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Abstract. In this paper, we obtain the sharp maximal function estimate for the commutator ///5 'Z’ generated

by the parametric Marcinkiewicz integral (///g’m and the locally integrable function b, where p > 0, m > 1 and
Q satisfies certain log-type regularity condition. Meanwhile, we prove the commutator (%5’21 is bounded from

LP(u) to L4(u'=9) if and only if b € Lipg(p), where u € A1,0< B < 1,1 <p<n/Bandl/qg=1/p—B/n.
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1. INTRODUCTION AND MAIN RESULTS

Let R"(n > 2) be the n-dimensional Euclidean space and S"~! be the unit sphere in R” equipped with the
normalized Lebesgue measure do = do(+). Let Q be a homogeneous function of degree zero and have mean

value zero, namely,
Q(Ax') = Q(x') for any A € (0,00) and x’ € S !, (1

and

/ Q(v')do (x') = 0. @
gn—1

The parametric Marcinkiewicz integral was first introduced by Hormander [6]]. For any x € R”, p > 0 and
m > 1, the parametric Marcinkiewicz integral //lg’m is defined by

a0 = ([ || ) g

t

where

Bw = [ 20 p)ay

<t e —y["P

In 1958, Stein [[13]] showed that if Q € Lipa(S”_l) 0O < a <), then //;2’2 is bounded on the Lebesgue
space LP(R") for 1 < p < 2. In 1962, Benedeck, Calderén and Panzone [2] obtained that if Q € C!(S"~1),
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then //1512’2 is bounded on LP(R") for 1 < p < eo. In 2002, Al-Salman, Al-Qassem, Cheng and Pan [1] proved
that if Q € L(logL)'/2(S"™"), then ./} is bounded on LP(R") for 1 < p < ee. In 2016, Lu and Tao obtained
that ,//lg’m is bounded on L”(R") for 1 < p < . Moreover, many prominent results about the parametric
Marcinkiewicz integral ///5 " are widely investigated, we can see [0,/ 16-18].
The commutator //g;" generated by the parametric Marcinkiewicz integral //lg’m and the locally integrable
function b is defined by 1
e = ([ |prgane" )"

t

where

RN = 5 [ ) =bO T )

lx —y|=P

In 1990, Torchinsky and Wang [|15] proved that the boundedness of the commutator //Z;Zi generated by

parametric Marcinkiewicz integral //ls;’z and the locally integrable function b € BMO(R") on L”(R") for 1 <
p<oo,if Q€ Lipe(S"!) (0 < o < 1). In2015, Chen and Ding [3] also showed that b € BMO(R") is necessary
for the boundedness of the commutator ///éi on LP(R") for 1 < p < oo, if Q satisfies the following logarithm
type regularity:

2 4
Q) -] < <log v —y’) for any x',y' € "1, and some 7 > 1. 3)

Recently, the theory of commutators is still extensively studied in various function spaces, we refer the readers
to see [|5,/11,/19,20]] and therein references.

To state our main results, we need some basic definitions and notions.

For a locally integrable function f, the Hardy-Littlewood maximal function Mf is given by

Mp) =sw e 1)y

B>x

where the supremum is taken over all balls B C R” containing x.

The sharp maximal function M f is defined by

M) = sup e [ 170 = folay

B>x

where fp = ‘;ﬁ' Jp f(y)dy and the supremum is taken over all cubes B C R” containing x.

Definition 1 [4]. A non-negative function t defined on R” is called weight if it is locally integral. A weight
u is said to belong to the Muckenhoupt class A, (R") for 1 < p < oo, if there exists a constant C such that

B’/ <!B\ /(“<")>”l‘dX>p_l <c

for any ball B C R”. The class A; (R") is defined replacing the above inequality by

1
w/Bu(x)dxgcu(x), ae. x€R",

for any ball B C R".
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Definition 2 [4]. A locally integral non-negative function  is said to belong to A, , (R") (1 < p,q < o), if
there exists a constant C such that

(@Au(@m);(‘;/]?(u( ) de)l'sc

foranyball BC R"and 1/p'+1/p = 1.

Definition 3. Given a weight function u. For 1 < p < oo, the weighted Lebesgue space L” (1) is the space

of all functions f such that
1l = ( [, LF0Puce) ) <o

Definition 4 [7]]. A locally integrable function f belongs to weighted Lipschitz space Lipz u forl1 <p<
00,0 < B <1and u € Ao(R"), that is

S

P 1de;c
s L U i v <c.

where the supremum is taken over all balls B C R". The smallest constant C is taken to be the norm of f and is
denoted by || f]] Ly,
M

Let Lipg ,, = Lipllg w Obviously, for the case = 1, then weighted Lipschitz space Lipg , is classical Lip-

schitz space Lipg. For 6 > 0, let M5 f(x) = M(|f] 8)1/3(x) and Mgf(x) = M*(|f£]%)"/%(x). Throughout this
paper, C denotes the constant that is independent of the main parameters involved but whose value may differ
from line to line. For a measurable set E, denote by yg the characteristic function of E. The symbol f < g
means that f <Cg . If f <gand g < f, then f ~ g.

Our main results can be stated as follows.

THEOREM 1. Let .//lé’m be a parametric Marcinkiewicz integral with the rough kernel Q satisfying
and@). Let p € Ay(R"), beLipg,, 1/q=1/p—B/nfor0<B <1and0< & <1<r<n/B. Then there
exists a constant C such that

MG (A3 (1)) (5) < C)Bling , (Mg o (AE™(1))(6) + M (1))

or all function f and x € R", and where
f

r

Mgy, f(x) = sup (;i(z;)ll—ﬁ /B \f(y)!’u(y)dy>

THEOREM 2. Let //lg’m be a parametric Marcinkiewicz integral with the rough kernel Q satisfying ,
) and @B). Let p € Ai(R") and 1/qg=1/p—B/nfor0< B <land 1< p<gq<oo. Then
(a) If b € Lipg ,,, then commutator ///52" is bounded from LP () to L(u'~9).

(b) If commutator ///52" is bounded from LP (W) to L9(u'~9), then b € Lipg ;-

Remark 1. When 1 =1 and m = 2, Lu [9] showed that b € Lipg if and only if the commutator ,//lgjg is
bounded from L?(R") to LY(R"), where 1/g=1/p—B/n,0<B <land 1 < p < g <e. When u =1,
l<m<2and u =1, m> 2, our results are also new.
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2. PRELIMINARIES

We present some necessary lemmas in this section, which is important to prove our main results.

LEMMA 1 [14]. Let0 < p,6 <ooand p € |J A,(R"). There exists a constant C such that

1<r<eo
| Msfeya@ac<c [ MF(omuedn
Rn n

LEMMA 2 [12]. Let p € A1 (R") and 0 < B < 1. If 1 < p < oo, then

1
P
Il =0 B( s 1600 bapu’ rar) "

LEMMA 3 [12]. Suppose that 1 <r <p<n/B,1/q=1/p—B/nand n € A, ,(R"). Then there exists a
constant C such that

M (Pl o () < ClIAr )

LEMMA 4 [10]]. Let //lg’m be a parametric Marcinkiewicz integral with the rough kernel Q satisfying
and ([Z]) For 1 < p < oo, there exists a constant C such that

\///g’i’m(f)(x)\”dxgc/Rn £(x)[Pdx.

Rn

3. PROOFS OF MAIN RESULTS

Proof of Theorem[I] Using the vector-valued singular integral notation of Benedek, Calder6én and Panzone
in [2]], let 7 be the Hilbert space defined by

= {h: Il = (/Om ‘h(z)‘mdt); < oo}.

A" (N = IE(NWlor AT = b))
For x € R", let B be a ball centered at x . Take B* = 2B. We decompose f = f¥p + fX(g-c := f1+ f2 and
write
L)) = A (F)6) = b EE D) e 1= [EES ™ (£)0) e

= (b(y) = b )FG, () () = FS (b= bp-) i) () = FS (b= bp-) ) )| -
Let Cp = .#45" ((b—bp) f2) (x) = ||[F5, ((b—bp-) f2) (x) - Then, for y € B, we get

Then, we can write

AERN) = Col =[IFG ™ (1))l = 1S, (b= bw) 12) (5) L
<Ib(y) = ba- [||FS (1))l + I1FS, (b —bp) f1) )|
+IFS, (b—bp) foy) — FS, ((b—bg:) f2) (¥)[|~
=0L(y)+hL(y)+5(y).

Next, we estimate each term separately. Let 1/r/+1/r=1and 1 < r < n/B. By Holder’s inequality and
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Lemmal[2] we have
a1 oy = o 160 b )" (1))l

<c(gf, \b(y)—bg*”u<y>“’dy)"l'(; J 80 ey

O 1l My "))

< C()|1bllLing , Mp o (A" (£)) ().

~ =

<C

For the second term £ (y), choose v € (1,7) and let 1 /v = 1/u+ 1/r. Then, by the boundedness of .Z5"
on L' (R"), Holder’s inequality and Lemma[2] we obtain

31 o0y = o [ (=) ) )y

< (B| / w@"’((b—bm)fl)(y)vay)‘

(3, L 1(60) - bB*)f(Y)de)V

< (i fo 1000 w0 "dy) (i1 f 0T u0iar)

< CH) B llLipy , Mp o (f) (),

Finally, for I5(y), it is easy to see that

l‘ip /|y—z§z (b(z) = bp) fz(Z)QEyZTnZ)de - tip (b(z) —bp) f> (Z)M

ly —z|<t ly—z|"P
Q(y—z)

1 m
— b(z) — bp+ z7)————dz| —
1P /Iy—Z<t§|x—ZI( (&) = bse) )’)’—ZV’*”

g(/: |
10 B
Q(y—2) Q@—d]

= 1
_%<A tpﬁ;quﬁK”b@)_bW)ﬁ&)Ly—d”P__h—zwp
=10 () +10(y) +15(y).

1
m dt m
dz )
t

1 w@—%&ﬁ@?%ﬂt“

x—zl<t<ly—z| |

1
m dt m
t

In what follows, we estimate 1, (y), II>(y) and I15(y), respectively. Note that, for x,y € B, z € (B*)E, we have
lx —z| ~ [y —z|. By Holder’s inequality and Lemma 2}

m

1 1
dz

=z e

1Q(>y—z)|
ly—z|"=P

f(@)]

MO < [ 1b@)—be
(B*)

1
1 e — y[
y—2|"P |x— Pt

< /(B*)B b(z) — b | | £(2)]

- x—yl=
7d
<X L CRATC] R
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il
|B| J2i+1p

IN
a
)

|b(z) — bp-

f(2)|dz

M TP

IN
a

TR 11lLipg , Mp . () (%)

T‘A.
N\\.

<Cu(x

~—

HbHLipMMﬁ,u,r(f) ().

By the similar arguments as in estimating /7; (y), we obtain

IL(y) < Cl(x)|1bllLip , Mp 4o () ().

For I15(y), by Minkowski’s inequality, we have

y=z) Qx-z)| 1
10y <C/ B |‘Iy 2P x—zrP \x—z!”dz
|Q(x—2z)] 1 1
<C/ b(z) — by - d
< *E\ (z) — bpe| [ f(2)] k=2 =2 P =P |~

|!Q(y 7) —Q(x—2)|
jx —z["

R CCRUAINGD

=111, (y) + 1L (y).

As in estimating /7, (y), we deduce that
vl
Ol e

111 (y / c — bp-
BY) |x

Zl |B‘ /!+1 —bellf

| /\

f(2)|dz

~

oo

Zzl () iy Mp (1) ()

Cu(x )”bHLIP[i “Mﬁ u, () (x).

For I1L(y), invoking the condition (3), we obtain

- -
IIL(y) <C /(B*)C |b(z) — bp| f(2)] <10g 2Lx_yz!> dz

x—2|" =l
- e O (g2
§CJ_Z’1/2‘/+]B\2./B\b(z) bp| o log P dz
<C ; J+1 ’bHLlpﬁﬁMﬁur(f)(x)
( )Hb”LlpﬁuMﬁur(f)(x)

Summing up the estimates of IIl( , 1L (y), I11,(y) and I11(y), we can see that
151y 500 < Cl) g My ()
This, together with the estimates for /; (y), I>(y), immediately yields that
MG (G (1)) (5) < ) By, (Mp (A" (1) () + Mg (1))

which completes the proof of Theorem I]



7 Necessary and sufficient conditions for boundedness of commutators of parametric Marcinkiewicz integrals 283

Proof of Theorem[2} We first prove (a). From Lemma [1| and Lemma [3} since g € A;(R"), then u'~7 €
A4(R™). Then by Theorem [I|with 0 < § < 1 < r < p, we have

|8

< ||ms (287 0)

< |wt5 (g )

La(ul=4) La(u'~)

La(u'=9)
< ClIbllipy,, (1M gur (AE™ () zogu + 1M gur () o(00)
< Cll|[Lipg £l ()

Now we prove (b). We use the method given by Janson in [8]. Let K(x) := 1/|x|". Choose 0 # zo € R" and
6 > 0, such that 1/K(z) can be expressed in the neighborhood {z : |z —z0| < \/nd} as a Fourier series which is
absolutely convergent, that is
1 - ;
— Z anewn-z7
Z) n=0

with ¥ |a,| <eo. Letz; = . If [z — 21| < 2y/n, we obtain
n=0

_ —5" Z anezvnﬁz.
n=0

For any ball B = B (x,r). Set yo = xo —rz; and B' = B(yo,r). Then forx € Band y € B/,

Xy | [xoy _moye| |x—% +‘y—yo N
r r r r r
We set s(x) = sgn (b(x) — bg), then
[ 160 by s = / (b(x) — by ) s(x)dx
x)dydx
—C/ Rnbx Kle9) X ane™ 7 s 200 )b

=CLan [ [ 00~ bO)Kx9A)g vc

—b(y))K(x—y)fn(y)dy‘dx

—b(y))

1
|x—y|"f"(y)dy‘ dx,

where y
fil0) = e (y) and  ga(x) = € s(x) 2 ().

In addition, since Q satisfies (I), (2), (3), then there exists a constant A with 0 < A < 1, for x,y € R" with x # y,

we deduce that
C

(log($))7

Q@—w=9<x_y)=9« -y)) > @)

e =yl
Using Minkowski’s inequality, Holder’s inequality and (), we get
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254
() =bO)) ! ()dy‘dx
_/ Rnb MO ey ey O
<[— W [ 0060
122 /yx Yol? / (x)—b(y))h_;‘n_pfn(y)dy‘dx
/x YolP /R (log(li)) (b(x)—b(y))‘x_;‘npfn(y)dydx

Q(x y) dy‘ &

cc[ [ ot -0 22
m—1
Qx—y) ( o dr )( * dr )'"
<c[|[ o o [y
]Rn x ))|x y|n pf (y) y |x7y0| t1+mp |X*y()| t1+mp
°° Q( y) dr * e \
- n y n:x—y = e dx
LU Lo o0 ZEE o temrenohistis) ([ ) ‘
1
Qx—y) T\
<c/< / b(x) — b(y) ) £ (ydy ) dx
ICCR Ol YO
S R ATAILE
Combining preceding estimates, we have
o) pldx <€ B el || A7 ()00
m 7
<CZ!anH|///£b(fn)Hm g U (B) 7
1
<C Z |anl| |28 |17 ()1 (B) 7
n=0
<cuBrtY
B
= Cu(B)"*n
Therefore, we obtain
2
ﬁ/’b(y)—by\d}’éc;

1
ﬁ/\b()’)—bB\dYS
W(B)""n B u

that is b € Lip This completes the proof of Theorem
B.u
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