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Abstract. Fuzzy Support Vector Machine (FSVM) is a machine learning algorithm that combines fuzzy 

logic with Support Vector Machine (SVM) to deal with the uncertainty and fuzziness in classification 

and regression problems. This algorithm improves the performance of traditional SVM by introducing 

fuzzy membership degrees, making it more robust when handling datasets with noise or uncertainty. 

Although the existing FSVM algorithms can overcome the influence of noise to a certain extent, they 

cannot effectively distinguish outliers or abnormal values from boundary support vectors. To solve this 

problem, this study proposes an Intuitionistic Fuzzy Support Vector Machine algorithm (KGRA-

IFSVM) based on Kernel Grey Relational Analysis (KGRA). This approach utilizes gray relational 

analysis in the kernel space to calculate the gray relational degree between each sample and its 𝐾 

isomorphic neighboring points, and takes the average value as the membership degree of the sample. 

Then, the same approach is used to compute the gray relational degree between each sample and its 𝐾 

heterogeneous neighboring points, and the average value is taken as the non-membership degree of the 

sample. Finally, each sample is assigned with an appropriate fuzzy value based on intuitionistic fuzzy 

sets using a specific scoring function. Test results on UCI datasets show that KGRA-IFSVM has better 

classification performance and stronger noise resistance.  

Keywords: fuzzy support vector machine, intuitionistic fuzzy number, kernel grey relational analysis, 

fuzzy member function. 

1. INTRODUCTION 

With the continuous development of information technology, the scale, complexity, and diversity of data 

continue to increase. How to extract useful information from these massive amounts of data has become one 

of the key issues [1]. As a powerful tool, machine learning has been widely used in the field of data mining 

[2]. Data mining mainly includes tasks such as classification, clustering, and anomaly detection [3]. Among 

them, classification problems are widely existed in practical applications and are important research contents 

in the field of machine learning and data mining. In recent years, many classification learning algorithms have 

been proposed successively, including decision tree (DT), artificial neural network (ANN), support vector 

machine (SVM), naive Bayes classifier (NB), and K-nearest neighbor (KNN) [4]. Among them, SVM are 

superior to other machine learning algorithms, such as ANN, in terms of generalization ability [5]. The latter 

has problems of overfitting and local minimums [5]. SVM can overcome the problems of local minimums and 

the curse of dimensionality in traditional machine learning algorithms [6]. In a variety of applications such as 

face detection, feature extraction, gene prediction, and other classification problems, the performance of 

support vector machines is better than most other learning techniques [5]. However, SVM treats all samples 

equally, ignoring the influence of outliers and noise on the construction of the optimal hyperplane, which 

makes it perform poorly in imbalanced classification problems or problems with irregular data distribution [6]. 

In response to this, scholars have proposed the fuzzy support vector machine algorithm (FSVM). 

FSVM is a machine learning algorithm that combines the advantages of fuzzy logic and SVM. It 

improves the standard SVM by introducing the concept of fuzzy logic [7]. In FSVM, fuzzy logic is used 

to deal with the uncertainty and fuzziness in the data [7]. By assigning a fuzzy membership degree to each 

sample, FSVM can more flexibly deal with the weights of the samples and the determination of the 

classification boundary [8]. This makes FSVM have better robustness in processing complex datasets with 
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noise, uncertainty and outliers. The key to FSVM is how to automatically or adaptively determine the 

fuzzy membership degree of training data [9]. Lin and Wang [10] calculated the membership degrees of 

training samples based on the distances between samples and class centers in the input space.  However, 

when the training data is not spherically distributed, the classification contribution of each sample may 

not be correctly represented. For nonlinear classification problems, Jiang et al. [11] performed kernel 

extension on the fuzzy membership degree calculation formula in [10], and the fuzzy membership degree 

was calculated in the feature space. Based on [11], Wang et al. [12] calculated the outlier factor of 

instances in the kernel space by utilizing the similarity of sampling points and their neighborhood 

densities. The membership degree of majority instances was set as the reciprocal of the outlier factor, 

while the membership degree of minority instances was set to 1 to highlight their importance. However, 

the distribution characteristics of minority instances were not taken into account. Tang et al. [13] 

calculated the fuzzy membership degree of instances based on the grey relational degree between instances 

and class centers. Although this approach can effectively distinguish boundary support vectors from 

outliers, the model is sensitive to noise because the class centers are prone to deviation caused by noise 

or outliers. The above fuzzy membership degree calculation approaches are all determined based on the 

relationship between instances and a certain class, rather than the relationship between classes, which 

leads to inaccurate sample distribution information. To address this issue, Ha and Wang [14] combined 

the membership degree and non-membership degree determined by the instance distribution information 

with the intuitionistic fuzzy set to calculate the classification contribution value of the instance. Among 

them, the membership degree was calculated based on the distance between the instance and the class 

center, while the non-membership degree was calculated based on the ratio of the number of 

heterogeneous points of the instance to the number of all instances within its neighborhood. However, i f 

the class center is calculated inaccurately or affected by noisy data, the membership degree of the sample 

may deviate, which may further affect the classification performance. 

Obviously, most of the existing FSVM algorithms measure the classification contribution value 

(membership degree) of each sample based on the Euclidean distance between samples, and the 

classification performance of the model is largely limited by the distribution of samples. In this regard , 

based on the literature [13] [14], this study proposes a new method to calculate the classification 

contribution value of samples. In the high-dimensional feature space, the kernel grey relational analysis 

approach is utilized to calculate the grey relational degrees between the instances and their 𝐾𝑎 isomorphic 

neighboring points, and the mean values are taken as the membership degree of the instances. Similarly, 

the grey relational degrees between the instances and their 𝐾𝑏  heterogeneous neighboring points are 

calculated, and the mean values are taken as the non-membership degree of the instances. Finally, the 

classification contribution of different instances is obtained through the scoring function. Compared with 

the literature [13], [14], the calculation of instance classification contribution in this paper no longer relies 

on the calculation of class centers, which can effectively distinguish outliers from noise and better cope 

with the impact of noise or outliers. 

The main contributions of this paper are as follows: 

• A new method for calculating the degree of membership is proposed, which utilizes grey relational 

analysis in the kernel space to calculate the degree of membership and non-membership of samples. 

• Based on the concept of intuitionistic fuzzy set, the training samples are converted into intuitionistic 

fuzzy numbers, and a new score function for intuitionistic fuzzy numbers is introduced to measure the 

contribution of intuitionistic fuzzy numbers. Finally, a new FSVM is constructed according to the score value 

of each training sample. 

The rest of this paper is structured as follows: Section 2 briefly introduces the basic principles of FSVM 

and the limitations of a membership degree calculation method. Section 3 first introduces the basic principles 

of kernel grey relational analysis and intuitionistic fuzzy set, and then proposes a new membership degree 

calculation method based on them. The rationality of this method is analyzed on an irregular artificial dataset. 

In Section 4, tests are performed on eight UCI datasets to verify the effectiveness of the KGRA-IFSVM 

algorithm. Section 5 concludes the paper. 
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2. FUZZY SUPPORT VECTOR MACHINE 

When performing binary classification on data containing noise or outliers, SVM assigns the same 

misclassification cost to each sample, which results in significant bias in the decision boundary [15]. Unlike 

SVM, FSVM assigns different fuzzy membership degrees to instances based on a specified fuzzy membership 

function, distinguishing the classification contributions of different samples through the magnitude of fuzzy 

membership degrees [16]. Assuming an initial binary classification dataset is: 𝐷 = {(𝑥𝑖, 𝑦𝑖)| 𝑖 = 1,2,⋯ ,𝑁}, 
where 𝑥𝑖 ∈ 𝑅

𝑚  represents an m-dimensional input vector and 𝑦𝑖 ∈ {−1,1}  represents the class label. By 

introducing the fuzzy membership degree, the dataset is expanded to 𝐷𝑠 = {(𝑥𝑖, 𝑦𝑖 , 𝑠𝑖)| 𝑖 = 1,2,⋯ ,𝑁}, where 

𝑠𝑖 represents the membership degree of the 𝑖th instance. The objective function of FSVM can be expressed as: 

min
𝜔,𝑏

1

2
‖𝜔‖2 + 𝐶∑𝑠𝑖𝜀𝑖

𝑁

𝑖=1

 (1) 

𝑠. 𝑡.  𝑦𝑖(𝜔
𝑇𝜑(𝑥𝑖) + 𝑏) + 𝜀𝑖 ≥ 1, 𝜀𝑖 ≥ 0, ∀𝑖 = 1,2,⋯ ,𝑁. 

The membership degree 𝑠𝑖 of the instance 𝑥𝑖 is incorporated into the objective function in the FSVM 

optimization problem (1), which is the only difference from the original SVM optimization problem. The fuzzy 

value 𝑠𝑖  represents the weight of instance 𝑥𝑖  in the objective function, reflecting the importance of the 

corresponding instance to the classification hyperplane [17]. Then, by assigning smaller fuzzy values to noise 

and outliers, the classification hyperplane becomes more reasonable. Obviously, with the help of a well-defined 

membership function, FSVM can effectively handle outliers and noise. Therefore, defining an appropriate 

fuzzy membership function becomes a critical issue for improving the generalization performance of FSVM. 

In reference [10], the membership function is defined as: 

𝑠𝑖 =

{
 

 1 −
|𝑥𝑖 − 𝑜

+|

𝑟+ + 𝛿
, 𝑦𝑖 = +1

1 −
|𝑥𝑖 − 𝑜

−|

𝑟− + 𝛿
, 𝑦𝑖 = −1

,    𝑟+ = max
{𝑥𝑖:𝑦𝑖=1}

|𝑥𝑖 − 𝑜
+|,    𝑟− = max

{𝑥𝑖:𝑦𝑖=−1}
|𝑥𝑖 − 𝑜

−| (2) 

𝑜+and 𝑜− are the class centres of the minority instances and the majority instances, respectively. 

 

 
Fig. 1 – Fuzzy membership values of instances calculated by class center. 



362 Zhe JU, Qingbao ZHANG 4 

Obviously, Eq. (2) is a membership degree calculation method based on the distance between instances 

and class centres. As shown in Fig. 1, we have analysed the limitations of this method on an artificial dataset. 

When confronted with such annular-like data, the performance of the algorithm is greatly affected. This is 

because the support vectors are mostly distributed near the classification hyperplane and far away from the 

class centre. The membership degree calculation approach based on the class centre assigns very small 

membership degrees to the support vectors near the classification hyperplane, making it easy for the support 

vectors to be misjudged as noise or outliers. Furthermore, the importance of samples at the same distance from 

the class centre may not necessarily be the same. 

3. INTUITIONISTIC FUZZY SVM BASED ON KERNEL GREY RELATIONAL ANALYSIS 

Based on the above analysis, we find that when facing datasets with irregular distribution or complicated 

distribution, the membership degree calculation method based on Euclidean distance may be invalid. To 

address this issue, based on a new score function of intuitionistic fuzzy numbers and kernel grey relational 

analysis, this study proposes a new method to calculate the degree of membership. 

3.1. Kernel grey relational analysis 

The basic idea of grey relational analysis is to judge whether the connection is close based on the 

similarity of the geometric shape of the sequence curve. The value is only related to the geometric shape of the 

sequence, and has nothing to do with its spatial relative position [18]. As for the actual data, they do not 

necessarily have typical distribution laws, and there are often uncertain quantitative relationships between 

attributes. Traditional distance approaches cannot accurately measure the closeness between samples [18]. 

Based on the above characteristics, this paper adopts grey relational degree to replace Euclidean distance to 

calculate the similarity between samples, so as to reduce the limitations on the spherical distribution of samples 

and the dependence on the spatial relative positional relationship. 

To establish the relationship between each sample and its 𝐾 nearest neighbors, it is necessary to analyze 

the grey relational degree between the comparison sequence and the reference sequence, thereby determining 

the differences and connections between them. First, the data need to be dimensionless processed. 

𝛾(𝜑(𝑥𝑖), 𝜑(𝑥𝑘)) is used to represent the grey relational degree between the target sample sequence 𝑥𝑖 and the 

kth nearest neighbor sequence 𝑥𝑘 in the kernel space, while 𝛾[𝜑(𝑥𝑖)(𝑙), 𝜑(𝑥𝑘)(𝑙)] represents the relationship 

between 𝑥𝑖 and 𝑥𝑘 at 𝑙 [19, 20]. The equation is as follows: 

𝛾(𝜑(𝑥𝑖), 𝜑(𝑥𝑘)) =
1

𝑚
∑𝛾[𝜑(𝑥𝑖)(𝑙), 𝜑(𝑥𝑘)(𝑙)]

𝑚

𝑙=1

 (3) 

Here, 𝜑(𝑥𝑖) represents the Gaussian kernel mapping of sample 𝑥𝑖, 𝜑(𝑥𝑖)(𝑙) represents the 𝑙th element 

of 𝑥𝑖 in high-dimensional space, and 𝑚 represents the number of sample features, 0 < 𝛾(𝜑(𝑥𝑖), 𝜑(𝑥𝑘)) ≤ 1. 

According to the basic principles of grey relational analysis, the grey relational degree depends on the 

closeness of the two sequence curves. The smaller |𝜑(𝑥𝑖)(𝑙) − 𝜑(𝑥𝑘)(𝑙)| is, the larger 𝛾[𝜑(𝑥𝑖)(𝑙), 𝜑(𝑥𝑘)(𝑙)] 
becomes [19, 20]. The equation is as follows: 

𝛾[𝜑(𝑥𝑖)(𝑙), 𝜑(𝑥𝑘)(𝑙)] =
min
𝑘
 min
𝑙
|𝜑(𝑥𝑖) − 𝜑(𝑥𝑘)| + 𝜌 max 

𝑘
max
𝑙
|𝜑(𝑥𝑖) − 𝜑(𝑥𝑘)|

|𝜑(𝑥𝑖)(𝑙) − 𝜑(𝑥𝑘)(𝑙)| + 𝜌 max
𝑘
 max
𝑙
|𝜑(𝑥𝑖) − 𝜑(𝑥𝑘)|

,   𝑙 = 1,2,⋯𝑚 (4) 

where 𝜌 is the resolution factor, 𝜌 ∈ [0,1]. 
To measure the importance of the target sample 𝑥𝑖 , the average value of the grey relational degree 

between the target sample and its 𝐾 nearest neighbors is taken as the degree of attribution between the target 

sample and the category. The calculation formula is as follows: 

𝛾𝑖𝑘 =
1

𝐾
∑𝛾(𝜑(𝑥𝑖), 𝜑(𝑥𝑘))

𝐾

𝑘=1

 (5) 
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3.2. Categorical contribution of instances based on intuitionistic fuzzy numbers 

Fuzzy set is the basis of constructing FSVM. However, the membership degree of elements in fuzzy set 

is only a real number, which can only represent one of the degrees of support (affirmation), opposition 

(negation) and hesitation (uncertainty) in practical applications such as decision-making, but cannot represent 

the degree of all the three at the same time. In this regard, Atanassov [21] proposed an intuitionistic fuzzy set 

based on three aspects of information: membership degree, non-membership degree, and hesitation degree, so 

that the intuitionistic fuzzy set can describe and characterize the essence of fuzziness in the objective world 

more delicately than the traditional fuzzy set. 

For a binary classification problem, instances can be transformed into intuitionistic fuzzy numbers using 

intuitionistic fuzzy sets [22, 23]: 

𝐷𝑠 = {(𝑥𝑖, 𝑦𝑖 , 𝜇𝑖 , 𝑣𝑖)|  𝑖 = 1,2,⋯ ,𝑁} (6) 

Here, 𝜇𝑖 represents the membership degree of 𝑥𝑖, while 𝑣𝑖 represents the non-membership degree of 𝑥𝑖. 
For each given intuitionistic fuzzy number (𝑢𝑖, 𝑣𝑖), a scoring function can be used to measure the classification 

contribution of each training sample. 

For each given intuitionistic fuzzy number (𝜇𝑖 , 𝑣𝑖), the score function can be used to measure the 

classification contribution of each training sample. we define the scoring function as [22, 23]: 

𝐻(𝑥𝑖) = {

0，𝑢(𝑥𝑖) < 𝑣(𝑥𝑖)

1 − 𝑣(𝑥𝑖)

2 − 𝑢(𝑥𝑖) − 𝑣(𝑥𝑖)
,   others

 (7) 

where 𝑣(𝑥𝑖) = [1 − 𝜇(𝑥𝑖)]𝜌(𝑥), 𝜌(𝑥) represents the average value of the grey relational grade between an 

instance and its 𝐾𝑏 heterogeneous neighboring points. 𝜇(𝑥) represents the average value of the grey relational 

grade between an instance and its 𝐾𝑎 isomorphic neighboring points. 

Finally, the classification contribution values of the instances are defined as: 

𝑠𝑖(𝑥𝑖
−) =

𝐻(𝑥𝑖
−)

𝐼𝑅
= {

0，𝑢(𝑥𝑖
−) < 𝑣(𝑥𝑖

−)

1 − 𝑣(𝑥𝑖
−)

2 − 𝑢(𝑥𝑖
−) − 𝑣(𝑥𝑖

−)
,   others

 (8) 

𝑢(𝑥𝑖
−) = 𝛾𝑖𝑘

− =
1

𝐾2
∑𝛾(𝜑(𝑥𝑖

−), 𝜑(𝑥𝑘
−)),    

𝐾2

𝑘=1

𝐾2 = √𝑁2 (9) 

𝑣(𝑥𝑖
−) = (1 − 𝑢(𝑥𝑖

−))
1

𝐾1
∑𝛾(𝜑(𝑥𝑖

−), 𝜑(𝑥𝑘
+)),    

𝐾1

𝑘=1

𝐾1 = √𝑁1 (10) 

where 𝐼𝑅 is the ratio of the number of samples in the majority category to the number of samples in the minority 

category; 𝑥𝑖
−  – the majority instances, 𝑥𝑘

−  – the 𝑘 th isomorphic adjacent point of 𝑥𝑖
− , and 𝑥𝑘

+  – the 𝑘 th 

heterogeneous adjacent point of 𝑥𝑖
−; 𝑁1  – the number of minority instances, 𝑁2  is the number of majority 

instances 

𝑠𝑖(𝑥𝑖
+) = 𝑢(𝑥𝑖

+) = 𝛾𝑖𝑘
+ =

1

𝐾1
∑𝛾(𝜑(𝑥𝑖

+), 𝜑(𝑥𝑘
+)),    

𝐾1

𝑘=1

𝐾1 = √𝑁1 (11) 

where 𝑥𝑖
+ – the minority instances, and 𝑥𝑘

+ – the 𝑘th isomorphic adjacent point of 𝑥𝑖
+; 𝑁1 – the number of 

minority instances. 

To explore the rationality of this approach, the proposed approach is used to calculate the fuzzy 

membership values of samples in the artificial dataset, and the fuzzy membership values of the instances 

corresponding to Fig. 1 are marked out. The results are shown in Fig. 2. As shown in Fig. 2, the fuzzy 

membership values of the samples on the periphery of the dataset and the support vectors near the classification 

hyperplane are not too small as shown in Fig. 1, so they will not be misjudged as noise or outliers. Instead, it 

follows the distribution characteristics of instances. Therefore, the fuzzy membership function designed based 

on Kernel grey relational analysis and intuitionistic fuzzy numbers score function is more reasonable. 
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Fig. 2 – Fuzzy membership values of instances calculated by KGRA. 

Integrating the fuzzy membership values 𝑠𝑖(𝑥𝑖
−) and 𝑠𝑖(𝑥𝑖

+), calculated based on intuitionistic fuzzy 

numbers and kernel grey relational analysis, into the objective function (1) of FSVM, a new objective function 

is obtained as: 

min
𝜔,𝑏

1

2
‖𝜔‖2 + 𝐶∑𝑠𝑖(𝑥𝑖

+)𝜀𝑖 + 𝐶∑𝑠𝑖(𝑥𝑖
−)𝜀𝑖 (12) 

𝑠. 𝑡.  𝑦𝑖(𝜔
𝑇𝜑(𝑥𝑖) + 𝑏) + 𝜀𝑖 ≥ 1, 𝜀𝑖 ≥ 0, ∀𝑖 = 1,2,⋯ ,𝑁 

Until now, we propose an intuitionistic fuzzy support vector machine algorithm based on kernel grey 

relational analysis. The training process of this model is summarized as Algorithm 1. 

 

Algorithm 1 KGRA-IFSVM algorithm 

Input: Training dataset 𝐷 = {(𝑥𝑖, 𝑦𝑖)|  𝑖 = 1,2,⋯ ,𝑁}, Initializing the penalty factor 𝐶 and the Gaussian 

kernel parameter 𝑔 (𝐶 = 20, 𝑔 = 2−15). 
Output: Predicted labels 

Step 1: The training set is divided into 𝐷1 and 𝐷2, where 𝐷1 is the set of minority instances and 𝐷2 is the 

set of majority instances. The number of samples in 𝐷1  and 𝐷2  are represented by 𝑁1  and 𝑁2 

respectively; 

Step 2: Calculate the number of isomorphic neighbor points 𝐾1 and the number of heterogeneous neighbor 

points 𝐾2; 

Step 3: For the instance 𝑥𝑖
+ ∈ 𝐷1, calculate 𝑠𝑖(𝑥𝑖

+) of the minority instance according to (11); 

Step 4: For the instance 𝑥𝑖
− ∈ 𝐷2, calculate 𝑢(𝑥𝑖

−) and 𝑣(𝑥𝑖
−) according to (9)−(10); 

Step 5: Calculate 𝑠𝑖(𝑥𝑖
−) of the majority instance according to (8); 

Step 6: Train the model on the training set. 

Step 7: Verify the performance of KGRA-IFSVM using the test set. 
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4. VALIDATION 

In this section, we utilize benchmark datasets to explore the performance and superiority of our proposed 
algorithm. Ten-fold cross-validation is adopted for ten times to select all parameters of the algorithm. The 

Gaussian kernel function 𝐾(𝑥1, 𝑥2) = exp(−𝑔‖𝑥1 − 𝑥2‖
2) is used for all datasets. All tests were conducted 

on a PC with an AMD Ryzen 5 Microsoft Surface (R) Edition processor running at 2.10 GHz, and the 
algorithms were implemented on MATLAB 2023b. 

4.1. Evaluation metrics 

The classification performance of traditional classification models is evaluated based on accuracy. When 
dealing with unbalanced classification problems, it can only guarantee the classification accuracy of the 
majority instances while ignoring the influence of the minority class, resulting in very poor classification 
accuracy of the minority instances [24]. To effectively evaluate the classification performance of the model, 
AUC, G-mean (GM) and F1 Score (F1) are taken as the evaluation indicators of the model [25, 26]. Most of 
them are based on the confusion matrix, as shown in Table 1. 

GM = √𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (13) 

F1 =
2 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (14) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (15) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (16) 

 
Table 1 

Confusion matrix 

 Predicted class 

Actual class Positive Negative 

Positive TP (true positive) FN (false negative) 

Negative FP (false positive) TN (true negative) 

 
The ROC curve for calculating AUC takes the false positive rate as the horizontal axis and the recall rate as 

the vertical axis, which is a curve used to measure the performance of the binary classification model, reflecting 
the trade-off between the classifier's coverage of positive examples and its coverage of negative examples. The 
area enclosed by the ROC curve and the X-axis can be used as a comprehensive measurement indicator, namely 
AUC. The closer the value of AUC is to 1, the better the overall performance of the model is [25]. 

4.2. Test results on 8 benchmark datasets 

Considering that the contribution of KGRA-IFSVM to classification tasks may be limited to specific 
datasets, the scope of this study has been broadened. In this section, we selected 8 datasets from UCI 
repositories (https://archive.ics.uci.edu/) and obtained a series of binary classification datasets with different 
imbalance ratios by using different combinations of categories from the datasets to evaluate the performance 
of the proposed KGRA-IFSVM model in handling imbalanced classification problems. Table 2 gives a 
complete description of each dataset, where the minority class and majority class columns contain the complete 
list of class combinations for these datasets. All attributes are normalized to the interval [0,1]. 70% of the 
minority instances are randomly selected as the training set, while the remaining 30% are used as the test set. 
The same process is applied to the majority instances. Next, the classification performance of KGRA-IFSVM 
on different datasets in Table 2 will be verified based on the flowchart of Algorithm 1. During the test process, 
the model was also compared with algorithms such as  FSVM [10], KLOF-FSVM [12], GRD-FSVM [13], and 
K-IFSVM [14], and the results are shown in Table 3. (We select the optimal combination of penalty factor 𝐶 

and kernel parameter 𝑔  in [20, 215] and [2−15, 20] based on the ten-fold cross-validation for ten times to 
ensure that the AUC value of the model in the test set is the largest, and record the Gm value and F1 value at 
this time. In addition to the inconsistency of the membership calculation method, the test environment of the 
comparative algorithms is consistent.) 



366 Zhe JU, Qingbao ZHANG 8 

Table 2 

Details of the imbalanced datasets 

Name Attributes Instances 
minority 
instances 

majority 
instances 

IR Minority Class Majority Class 

E. coli 7 272 52 220 4.23 class3 Class1,2 

Vertebral-column 6 310 100 210 2.10 Class2 Class1 

Vehicle 18 416 199 217 1.09 Class1 Class2 

Yeast3 8 1484 49 1435 29.29 Class6,10 others 

mammographic 5 961 445 516 1.16 Class2 Class1 

Glass 9 214 29 185 6.38 Class6 others 

Cardiotocography-1 21 584 252 332 1.32 Class7 Class6 

Cardiotocography-2 21 854 275 579 2.11 Class3,4,5,9 Class2 

 

 

Table 3 

Classification results obtained by six algorithms on eight datasets, where the best values are in bold 

Measure AUC Gm F1 AUC Gm F1 

 Dataset: E. coli Dataset: Vertebral-column 

FSVM 0.9666±0.0037 0.9394±0.0052 0.9079±0.0092 0.9296±0.0026 0.8263±0.0086 0.7699±0.0116 

KLOF-

FSVM 
0.9700±0.0041 0.9314±0.0064 0.8969±0.0110 0.9354±0.0023 0.8339±0.0052 0.7716±0.0059 

GRD-

FSVM 
0.9698±0.0039 0.9324±0.0075 0.8980±0.0128 0.9349±0.0019 0.8302±0.0072 0.7684±0.0087 

K-IFSVM 0.9678±0.0027 0.9404±0.0041 0.9123±0.0063 0.9326±0.0020 0.8303±0.0027 0.7775±0.0038 

KGRA-

IFSVM 
0.9764±0.0042 0.9457±0.0055 0.9126±0.0082 0.9374±0.0042 0.8561±0.0051 0.7896±0.0065 

 Dataset: Vehicle Dataset: Yeast3 

FSVM 0.9994±0.0002 0.9785±0.0035 0.9773±0.0036 0.9866±0.0024 0.8169±0.0168 0.6678±0.0164 

KLOF-

FSVM 
0.9995±0.0001 0.9877±0.0015 0.9870±0.0016 0.9872±0.0005 0.6161±0.0111 0.4972±0.0133 

GRD-

FSVM 
0.9995±0.0008 0.9887±0.0015 0.9880±0.0016 0.9867±0.0004 0.5772±0.0171 0.4618±0.0240 

K-IFSVM 0.9974±0.0003 0.9641±0.0020 0.9630±0.0019 0.9859±0.0012 0.7543±0.0164 0.6063±0.0174 

KGRA-

IFSVM 
0.9995±0.0001 0.9887±0.0010 0.9880±0.0010 0.9881±0.0020 0.9213±0.0105 0.7344±0.0153 

 Dataset: mammographic Dataset: Glass 

FSVM 0.8844±0.0019 0.8126±0.0020 0.8050±0.0023 0.9771±0.0077 0.9088±0.0245 0.8904±0.0269 

KLOF-

FSVM 
0.8904±0.0012 0.8169±0.0030 0.8083±0.0032 0.9850±0.0078 0.9260±0.0117 0.8905±0.0163 

GRD-

FSVM 
0.8892±0.0015 0.8170±0.0029 0.8059±0.0030 0.9850±0.0078 0.9260±0.0117 0.8905±0.0163 

K-IFSVM 0.8822±0.0010 0.8125±0.0021 0.8046±0.0020 0.9743±0.0077 0.9162±0.0089 0.8673±0.0190 

KGRA-

IFSVM 
0.8905±0.0008 0.8249±0.0015 0.8143±0.0016 0.9850±0.0078 0.9260±0.0117 0.8905±0.0163 

 Dataset: Cardiotocography-1 Dataset: Cardiotocography-2 

FSVM 0.9930±0.0007 0.9655±0.0024 0.9612±0.0026 0.9892±0.0012 0.9490±0.0053 0.9306±0.0065 

KLOF-

FSVM 
0.9936±0.0007 0.9589±0.0027 0.9540±0.0029 0.9895±0.0012 0.9501±0.0042 0.9317±0.0044 

GRD-

FSVM 
0.9934±0.0006 0.9607±0.0038 0.9561±0.0043 0.9894±0.0013 0.9498±0.0042 0.9325±0.0054 

K-IFSVM 0.9927±0.0004 0.9650±0.0025 0.9607±0.0029 0.9882±0.0010 0.9486±0.0051 0.9295±0.0060 

KGRA-

IFSVM 
0.9937±0.0007 0.9676±0.0019 0.9633±0.0020 0.9907±0.0011 0.9560±0.0040 0.9362±0.0047 
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(a)                                                                                                    (b) 

 
(c) 

Fig. 3 –Average ranking of the model's classification performance. 

As can be seen from the final test results in Table 3, the algorithm proposed in this paper has achieved 

the best classification results under the evaluation metrics of AUC, GM, and F1. Since the new algorithm 

KGRA-IFSVM has shown good classification performance on datasets with different distribution 

characteristics, it is more likely to capture the general rules behind the data compared with other algorithms, 

rather than just overfitting a specific dataset, which increases the credibility of the model's generalization 

ability. In addition, through multiple cross-validations, the model has been fully trained and evaluated on 

different partitions of training and test sets. The robustness of this method further reduces the risks of random 

errors and overfitting. Fig. 3 shows the average rank values of different classification algorithms on all datasets. 

It can be seen from Fig. 3a that the average rankings of AUC values of FSVM and K-IFSVM on all datasets 

are the lowest, so their comprehensive classification performance is the weakest, which is because the fuzzy 

membership degrees of these three approaches are calculated based on the distance between instances and class 

centers. However, the presence of outliers or noise can cause the class centers to shift, thereby affecting the 

assessment of the fuzzy membership degrees of samples. Compared to FSVM and K-IFSVM, KLOF-FSVM 

exhibit superior comprehensive classification performance because they consider the compactness around each 

instance when calculating the fuzzy membership degree, thus enabling them to obtain more accurate instance 

distribution information. The fuzzy membership degree of GRD-FSVM is also calculated based on the class 

center, but instead of computing the Euclidean distance between an instance and the class center, it is measured 
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according to the similarity of geometric shapes between the target sample sequence and the class center 

sequence. Although it is still sensitive to noise and outliers, it is more adaptable to various datasets with 

irregular distribution characteristics. As can be seen from Fig. 3a, the comprehensive classification performance 

of GRD-FSVM is second only to the new algorithm and is rarely affected by possible outliers. This may be 

because there are very few noises or outliers in these datasets themselves. Later, we will verify the noise 

immunity of these algorithms by adding different levels of Gaussian white noise to the datasets. The higher 

the F1 value is, the higher the classification accuracy of the model for minority classes will be. As can be seen 

from Figure 3(c), the classification performance of KLOF-FSVM and GRD-FSVM for minority instances is 

second only to the new algorithm, because KLOF-FSVM sets the membership degree of minority instances to 

1, while GRD-FSVM is not affected by the distribution characteristics of the dataset. The average ranking of 

F1 values of K-IFSVM on all datasets is the lowest, which indicates that the classification accuracy of 

intuitionistic fuzzy support vector machine on minority instances is lower than that of FSVM. The KGRA-

IFSVM algorithm combines the advantages of GRD-FSVM and K-IFSVM. It can describe and characterize 

the fuzzy nature of classification problems more precisely through intuitionistic fuzzy sets, and can also enable 

the model to be applied to datasets with different distribution characteristics through the grey relational analysis 

method. Theoretically speaking, the complexity of the algorithm in this paper is equivalent to that of FSVM, 

KLOF-FSVM, GRD-FSVM, and K-IFSVM, which is 𝑂(𝑙2), where 𝑙 is the number of samples. However, 

KGRA-IFSVM requires some extra computation time when calculating the classification contribution value 

𝑠𝑖 of the samples. FSVM, GRD-FSVM, and K-IFSVM only need to analyze the relevant information between 

each sample and the class center when calculating 𝑠𝑖, while KGRA-IFSVM needs to additionally analyze the 

correlation between each sample and its 𝐾𝑎 isomorphic nearest neighbors as well as 𝐾𝑏 heterogeneous nearest 

neighbors. Obviously, KGRA-IFSVM takes longer time to train on a larger training set.  

In addition, following the approach in reference [27], this study selected to add Gaussian white noise 

ranging from − 6 dB to 8 dB in the “E. coli” dataset, further analyzing the noise resistance of KGRA-IFSVM. 

The test results are presented in Table 4, and a visual analysis is conducted as shown in Fig. 4. The noise 

resistance of GRD-FSVM is significantly better than FSVM, which also indicates that replacing the Euclidean 

distance between samples with grey relational degree can overcome the influence of noise to a certain extent. 

When −2 ≤ SNR ≤  4, the noise resistance of K-IFSVM is superior to FSVM and GRD-FSVM, which 

confirms the effectiveness of introducing intuitionistic fuzzy sets. KGRA-IFSVM exhibits the optimal noise 

resistance, which benefits from its combination of the advantages of GRD-FSVM and K-IFSVM. 

 

  
Fig. 4 – Comparison of performance under different noise conditions. 
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Table 4 

Comparison of performance under different noise conditions 

 -4dB -2dB 0dB 2dB 4dB 

FSVM 0.6456 0.7002 0.7744 0.8721 0.9201 

KLOF-FSVM 0.7273 0.7888 0.8595 0.9126 0.9412 

GRD-FSVM 0.6969 0.7669 0.8393 0.8976 0.9357 

K-IFSVM 0.6955 0.8180 0.8430 0.9044 0.9407 

KGRA-IFSVM 0.7833 0.8275 0.8772 0.9183 0.9452 

5. CONCLUSION 

This study proposes an intuitionistic fuzzy support vector machine algorithm based on kernel grey 

relational analysis. Firstly, the limitations of the fuzzy membership degree calculation approach based on the 

distance between instances and class centers are analyzed on artificial datasets. It is found that the class center 

may shift due to the presence of outliers, which leads to inaccurate estimation of sample weights. To address 

this issue, the study calculates the membership degree of instances based on the grey relational degree between 

the instances and their 𝐾 nearest neighbors. To obtain more accurate sample distribution information and the 

relationship between classes, the intuitionistic fuzzy set is further introduced into the calculation of sample 

weights. By calculating the non-membership degree, we can obtain heterogeneous information of instances. 

Test results on 8 UCI datasets show that the proposed algorithm has superior classification performance. 
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