows: (i) a control design methodology based on optimization algorithms for
performance and efficiency improvement of the Tw-UnTrans; (ii) a nonlinear MM modification (adjustment)
to reduce the differences between the model’s simulation and experimental results, allowing for a more
realistic real-time equipment representation; (iii) application of three metaheuristic algorithms to optimally
tune the model parameters and (iv) a detailed comparative analysis to evaluate and validate the proposed
methodology for high performance, flexibility and stability in solutions developed for nonlinear systems.

The use of metaheuristic algorithms is motivated by the idea that an optimal solution can be found for
applications for which the search space is complex and nonlinear, since they have achieved great results in
multiple domains. Since the authors plan to implement other nonlinear process models based on fuzzy logic
and neural networks, to be used in model-based control in the future, the intention is to use the metaheuristic
algorithms instead of the classical least-squares regression. Moreover, these algorithms only require
evaluations of the cost function, so they yield a continuous-time formulation of the optimization problem
which can leverage rich input/output data information and avoid the time treatment specific to discrete
input/output data pairs.

This paper is organized as follows: Section 1 outlines the general framework in which this paper is
situated, specifying the relevance and motivation for the topic addressed in this study. Details regarding the
architecture and functionality of the Tw-UnTrans and the modified nonlinear MM are given in Section 2.
Section 3 defines the optimization problem that has been resolved by the three metaheuristic algorithms. In
Section 4 a comparison-based validation of the proposed approach was carried out, and in Section 5,
conclusions are summarized.

2. TWO-WHEELED UNSTABLE TRANSPORTER

The Tw-UnTrans laboratory equipment is a nonlinear and unstable mobile device, somewhat similar to
an inverted pendulum. This equipment is used for practical testing and verification of linear and nonlinear
control algorithms, innovative training solutions in the fields of automation, robotics, instrumentation and
process control. As pointed out in [6], to make the system stand vertically, it uses two DC motors that can
steer the wheels both forward and backward. A real-time control algorithm executes in a single-board
computer to determine the appropriate direction and torque produced by these DC motors. An Inertial
Measurement Unit (IMU) consisting of encoders, gyroscopes and accelerometers, present data, which is used
to control the system input, that is, the controller output determines whether the appropriate direction is
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given by these DC motors in real-time or not. Fig. 1 illustrates the functional representation of the Tw-
UnTrans device. The Tw-UnTrans parameters, which are derived from [6] are listed in [7] and [18].

9 )

Fig. 1 — Tw-UnTranslaboratory equipment [6

Taking into account the significant discrepancies between the system’s response using the default
parameters provided by Inteco in [6] and [7], in order to improve the performance of the system, the
nonlinear MM was modified, resulting in:
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The measured or calculated parameters of the model are: m and M (kg, kg) denote the weights of the
wheel and vehicle, 2R (m) denotes the diameter of the wheel, # and L (m) denote the width of the vehicle and
the height of the mass center of the vehicle, Rpc () denotes the resistance of the winding of the DC motor, K;
and K, (Nm/A, Vs/rad) denote the torque and voltage constants of the DC motor, f,, denotes the identified
friction coefficient between the vehicle and DC motor, and J,=mR?, J,=ML?/3, Js, J (kg m?) denote the
moments of inertia of the wheel, of the vehicle tilt axis, of the vehicle related to the axis of rotation and of the
DC motor and gearbox taking into account gearbox ratio.
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3. OPTIMIZATION PROBLEM AND ALGORITHMS

3.1. Optimization problem

The optimization problem discussed in this paper, needed for the optimal tuning of the parameters in
(1)-(3) seeks to minimize the cost function J(p"7")
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where / denotes the type of mathematical model of the Tw-UnTrans system (here # =NL, nonlinear MM), j
denotes the type of optimization algorithm, here j = {FFO, GWO, PSO}, / denotes the type of signal to be
optimized [ = {6, y, ¢}. e, (0" )=yi(p" /)y, (p"")yindicates the modeling error at the i”sampling
interval, y; (p~~')) denotes the actual (measured) system output and j, (/) denotes the model output. In this
context, pl~-)is the vector containing the model parameters, ("~ is the vector of the optimal model
parameters, p indicates the feasible range ofp*=i-), and N indicates the length of the time interval. The

tunable parameter vector for the model (system) is

p(NL—FFO/GWO/PSO—H/z//M})):[m RMWL J¢ Jm I(1 Kb fm kg ku/ k¢ klﬁr]T' (5)

To determine the optimal parameters of the nonlinear MM, three metaheuristic algorithms are used, which are
implemented according to the information in Sub-section 3.2.

3.2. Optimization algorithms

Metaheuristic algorithms start from an initial random solution and iteratively generate improved
solutions using an operator of specific type to solve optimization problems. They are similar in that they start
with one or more random solutions within an acceptable range and use the same approach to find the best
solution. For these algorithms, the first set of solutions is referred to as a population, and single solutions are
called particles, ants, or chromosomes. New solutions are created through operators and combinations of
starting solutions. The cycle continues, choosing from existing solutions until some stopping criterion is
reached.

A. Flying Foxes Optimization (FFO)

Inspired by the foraging technique of flying foxes, FFO algorithm has shown to been able to solve
complex optimization problems in many problem areas. It is reminiscent of how flying foxes use their
excellent sense of smell to detect fruit trees and their echolocation ability to fly towards them. However,
perhaps due to its recent rise, it was not investigated or practically applied as much as other well-known
optimization methods. In Fig. 2 given in [19], the FFO algorithm flowchart is illustrated. As shown in [8-11],
cool, hot means the best and worst solutions (position vector); X;’~U(XminXmas), X; indicates the j” element of
the i” flying fox at the ¢ iteration;  is a positive attraction constant, 7and~U(0,1), randj is a random number in
(0,1), pa is a probability constant, Xp,» Xp, are two distinct random members of a population, and each

population member is uniformly distributed, xjfjl is the position of the new flying fox, & is a randomly selected

t+1 1+

value selected from the group {1,2,....d} and makes sure that x;" selects at least one component from nxi,j1 to

stop the creation of the new solution from being identical to the old one, SL is the survival list, NL is a list
with the best distinct solutions known so far, n is a random integer selected in [2, NL], while pD is a
probability constant pD=(nc—1)/population size, nc is the number of flying foxes that have the same cost
function value as the best one discovered, and R; and R are randomly selected distinct individuals from a
population, whereas L is a random number selected in (0,1).
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B. Grey Wolf Optimizer (GWO)

GWO is based on or inspired from the social preferences and hunting mechanism of gray wolves in
nature. It mimics how gray wolves align themselves in a hierarchy and work together when hunting. The
GWO algorithms are generally known for its simplicity and good balance between exploration and
exploitation capability in finding the optimal solution of a broad category of complex optimization problems.
GWO has proven to be a successful method in many industries such as economy as well as in computer
science and engineering. In Fig. 3 (a) given in [19], the GWO algorithm flowchart is shown, as described in

[9] and [12-14], where: A= 2ar, —a, C= 27, represent the coefficient vectors, 7, 7, represent two random

vectors whose element is in [0, 1], @ presents the linear decrease from 2 to 0 with the number of iterations,
and X,, X3, X,, Xsrepresent the wolves positions. Particular attention should be paid to the vector operations
that are explained in comprehensible variants and detailed in [13] and [14].

C. Particle Swarm Optimization (PSO)

According to a user-defined quality metric, PSO iteratively improves a candidate solution. This
achieves the social dynamics seen among birds or fish. PSO has received attention due to its simplicity and
efficiency in tackling complex optimization problems across diverse fields; showing effective application
value in the aspect of continuous optimization problems and achieving various successes in engineering
design and machine learning. In Fig. 3 (b) given in [19], the PSO algorithm flowchart is presented, as
described in [9], [15-17], where: x;, v; represents the current positions and velocities, x;(t+1),vi(t+1) are
position and velocity at iteration ¢+1, p;, g(¢) represents the local best for a particle and global best position
and w, ¢, c; represents the inertia, cognitive and social coefficients.

4. RESULTS AND DISCUSSION

As detailed in Section 1, in addition to improving the accuracy of our results, the nonlinear MM of the
Tw-UnTrans equipment was adapted (modified) to better represent the equipment’s real-time responses. The
optimal parameters of this model were identified through three different optimization algorithms, as given in
Sub-section 3.2. The parameters were determined corresponding to the application of the nonlinear MM as
an open-loop system with two additional control signals, u,. and u;.. This represents control signals for right
and left motors respectively. These signals were divided into two equal parts, each with a simulation duration
of 28 seconds, in order to facilitate testing and validation. Table 1 given in [19] displays the optimal
parameters and the corresponding cost function values for the three optimization algorithms in the case of
three output signals. For every algorithm as well as for each input signal, ten test runs have been done. The
average of the ten runs was then calculated to obtain a single data set. For all three optimization algorithms,
the search intervals for the u,. and u. inputs with the three outputs {0, v, §} were

LB=[0.3 0.058 52 0.39 0.099 0.045 0.0011 0.014 0.024 0.0001 0.23 0.07 0.005 1], 6
UB=[037 0.08 542 045 0.11 0.05 0.00151 0.027 0.045 0.0005 0.3 0.2 0.0078 3]. ©)

Figs. 4 (a)-(f) given in [19] show the output signals after each optimization with FFO (8 signal as a
function of J(p"-F00) Jp"FrOvy J(pMFO9y; y signal as a function of J(p" Oy JNTrOVy  jpNrrOdy
and ¢ signal as a function of J(p"~" ) j"-rrov)  j"-Fr4)). Fig. 4 (a) and (b) show the 0 signal, Fig. 4

(¢) and (d) show the y signal and Fig. 4 (e) and (f) show the ¢ signal. These are represented as a function of
the optimized parameters for each objective function, compared to the experimentally obtained signal.
Similar results are found in Figs. 5 (a)-(f) for the GWO algorithm and in Figs. 6 (a)-(f) for the PSO

algorithm, figures which are also presented in [19]. Based on Figs. 4-6, best signals appear to be: J(p’) for
signal, J(p")for y signal and J(p’) for ¢ signal. As seen from the vastly lower deviations and better matching

between target and signal behavior in the test and validation stages, these signals align much more closely
with the experimental data. This indicates that for every signal, these implementations of the FFO, GWO and
PSO algorithms suitably optimize the model parameters for each respective signal.
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Another comparison of experimental and simulated signals for testing and validation stages using the
three optimization algorithms is illustrated in Fig. 7 for 8 signal, Fig. 8 for  signal and Fig. 9 for ¢ signal,
These figures are also presented in [19]. Additionally, by comparing these four signals, we enable the
assessment of relative algorithm performance in specific conditions and discover further information
regarding which algorithms find applications in particular engineering domains. To evaluate the performance
of the optimization methods for the 6, w and ¢ signals, we have examined both optimal parameter values
with the cost function values from Tabel 1 and the graphical results illustrated in Figs. 7, 8 and 9.

0 signal: FFO garners a relatively low-cost function value (J(p"*""°~?)=0.5457), which indicates that
optimizing performance is good. The GWO and PSO performances have the lowest cost function values,
indicating the best optimization result with respect to the & signal for the algorithms compared (J(p"“
G0-0)=0.5111 and J(p"*"597%)=0.5235). As shown on Fig. 7, it can be seen that the signals extracted by
using GWO, PSO and FFO show similar behavior compared with the respective experimental signal, which
effectively demonstrates the purpose of reproducing the dynamic process of € signal. Validation results show
that GWO and PSO still continued to remarkably match experimental data and were good enough to
extrapolate outside of the training conditions. Here FFO is also good, with only slight deviations.

w signal: Out of the three optimization algorithms, GWO achieves the best performance, evidenced by
the smallest cost function value J(p"* "97¥)=5.966-10"°, hence GWO seems to be superior in accurately
matching the nonlinear MM with the experimental results. It is followed closely by PSO with marginally
higher value of cost function J(p":°7¥)=6.5472:107°, indicating its efficacy in optimally tuning the
parameters as well. FFO is also a feasible performer, but not as good as GWO or PSO, having a cost function
value of J(p""97¥)=6.551-107. Fig. 8 confirms these findings further. During the validation stage, the y
signal using GWO and PSO closely corresponds with the experimental signal, especially regarding the
precision of the phase and amplitude alignment, while FFO shows good agreement with the experimental
signal, he only shows minor deviations in its ability to capture the dynamic response.

¢ signal: At the same time, GWO outperformed all algorithms with the best minimum cost function
value J(p"t "07%)=4.154-10"°, FFO is the second best with J(p* 7 %)=4.514-107. PSO did fairly well,
albeit with a slightly higher cost function value, J(p" "% %)=4.814-107, indicating a competitive
optimization. Fig. 9 presents the graphical representations and further corroborates these results. In the
testing stage, the signals obtained through GWO, FFO, and PSO closely follow the experimental signal,
providing evidence of the model accuracy. But for the validation, again, GWO and FFO are better fitted to
the experimental data than PSO.

Overall, GWO achieves superior results across all three signals, followed closely by PSO, whilst FFO
gives good results but slightly lower accuracy. To test the three optimization algorithms, Matlab code was
used for FFO, GWO and PSO algorithms, the information (m_files) can be found at [20], reproduced in the
reference works [8], [9] and [12—18]. Also, detailed descriptions and Matlab implementations of
representative metaheuristic algorithms are given in the book [21]. Nevertheless, other metaheuristic
algorithms can be successfully applied to solve the optimization problem given in (4); they include the
adaptation of the binary anarchic society optimization [22], adaptation of optimization used in cloud-based
identification of an evolving systems [23], adaptation of optimization used in fuzzy FMEA-based risk
evaluation [24], adaptation of optimization used in object identification and localization [25], hybrid
quantum-classical formulations of optimization algorithms [26], adaptations of optimization algorithms used
in machine learning [27, 28], adaptation of optimization used in active structures [29], slime mould
algorithms [30], and adaptation of optimization used in data-driven control [31, 32]. Additional information
on the process, optimal parameters of the nonlinear MM and used algorithms are available from the authors
upon request.

5. CONCLUSIONS

This paper proposed a control design methodology based on optimization techniques to improve the
performance and efficacy of a Tw-UnTrans system. It was observed that the default nonlinear MM of the
system had a large deviation from the real-time experimental results, therefore it was modified to ensure that
the model represents more closely the behavior of the real system. With these modifications, the simulation
results matched experimental data, reduced errors and improved accuracy.
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In order to optimize the nonlinear MM parameters, three metaheuristic algorithms were employed:
FFO, GWO and PSO. The model parameters were tuned for 0 (the average rotational velocity of the wheel),
v (the yaw angle from the vertical axis) and ¢ (the angle of rotation around the vertical axis) signals. Among
these algorithms, GWO and PSO consistently delivered the most accurate and efficient results, closely
matching real-time experimental results. FFO also performed well, although with slightly higher cost
function values. The proposed control design methodology was demonstrated through experimental testing
and simulations, achieving excellent agreement between the optimized model and real-time experimental
results. Graphical comparisons and cost function analyses provided clear evidence of the effectiveness of the
approach. This paper establishes a robust and flexible solution for the Tw-UnTrans system, proving the
practicality of using metaheuristic optimization for nonlinear control systems.

The study highlights importance of integrating optimization techniques in the design of control
systems, especially for systems that are complex or unstable, such as Tw-UnTrans. This methodology can be
extended to more general nonlinear systems and has a high potential to be useful in robotics, mechatronics,
and control engineering. This paper helps in developing adaptive solutions by creating a relationship between
theoretical modeling and practical implementation.
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