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Abstract. Considering the quantitative properties of some particular subgroups of a finite group, we prove that
(1) a non-solvable group G has exactly 5 non-subnormal non-supersolvable proper subgroups if and only if
G ∼= A5 or SL2(5). (2) a non-solvable group G has exactly 5 non-subnormal non-2-nilpotent proper subgroups
if and only if G ∼= A5 or SL2(5). (3) a non-solvable group G has exactly 16 non-subnormal non-2-closed proper
subgroups (or two same order classes of non-subnormal non-2-closed proper subgroups) if and only if G ∼= A5
or SL2(5). Our results improve some known related research.
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1. INTRODUCTION

All groups are assumed to be finite. Huppert [2] showed that a group all of whose proper subgroups are
supersolvable is solvable. As a generalization, Shi and Zhang [6, Theorem 1.1] had the following result.

THEOREM 1.1 [6, Theorem 1.1]. Let G be a group.
(1) If G has at most 4 non-supersolvable proper subgroups, then G is solvable.
(2) G is a non-solvable group with exactly 5 non-supersolvable proper subgroups if and only if all non-

supersolvable proper subgroups are conjugate maximal subgroups and G/Φ(G)∼= A5.

In Section 2 of this paper, we prove the following result which provides a complete improvement of [6,
Theorem 1.1 (2)].

THEOREM 1.2. Suppose that G is a non-solvable group having exactly 5 non-supersolvable proper sub-
groups, then G ∼= A5 or SL2(5).

As an extension of [6, Theorem 1.1] and Theorem 1.2, considering non-subnormal non-supersolvable
proper subgroups, we have the following result, the proof of which is given in Section 3.

THEOREM 1.3. (1) Suppose that a group G has at most 4 non-subnormal non-supersolvable proper sub-
groups, then G is solvable.

(2) A non-solvable group G has exactly 5 non-subnormal non-supersolvable proper subgroups if and only
if G ∼= A5 or SL2(5).
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A group G is called a 2-nilpotent group if G has a normal 2-complement. It is easy to see that a 2-nilpotent
group is solvable by Feit-Thompson theorem and a minimal non-2-nilpotent group is also solvable by [4,
Proposition 2]. As a generalization, Shi and Liu [7, Theorem 1.1] had the following result.

THEOREM 1.4 [7, Theorem 1.1]. (1) If a group G has at most 4 non-2-nilpotent proper subgroups, then
G is solvable.

(2) If G is a non-solvable group having exactly 5 non-2-nilpotent proper subgroups, then G/Φ(G) ∼= A5,
where Φ(G) = Z(G) is a 2-group.

Arguing as in the proof of Theorem 1.2, we can obtain the following result which provides a complete
improvement of [7, Theorem 1.1 (2)].

THEOREM 1.5. Suppose that G is a non-solvable group having exactly 5 non-2-nilpotent proper subgroups,
then G ∼= A5 or SL2(5).

As an extension of [7, Theorem 1.1] and Theorem 1.5, considering non-subnormal non-2-nilpotent proper
subgroups, arguing as in the proof of Theorem 1.3, we have the following result.

THEOREM 1.6. (1) Suppose that a group G has at most 4 non-subnormal non-2-nilpotent proper sub-
groups, then G is solvable.

(2) A non-solvable group G has exactly 5 non-subnormal non-2-nilpotent proper subgroups if and only if
G ∼= A5 or SL2(5).

A group G is said to be 2-closed if the Sylow 2-subgroup of G is normal. Observe that a 2-closed group
is solvable by Feit-Thompson theorem and a minimal non-2-closed group is also solvable by [1]. As a gener-
alization, [8, Theorem 1.1] proved that a group having at most 15 non-2-closed proper subgroups is solvable,
and if G is a non-solvable group having exactly 16 non-2-closed proper subgroups, then G/Φ(G)∼= A5, where
Φ(G) = Z(G) = 1 or a cyclic 2-group.

In Section 4 of this paper, we have the following result which provides a complete improvement of [8,
Theorem 1.1 (2)].

THEOREM 1.7. Suppose that G is a non-solvable group having exactly 16 non-2-closed proper subgroups,
then G ∼= A5 or SL2(5).

Shi and Liu [8, Theorem 1.2] showed that a group in which all non-2-closed proper subgroups have the
same order is solvable and if G is a non-solvable group having exactly two same order classes of non-2-closed
proper subgroups, then G/Φ(G)∼= A5, where Φ(G) = Z(G) = 1 or a cyclic 2-group. Arguing as in the proof of
Theorem 1.7, we can obtain the following result which is a complete improvement of [8, Theorem 1.2 (2)].

THEOREM 1.8. Suppose that G is a non-solvable group having exactly two same order classes of non-2-
closed proper subgroups, then G ∼= A5 or SL2(5).

The following corollary is a direct consequence of Theorem 1.8.

COROLLARY 1.9. Suppose that G is a non-solvable group having exactly two conjugacy classes of non-
2-closed proper subgroups, then G ∼= A5 or SL2(5).

As an extension of [8, Theorem 1.1], Theorem 1.7, [8, Theorem 1.2] and Theorem 1.8, considering non-
subnormal non-2-closed proper subgroups, arguing as in the proof of Theorem 1.3, we have the following result.

THEOREM 1.10. (1) If a group G has at most 15 non-subnormal non-2-closed proper subgroups, then G
is solvable.

(2) A non-solvable group G has exactly 16 non-subnormal non-2-closed proper subgroups if and only if
G ∼= A5 or SL2(5).

(3) If all non-subnormal non-2-closed proper subgroups have the same order, then G is solvable.
(4) A non-solvable group G has exactly two same order classes of non-subnormal non-2-closed proper

subgroups if and only if G ∼= A5 or SL2(5).
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2. PROOF OF THEOREM 1.2

Proof. We first have G/Φ(G)∼= A5 by [6, Theorem 1.1 (2)].
Let L be a maximal subgroup of G such that L/Φ(G) ∼= A4 and M be a maximal subgroup of G such that

M/Φ(G)∼= Z5 ⋊Z2, where L is a minimal non-supersolvable group and M is a supersolvable group. Let πe(G)
be the set of all prime divisors of |G|. Then πe(G) = πe(G/Φ(G)) = {2, 3, 5}.

Claim: 5 ∤ |Φ(G)|.
Otherwise, assume 5 | |Φ(G)|. Then 5 | |L|. It follows that |L| has 3 distinct prime divisors. Since L is a

minimal non-supersolvable group, one has |L| = pαqrp by [5], where p, q and r are distinct primes, α ≥ 1,
pαq | r− 1 and p | q− 1. It is easily seen that r > q > p. One has r = 5. However, 2α · 3 ∤ 4, a contradiction.
Therefore, 5 ∤ |Φ(G)|.

Let Q ∈ Syl5(M). It is obvious that Q is also a Sylow 5-subgroup of G. Since M is supersolvable and 5 is
the largest prime divisor of |M|, Q is normal in M. Note that 5 ∤ |Φ(G). It follows that QΦ(G) = Q×Φ(G) is
nilpotent. Then Φ(G)≤CG(Q). Furthermore, one has Φ(G)≤CG(QG), where QG is the normal closure of Q in
G. Since Q≰Φ(G) and G/Φ(G) is a non-abelian simple group, QG =G. It follows that Φ(G)≤CG(G)= Z(G).
Moreover, since G is non-abelian and G/Φ(G) is a non-abelian simple group, one has Z(G) ≤ Φ(G). Thus
Φ(G) = Z(G).

Claim: 3 ∤ |Φ(G)|.
Otherwise, assume 3 | |Φ(G)|. Let T be a maximal subgroup of Φ(G) such that Φ(G)/T ∼= Z3. Then

(G/T )/Φ(G/T ) = (G/T )/(Φ(G)/T ) ∼= G/Φ(G) ∼= A5. It follows that G/T ∼= A5 × Z3. However, A5 × Z3
has more than 5 non-supersolvable proper subgroups which implies that G has more than 5 non-supersolvable
proper subgroups, a contradiction. Therefore, 3 ∤ |Φ(G)|.

Hence Φ(G) = Z(G) = 1 or a 2-group.
Let P ∈ Syl2(G). Then P/Φ(G) = P/Z(G)∼= Z2 ×Z2.
Claim: Z(G) = 1 or Z2.
Otherwise, assume |Φ(G)|= |Z(G)|= 2s, where s ≥ 2. For any maximal subgroup N of Φ(G), Φ(G/N) =

Φ(G)/N =Z(G)/N ∼=Z2. Since (G/N)/(Φ(G)/N)∼=G/Φ(G)∼=A5 and (G/N)/(Φ(G)/N)= (G/N)/Φ(G/N),
one has G/N ∼= SL2(5). It follows that P/N ∼= Q8, which implies that P is non-abelian.

It is obvious that Z(G)≤ Z(P). If Z(G)< Z(P). Then P/Z(P)∼= 1 or Z2, which implies that P is abelian, a
contradiction. Therefore, Z(G) = Z(P). It follows that P/Z(P)∼= Z2 ×Z2 and for any maximal subgroup N of
Z(P) one has P/N ∼= Q8.

It is easy to see that Φ(P) ≤ Z(P). If Φ(P) < Z(P). Take a maximal subgroup N of Z(P) such that
Φ(P) ≤ N < Z(P), one has P/N ∼= Z2 ×Z2 ×Z2, this contradicts P/N ∼= Q8 for any maximal subgroup N of
Z(P). Therefore, Φ(P) = Z(P).

Since P/Z(P) = P/Φ(P)∼= Z2 ×Z2, P is a minimal non-abelian 2-group of order 2s+2, where s ≥ 2. By [9,
Theorem 1.7.10], P∼=M2(n,m) = ⟨a, b | a2n

= b2m
= 1, ab = a1+2n−1⟩, where n≥ 2, m≥ 1; or P∼=M2(n,m,1) =

⟨a, b, c | a2n
= b2m

= c2 = 1, [a,b] = c, [c,a] = [c,b] = 1⟩, where n ≥ m ≥ 1.
If P ∼= M2(n,m) = ⟨a⟩⋊ ⟨b⟩. Then M2(n,m)/N = (⟨a⟩N)/N ⋊ (⟨b⟩N)/N which cannot be isomorphic to

Q8 for any normal subgroup N of M2(n,m), a contradiction.
If P ∼= M2(n,m,1). One has Z(P) = ⟨a2⟩× ⟨b2⟩. Take N = ⟨a4⟩× ⟨b2⟩, then P/N ∼= Z4 ⋊Z2 ≇ Q8, also a

contradiction.
Hence Z(G) = 1 or Z2.
If Φ(G) = Z(G) = 1. Then G ∼= A5.
If Φ(G) = Z(G) = Z2. One has G ∼= SL2(5).
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3. PROOF OF THEOREM 1.3

Proof. (1) Suppose that G has at most 4 non-subnormal non-supersolvable proper subgroups. We will show
that G is solvable.

Let G be a counterexample of minimal order. Then G is a minimal non-solvable group which implies that
G/Φ(G) is a minimal non-abelian simple group. By [6, Theorem 1.1], G/Φ(G) has at least 5 non-supersolvable
proper subgroups. Note that for any non-supersolvable proper subgroup H/Φ(G) of G/Φ(G), H is a non-
subnormal non-supersolvable proper subgroup of G. Then G has at least 5 non-subnormal non-supersolvable
proper subgroups, a contradiction.

Therefore, the counterexample of minimal order does not exist and then G is solvable.
(2) We only need to prove the necessity part. Since G is non-solvable, there exists a subgroup N of G such

that N is a minimal non-solvable group. It follows that N/Φ(N) is a minimal non-abelian simple group. It
is easy to see that any non-supersolvable proper subgroup of N is a non-subnormal non-supersolvable proper
subgroup of N, which is also a non-subnormal non-supersolvable proper subgroup of G. By the hypothesis and
[6, Theorem 1.1], N has exactly 5 non-supersolvable proper subgroups. Then N ∼=A5 or SL2(5) by Theorem 1.2.

In the following we show that N = G.
Otherwise, assume N < G. By the hypothesis, N is subnormal in G. Let M be a subgroup of G such that

N is maximal in M. Then N is normal in M. Let H be any non-supersolvable proper subgroup of N. One has
|N : NN(H)|= 5.

Case (i): Suppose NM(H)≤ N, then |M : NM(H)|= |M : NN(H)|> |N : NN(H)|= 5. It implies that M has
more than 5 non-subnormal non-supersolvable proper subgroups, a contradiction.

Case (ii): Suppose NM(H) ≰ N. If NM(H) = M. Then H is normal in M, which implies that H is normal
in N, a contradiction. Thus NM(H)< M. It follows that NM(H) is also a non-supersolvable proper subgroup of
G. In particular, NM(H) is not subnormal in G since H is not subnormal in G. It implies that G has more than
5 non-subnormal non-supersolvable proper subgroups, also a contradiction.

Hence G = N ∼= A5 or SL2(5).

4. PROOF OF THEOREM 1.7

Proof. One has G/Φ(G)∼= A5 by [8, Theorem 1.1(2)], where Φ(G) = Z(G) = 1 or a cyclic 2-group.
Let H be a maximal subgroup of G such that H/Φ(G) ∼= A4 and K be a maximal subgroup of G such that

K/Φ(G)∼= S3 = Z3 ⋊Z2, where K is a minimal non-2-closed group. Let P be a Sylow 2-subgroup of H, which
is also a Sylow 2-subgroup of G. Assume |P| = 2m. Obviously, m ≥ 2. Let P0 be a Sylow 2-subgroup of K.
Then P0 is a cyclic 2-group of order 2m−1 by [1], which implies that P has a cyclic maximal subgroup.

Note that |Φ(G)|= 2m−2. We claim m ≤ 3.
Otherwise, assume m ≥ 4. Take L < Φ(G) such that Φ(G)/L ∼= Z2. Then (G/L)/Φ(G/L)

= (G/L)/(Φ(G)/L)∼=G/Φ(G)∼=A5. One has G/L∼= SL2(5). It follows that P/Φ(G)∼= Z2×Z2 and P/L∼=Q8.
Thus P is non-abelian. Since Φ(G) = Z(G), one has Φ(G)≤ Z(P). If Φ(G)< Z(P). Then |Z(P)| ≥ 2m−1,

which implies that P is abelian, a contradiction. Therefore, Φ(G) = Z(P). It follows that P is a non-abelian
2-group of order 2m (m ≥ 4) which has a cyclic maximal subgroup, P/Z(P) ∼= Z2 ×Z2 and P/L ∼= Q8, where
L < Z(P).

By [3, Chapter I, Theorem 14.9], P might be isomorphic to one of the following groups:
(1) P = ⟨a,b | a2m−1

= b2 = 1, b−1ab = a−1⟩;
(2) P = ⟨a,b | a2m−1

= 1, b2 = a2m−2
, b−1ab = a−1⟩;

(3) P = ⟨a,b | a2m−1
= b2 = 1, b−1ab = a1+2m−2⟩;

(4) P = ⟨a,b | a2m−1
= b2 = 1, b−1ab = a−1+2m−2⟩.

Note that |Z(P)|= 2m−2 ≥ 4 by above argument.
It is easy to see that |Z(P)| = |⟨a2m−2⟩| = 2 < 4 if P belongs to cases (1), (2) or (4). Therefore, P cannot

belong to cases (1), (2) and (4).
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If P belongs to case (3), one has Z(P)= ⟨a2⟩. Then P/Z(P)= (⟨a⟩⋊⟨b⟩)/⟨a2⟩=(⟨a⟩/⟨a2⟩)×((⟨b⟩⟨a2⟩)/⟨a2⟩)
∼= Z2 ×Z2. However, P/L = (⟨a⟩⋊ ⟨b⟩)/⟨a4⟩ = (⟨a⟩/⟨a4⟩)× ((⟨b⟩⟨a4⟩)/⟨a4⟩) ∼= Z4 ×Z2 ̸∼= Q8. Therefore, P
cannot belong to case (3), either.

Hence 2 ≤ m ≤ 3. Then Φ(G) = 1 or Z2.
When Φ(G) = 1, one has G ∼= A5.
When Φ(G) = Z2, one has G ∼= SL2(5).
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