Volume 25, Number 4/2024, pp. 263-271

DOI: 10.59277/PRA-SER.A.25.4.01

BIHARMONIC SLANT SUBMANIFOLDS IN SPACE FORMS

Hafiz Haris JAVED, Najma Abdul REHMAN

COMSATS University Islamabad, Sahiwal Campus, Sahiwal 57000, Pakistan Corresponding author: Najma Abdul REHMAN, E-mail: najma_ar@hotmail.com

Abstract. In this research work, bi-harmonic slant sub-manifolds in space forms have been studied. Bi-harmonic maps are critical points of the bi-energy functional and are of great importance due to both analytical and geometrical characteristics. After the study of Riemannian Manifolds with complex and contact structure and s-space form structure along with slant sub-manifolds theory, some significant developments related to bi-harmonic slant submanifolds in space forms have been established. Manifolds with constant sectional curvature is known as space form. As s-space form is the generalization of complex and contact structure, we get generalized results. Different aspects of results have discussed.

Keywords: isometric immersion, complex structure, contact structure, generalized s-space form, invariant and anti-invariant sub-manifolds, slant sub-manifold, curvature tensor, biharmonic maps, sub-manifold theory. *Mathematics Subject Classification (MSC2020):* 53C40, 53C25.

1. INTRODUCTION

Theory of bi-harmonic maps has great importance in various fields of differential geometry. The theory of bi-harmonic maps is an ancient and rich subject. They have been studied since 1862 by Maxwell and Airy to describe a mathematical model of elasticity. It has its roots in 3-D Euclidean space, analysis of curves and surfaces. Due to their analytic and geometric effects, bi-harmonic maps have become an attractive and important field of research. In the form of their Riemannian curvature, invariants, anti-invariant and slant submanifolds [4,21].

Sub-manifolds play a fundamental role in differential geometry, providing a frame work for studying curved spaces and enabling the development of powerful mathematical tools. They are essential in understanding the geometry of higher-dimensional spaces and are a key ingredient in various branches of mathematics and physics. Calabi, initiated the study of real and complex sub-manifolds of complex structure manifolds [5]. After this many authors started research on sub-manifolds of almost contact metric manifolds known as odd dimensional structure manifolds analogue to complex structure manifolds that are of even dimension.

A slant sub-manifold is a sub-manifold whose tangent spaces make a constant angle with a given vector field. Slant sub-manifolds are relevant in complex analysis and complex differential geometry. They provide a way to study the interplay between complex structure and sub-manifolds, leading to a rich geometric theory.

Slant immersion into almost contact metric manifold was first presented by A. Lotta in 1988. Later on, further expansion of the results for contact slant sub-manifolds in Sasakian and in Kenmotsue space forms were established in [1,19].

The study of bi-harmonic slant sub-manifolds in space forms involves investigating their geometric properties, such as their curvature, shape and deformation behaviour. Researchers are interested in understanding the interplay between the bi-harmonic and slant properties and how they influence the overall geometry of the sub-manifold.

Blair introduced manifolds with *f*-structure named as s-manifolds that are the generalization of complex and contact structures. For further detail of s-space form see [21]. A space form is a completely Riemannian manifold with constant sectional curvature. In present research work we will study slant sub-manifolds regarding space forms within the context of bi-harmonic maps and will establish significant generalized results.

2. PRELIMINARIES

In this section, we explore some well-known conditions concerning bi-harmonic slant sub-manifold for complex manifold, almost contact metric manifold and S-Manifold.

2.1. Complex manifold

Let N be a 2n-dimensional Riemannian manifold and M be an slant sub-manifold with almost complex structure f and almost metric h which satisfy the following conditions

$$f^2 = -Id$$
, $h(fZ_1, fZ_2) = h(Z_1, Z_2)$ and $\nabla f = 0$

for any $Z_1, Z_2 \in TM$. Where ∇ denote the covariant derivative with respect to Levi-Civita connection. An isometric immersion $f: M \to N$ is called holomorphic if, for any point x in M, we have $f(T_xM) = T_xM$ where T_xM denotes the tangent space of M at x. If we have $f(T_xM) \subseteq T_x^{\perp}M$ for each $x \in M$, where $T_x^{\perp}M$ denote the normal space of M in N at x.

For any vector Z_1 tangent to M, we put

$$fZ_1 = \mathcal{T}Z_1 + \mathcal{N}Z_1$$

where $\mathscr{T}Z_1$ and $\mathscr{N}Z_1$ denote the tangential and normal components of fZ_1 respectively. Then \mathscr{T} is an endomorphism of the tangent bundle TM and \mathscr{N} is normal bundle valued 1-form on TM. For each non-zero vector Z_1 tangent to M at x the angle $\theta(Z_1)$ between fZ_1 and T_xM is called the Wirtinger angle of Z_1 . In the following, we call an immersion $f:M\to N$ a general slant immersion if the Wirtinger angle $\theta(Z_1)$ is constant. Holomorphic and totally real immersion are general slant immersions with Wirtinger angle θ equal to 0 and $\frac{\pi}{2}$. A general slant immersion which is not holomorphic is simply called slant immersion. A slant immersion is said to be proper if it is not totally real.

A complex manifold N is called a complex space form and is denoted by N(c) if it has constant f-sectional curvature c. The curvature tensor R of a complex space form N(c) is stated as

$$R(Z_1, Z_2)Z_3 = \frac{c}{4} \{ h(Z_2, Z_3)Z_1 - h(Z_1, Z_3)Z_2 + h(Z_1, fZ_3)fZ_2 - h(Z_2, fZ_3)fZ_1 + 2h(Z_1, fZ_2)fZ_3 \}$$

for any vector fields Z_1, Z_2, Z_3 on M [25].

2.2. Sasakian manifold

Let N be a (2n+1)-dimensional Riemannian manifold and M be an slant sub-manifold with almost contact structure f, almost metric h and a global vector field ξ (structure vector field) such that, if η is the dual 1-form of ξ which satisfy the following conditions

$$f^2Z_1 = -Z_1 + \eta(Z_1)\xi, \quad h(Z_1, \xi) = \eta(Z_1)$$

 $h(fZ_1, fZ_2) = h(Z_1, Z_2) - \eta(Z_1)\eta(Z_2)$

For any $Z_1, Z_2 \in TM$. In this case,

$$h(fZ_1,Z_2)+h(Z_1,fZ_2)=0,$$

for any $Z_1, Z_2 \in TM$. Let f denote the 2-form in M given by $f(Z_1, Z_2) = h(Z_1, fZ_2)$ for all $Z_1, Z_2 \in TM$. The 2-form f is called the fundamental 2-form in M.

For any $Z_1 \in TM$, we write

$$fZ_1 = \mathcal{T}Z_1 + \mathcal{N}Z_1$$

where $\mathscr{T}Z_1$ and $\mathscr{N}Z_1$ denote the tangential and normal components of fZ_1 respectively. Similarly, for any $V \in T^{\perp}M$, we have

$$fV = tV + nV$$

where tV and nV denote the tangential and normal components of fV respectively.

The submanifold M is said to be invariant if normal component is identically zero, that is fZ_1 is tangent to M, for any $Z_1 \in T_x M$. On the other hand, M is said to be an anti-invariant submanifold if T is identically zero, that is fZ_1 is normal to M, for any $Z_1 \in T_x M$. Next, for each nonzero vector $Z_1 \in T_x M$, such that Z_1 is not proportional to ξ , we denote by $\theta(Z_1)$ the angle between fZ_1 and $T_x M$. Then, M is said to be slant if the angle $\theta(Z_1)$ is a constant. Invariant and anti-invariant immersions are slant immersions with slant angle $\theta(Z_1) = 0$ and $\theta(Z_1) = \frac{\pi}{2}$ respectively. A slant immersion which is not invariant nor anti-invariant is called a proper slant immersion.

Further the slant submanifold M of an almost contact metric manifold (N,h) staisfies

$$h(TZ_1, TZ_2) = \cos^2 \theta (h(Z_1, Z_2) - \eta(Z_1)\eta(Z_2))$$

$$h(NZ_1, NZ_2) = \sin^2 \theta (h(Z_1, Z_2) - \eta(Z_1)\eta(Z_2)),$$

for $Z_1, Z_2 \in TM$.

A Sasakian manifold $N(\xi, \eta, h)$ is said to be a Sasakian space form is denoted by N(c) if it has a constant f-sectional curvature $c(Z_1 \wedge fZ_1)$, where $c(Z_1 \wedge fZ_1)$ denotes the sectional curvature of the section spanned by the unit vector field Z_1 , orthogonal to ξ and fZ_1 . The curvature tensor R of a Sasakian space form N(c) is stated as

$$R(Z_1, Z_2)Z_3 = \frac{c+3}{4} \{h(Z_2, Z_3)Z_1 - h(Z_1, Z_3)Z_2\} + \frac{c-1}{4} \{h(Z_1, fZ_3)fZ_2 - h(Z_2, fZ_3)fZ_1 + 2h(Z_1, fZ_2)fZ_3\} + \frac{c-1}{4} \{\eta(Z_1)\eta(Z_3)Z_2 - \eta(Z_2)\eta(Z_3)Z_1 + h(Z_1, Z_3)\eta(Z_2)\xi - h(Z_2, Z_3)\eta(Z_1)\xi\}$$

For any vector fields Z_1, Z_2, Z_3 on M [25].

2.3. Generalized S-manifold

Let $f:(M,h) \to (N,g)$ be a smooth map between two Riemannian manifolds and (N,g) be a Riemannian (2n+s)-dimensional manifold and express the vector fields with Lie algebra in N by TN and is defined as a metric f-manifold if there is a (1,1) tensor field $f, \xi_1,...,\xi_s$ as a structure vector fields and $\eta_1,...,\eta_s$ are s 1-forms on TN so that:

$$f^{2}Z_{1} = -Z_{1} + \sum_{\alpha=1}^{s} \eta_{\alpha}(Z_{1})\xi_{\alpha}, \ \ h(Z_{1}, \xi_{\alpha}) = \eta_{\alpha}(Z_{1}),$$
 $f\xi_{\alpha} = 0, \quad \eta_{\alpha} \circ f = 0$ $h(fZ_{1}, fZ_{2}) = h(Z_{1}, Z_{2}) - \sum_{\alpha=1}^{s} \eta_{\alpha}(Z_{1})\eta_{\alpha}(Z_{2}),$

for $Z_1, Z_2 \in TN$ and $\alpha = 1, ..., s$.

Let *F* be the fundamental 2-form in *TN* given by $F(Z_1, Z_2) = h(Z_1, fZ_2)$ for any $Z_1, Z_2 \in TN$.

Let a (2n+s)-dimensional slant submanifold M is isometrically immersed in N. We denote the Lie algebra of tangent vector fields by TN and $T^{\perp}N$ shows the set of all those vector fields that are normal to N, such that

$$fZ_1 = \mathcal{T}Z_1 + \mathcal{N}Z_1$$

where $\mathcal{I}Z_1$ (and resp. $\mathcal{I}Z_1$) denotes tangential (and resp. normal) component of fZ_1 .

If the normal component \mathscr{N} vanishes identically then the sub-manifold M is said to be invariant, i.e., if $fZ_1 \in TN$, for any $Z_1 \in TN$ and if the tangential component \mathscr{T} vanishes identically then M is said to be anti-invariant, i.e., $fZ_1 \in T^{\perp}N$, for any $Z_1 \in TN$.

Consider the vector fields ξ_{α} , where $\alpha=1,...,s$ are tangent to M. Then, the orthogonal distribution to ξ_{α} , in TM is denoted by \mathscr{D} . Hence, $TM=\mathscr{D}\oplus \xi_{\alpha}$ is considered to be orthogonal direct decomposition.

We define the Wirtinger angle $\theta(Z_1)$ for any non-zero vector field Z_1 which is in between fZ_1 and TN, where Z_1 is not proportional to ξ_{α} .

If the Wirtinger angle $\theta(Z_1)$ is a constant then the sub-manifold M is said to be θ -slant sub-manifold. The Wirtinger angle θ of a slant immersion is known as slant angle. The sub-manifold M is said to be invariant (resp. anti invariant) if the slant angle $\theta=0$ (resp. $\theta=\frac{\pi}{2}$). A slant immersion is known as proper slant immersion if $\theta\neq 0, \frac{\pi}{2}$.

The curvature tensor R of a s-space form N(c) is stated as

$$\begin{split} R(Z_1,Z_2)Z_3 &= \sum_{\alpha,\beta} \{-f^2Z_1\eta_\alpha(Z_2)\eta_\beta(Z_3) - h(fZ_1,fZ_3)\eta_\alpha(Z_2)\xi_\beta \\ &+ h(fZ_2,fZ_3)\eta_\alpha(Z_1)\xi_\beta + f^2Z_2\eta_\alpha(Z_1)\eta_\beta(Z_3)\} \\ &+ \frac{1}{4}(c+3s)\sum_{i=1}^{2n+s} \{-f^2Z_1\ h(fZ_2,fZ_3) + f^2Z_2\ h(fZ_1,fZ_3)\} \\ &+ \frac{1}{4}(c-s)\sum_{i=1}^{2n+s} \{-fZ_1\ h(Z_2,fZ_3) + fZ_2\ h(Z_1,fZ_3) + 2fZ_3\ h(Z_1,fZ_2)\} \end{split}$$

for any vector fields Z_1, Z_2, Z_3 on N [25].

3. MAIN RESULTS

THEOREM 1. Let $(N^{2n+s}(c), f, h)$ be a s-space form. Then M^{2m+s} is biharmonic slant sub-manifold of $N^{2n+s}(c)$ if

$$(2m+s) \left[\sum_{k=1}^{2m+s} \left\{ -\nabla_{e_k} (A_H e_k) + A_{\nabla_{e_k}^{\perp} H}(e_k) + A_H(\nabla_{e_k} e_k) \right\} + \frac{c-s}{4} \sum_{i=1}^{2m+s} \left\{ 3(te_i + ne_i)h(H, ne_i) \right\} \right] = 0$$

$$(2m+s) \left[\sum_{k=1}^{2m+s} \left\{ -B(e_k, A_H e_k) + \nabla^{\perp}_{e_k} \nabla^{\perp}_{e_k} H - \nabla^{\perp}_{\nabla_{e_k} e_k} H \right\} + Hs + \frac{c+3s}{4} \left\{ 2mH \right\} - \frac{c-s}{4} \cos \theta f H \right] = 0$$

Proof. Consider orthonormal basis $\{e_i\}$ on submanifold M^{2m+s} , structure vector fields $\xi_1, \xi_2, \dots, \xi_s$ are tangent to M^{2m+s} . For M^{2m+s} to be biharmonic submanifold we have

$$(2m+s)\overline{\Delta}H - (2m+s)\operatorname{trace}(R^{N}(e_{i},H)e_{i}) = 0$$
(1)

 $\operatorname{trace}(R^N(e_i, H)e_i)$ can be computed for slant submanifold as:

$$\sum_{i=1}^{2m+s} R(e_i, H)e_i = -Hs - \frac{c+3s}{4} \left\{ 2mH \right\} + \frac{c-s}{4} \cos \theta f H - \frac{c-s}{4} \sum_{i=1}^{2m+s} \left\{ 3(te_i + ne_i)h(H, ne_i) \right\}.$$

For isometric immersion

$$\overline{\Delta}H = \sum_{k=1}^{2m+s} \left\{
abla_{e_k}
abla_{e_k} H -
abla_{
abla_{e_k}} H
ight\}$$

Since

$$\nabla_{e_k} H = -A_H e_k + \nabla_{e_k}^{\perp} H,$$

we can write

$$\nabla_{e_k}\nabla_{e_k}H = -\nabla_{e_k}(A_He_k) - B(e_k, A_He_k) + A_{\nabla_{e_k}^{\perp}H}(e_k) + \nabla_{e_k}^{\perp}\nabla_{e_k}^{\perp}H$$

and

$$abla_{
abla_{e_k}e_k}H = -A_H(
abla_{e_k}e_k) +
abla_{
abla_{e_k}e_k}^{\perp}H$$

From (1), we can write

$$(2m+s)\sum_{k=1}^{2m+s} \{-\nabla_{e_k}(A_H e_k) - B(e_k, A_H e_k) + A_{\nabla_{e_k}^{\perp} H}(e_k) + \nabla_{e_k}^{\perp} \nabla_{e_k}^{\perp} H + A_H(\nabla_{e_k} e_k) - \nabla_{\nabla_{e_k} e_k}^{\perp} H\}$$

$$+ (2m+s)\{Hs + \frac{c+3s}{4}\{2mH\} - \frac{c-s}{4}\cos\theta fH + \frac{c-s}{4}\sum_{i=1}^{2m+s}\{3(te_i + ne_i)h(H, ne_i)\}\} = 0.$$

Taking tangential and normal components, we get (i) and (ii)

$$(2m+s) \left[\sum_{k=1}^{2m+s} \left\{ -\nabla_{e_k} (A_H e_k) + A_{\nabla_{e_k}^{\perp} H} (e_k) + A_H (\nabla_{e_k} e_k) \right\} + \frac{c-s}{4} \sum_{i=1}^{2m+s} \left\{ 3(te_i + ne_i) h(H, ne_i) \right\} \right] = 0$$

$$(2m+s) \left[\sum_{k=1}^{2m+s} \left\{ -B(e_k, A_H e_k) + \nabla_{e_k}^{\perp} \nabla_{e_k}^{\perp} H - \nabla_{\nabla_{e_k}^{\perp} e_k}^{\perp} H \right\} + Hs + \frac{c+3s}{4} \left\{ 2mH \right\} - \frac{c-s}{4} \cos \theta f H \right] = 0$$

COROLLARY 1. Let M^{2m+s} be bi-harmonic slant sub-manifold of N(c) of dimension (2n+s) with s-structure f. Then the invariant immersions are slant immersion if

$$(2m+s) \left[\sum_{k=1}^{2m+s} \left\{ -\nabla_{e_k} (A_H e_k) + A_{\nabla_{e_k}^{\perp} H}(e_k) + A_H (\nabla_{e_k} e_k) \right\} + \frac{c-s}{4} \sum_{i=1}^{2m+s} \left\{ 3(te_i + ne_i)h(H, ne_i) \right\} \right] = 0$$

$$(2m+s) \left[\sum_{k=1}^{2m+s} \left\{ -B(e_k, A_H e_k) + \nabla_{e_k}^{\perp} \nabla_{e_k}^{\perp} H - \nabla_{\nabla_{e_k}^{\perp} e_k}^{\perp} H \right\} + Hs + \frac{c+3s}{4} \left\{ 2mH \right\} - \frac{c-s}{4} fH \right] = 0$$

Proof. Put $\theta = 0$ in Theorem 3.1, we obtain the required outcome.

П

COROLLARY 2. Let M^{2m+s} be bi-harmonic slant sub-manifold of N(c) of dimension (2n+s) with s-structure f. Then the anti-invariant immersions are slant immersion if

$$(2m+s) \left[\sum_{k=1}^{2m+s} \left\{ -\nabla_{e_k} (A_H e_k) + A_{\nabla_{e_k}^{\perp} H} (e_k) + A_H (\nabla_{e_k} e_k) \right\} + \frac{c-s}{4} \sum_{i=1}^{2m+s} \left\{ 3(te_i + ne_i) h(H, ne_i) \right\} \right] = 0$$

$$(2m+s) \left[\sum_{k=1}^{2m+s} \left\{ -B(e_k, A_H e_k) + \nabla_{e_k}^{\perp} \nabla_{e_k}^{\perp} H - \nabla_{\nabla_{e_k}^{\perp} e_k}^{\perp} H \right\} + Hs + \frac{c+3s}{4} \left\{ 2mH \right\} \right] = 0$$

Proof. Put $\theta = \frac{\pi}{2}$ in Theorem 3.1, we obtain the required outcome.

COROLLARY 3. Let M^{2m} be bi-harmonic slant sub-manifold of even dimensional structure manifold N(c) of dimension (2n) with complex structure f. Then the slant immersion is bi-harmonic if

$$(2m) \left[\sum_{k=1}^{2m} \left\{ -\nabla_{e_k} (A_H e_k) + A_{\nabla_{e_k}^{\perp} H} (e_k) + A_H (\nabla_{e_k} e_k) \right\} + \frac{c}{4} \sum_{i=1}^{2m} \left\{ 3(te_i + ne_i) h(H, ne_i) \right\} \right] = 0$$

$$(2m) \left[\sum_{k=1}^{2m} \left\{ -B(e_k, A_H e_k) + \nabla_{e_k}^{\perp} \nabla_{e_k}^{\perp} H - \nabla_{\nabla_{e_k}^{\perp} e_k}^{\perp} H \right\} + \frac{c}{4} \left\{ 2mH \right\} - \frac{c}{4} \left\{ \cos \theta f H \right\} \right] = 0$$

Proof. Put s = 0 in Theorem 3.1, we obtain the required outcome.

Remark 1. Let M^{2m} be bi-harmonic slant sub-manifold of even dimensional structure manifold N(c) of dimension (2n) with complex structure f. Then invariant immersions are slant immersion if

$$(2m) \left[\sum_{k=1}^{2m} \left\{ -\nabla_{e_k} (A_H e_k) + A_{\nabla_{e_k}^{\perp} H}(e_k) + A_H (\nabla_{e_k} e_k) \right\} + \frac{c}{4} \sum_{i=1}^{2m} \left\{ 3(te_i + ne_i) h(H, ne_i) \right\} \right] = 0$$

$$(2m) \left[\sum_{k=1}^{2m} \left\{ -B(e_k, A_H e_k) + \nabla_{e_k}^{\perp} \nabla_{e_k}^{\perp} H - \nabla_{\nabla_{e_k}^{\perp} e_k}^{\perp} H \right\} + \frac{c}{4} \left\{ 2mH \right\} - \frac{c}{4} fH \right] = 0$$

Proof. Put $\theta = 0$ in Corollary 3.3, we obtain the required outcome.

Remark 2. Let M^{2m} be bi-harmonic slant sub-manifold of even dimensional structure manifold N(c) of dimension (2n) with complex structure f. Then anti-invariant immersions are slant immersion if

$$(2m) \left[\sum_{k=1}^{2m} \left\{ -\nabla_{e_k} (A_H e_k) + A_{\nabla_{e_k}^{\perp} H} (e_k) + A_H (\nabla_{e_k} e_k) \right\} + \frac{c}{4} \sum_{i=1}^{2m} \left\{ 3(te_i + ne_i) h(H, ne_i) \right\} \right] = 0$$

$$(2m) \left[\sum_{k=1}^{2m} \left\{ -B(e_k, A_H e_k) + \nabla_{e_k}^{\perp} \nabla_{e_k}^{\perp} H - \nabla_{\nabla_{e_k}^{\perp} e_k}^{\perp} H \right\} + \frac{c}{4} \left\{ 2mH \right\} \right] = 0$$

Proof. Put $\theta = \frac{\Pi}{2}$ in Corollary 3.3, we obtain the required outcome.

COROLLARY 4. Let M^{2m+1} be bi-harmonic slant sub-manifold of odd dimensional structure manifold N(c) of dimension (2n+1) with contact structure f. Then slant immersion is bi-harmonic if

$$(2m+1) \left[\sum_{k=1}^{2m+1} \left\{ -\nabla_{e_k} (A_H e_k) + A_{\nabla_{e_k}^{\perp} H}(e_k) + A_H (\nabla_{e_k} e_k) \right\} + \frac{c-1}{4} \sum_{i=1}^{2m+1} \left\{ 3(te_i + ne_i) h(H, ne_i) \right\} \right] = 0$$

$$(2m+1) \left[\sum_{k=1}^{2m+1} \left\{ -B(e_k, A_H e_k) + \nabla_{e_k}^{\perp} \nabla_{e_k}^{\perp} H - \nabla_{\nabla_{e_k}^{\perp} e_k}^{\perp} H \right\} + H + \frac{c+3}{4} \left\{ 2mH \right\} - \frac{c-1}{4} \left\{ \cos\theta f H \right\} \right] = 0$$

Proof. Put s = 1 in Theorem 3.1, we obtain the required outcome.

Remark 3. Let M^{2m+1} be bi-harmonic slant sub-manifold of odd dimensional structure manifold N(c) of dimension (2n+1) with contact structure f. Then invariant immersions are slant immersion if

$$(2m+1) \left[\sum_{k=1}^{2m+1} \left\{ -\nabla_{e_k} (A_H e_k) + A_{\nabla_{e_k}^{\perp} H} (e_k) + A_H (\nabla_{e_k} e_k) \right\} + \frac{c-1}{4} \sum_{i=1}^{2m+1} \left\{ 3(te_i + ne_i) h(H, ne_i) \right\} \right] = 0$$

$$(2m+1) \left[\sum_{k=1}^{2m+1} \left\{ -B(e_k, A_H e_k) + \nabla_{e_k}^{\perp} \nabla_{e_k}^{\perp} H - \nabla_{\nabla_{e_k}^{\perp} e_k}^{\perp} H \right\} + H + \frac{c+3}{4} \left\{ 2mH \right\} - \frac{c-1}{4} fH \right] = 0$$

Proof. Put $\theta = 0$ in Corollary 3.4, we obtain the required outcome.

Remark 4. Let M^{2m+1} be bi-harmonic slant sub-manifold of odd dimensional structure manifold N(c) of dimension (2n+1) with contact structure f. Then anti-invariant immersions are slant immersion if

$$(2m+1) \left[\sum_{k=1}^{2m+1} \left\{ -\nabla_{e_k} (A_H e_k) + A_{\nabla_{e_k}^{\perp} H} (e_k) + A_H (\nabla_{e_k} e_k) \right\} + \frac{c-1}{4} \sum_{i=1}^{2m+1} \left\{ 3(te_i + ne_i) h(H, ne_i) \right\} \right] = 0$$

$$(2m+1) \left[\sum_{k=1}^{2m+1} \left\{ -B(e_k, A_H e_k) + \nabla_{e_k}^{\perp} \nabla_{e_k}^{\perp} H - \nabla_{\nabla_{e_k}^{\perp} e_k}^{\perp} H \right\} + H + \frac{c+3}{4} \left\{ 2mH \right\} \right] = 0$$

Proof. Put $\theta = \frac{\Pi}{2}$ in Corollary 3.4, we obtain the required outcome.

In next theorem, we derive the second fundamental form expression for slant immersion but it changes only for anti-invariant case and as we get the result for $\theta = \frac{\pi}{2}$.

THEOREM 2. Let $(N^{2n+s}(c), f, h)$ be a s-Space form. Then M^{2m+s} is biharmonic slant sub-manifold of $N^{2n+s}(c)$ with non-zero constant mean curvature H. Then M is proper biharmonic if and only if

$$||B||^2 = \left\{ s + \frac{c+3s}{4}(2m) \right\}$$
 and $\cos \theta = 0 \Rightarrow \theta = \frac{\pi}{2}$

or equivalently, if the scalar curvature of M satisfies,

$$Scal_{M} = 4ms + \frac{c+3s}{4} \{4m^{2} - 2m\} + \frac{c-s}{4} \{\cos^{2}\theta\} - s + 9H^{2}$$

Proof. As M is slant sub-manifold, by Theorem 1, M is biharmonic if and only if

$$(2m+s) \left[\sum_{k=1}^{2m+s} \left\{ -\nabla_{e_k} (A_H e_k) + A_{\nabla_{e_k}^{\perp} H}(e_k) + A_H (\nabla_{e_k} e_k) \right\} + \frac{c-s}{4} \sum_{i=1}^{2m+s} \left\{ 3(te_i + ne_i)h(H, ne_i) \right\} \right] = 0$$

$$(2m+s) \left[\sum_{k=1}^{2m+s} \left\{ -B(e_k, A_H e_k) + \nabla_{e_k}^{\perp} \nabla_{e_k}^{\perp} H - \nabla_{\nabla_{e_k}^{\perp} e_k}^{\perp} H \right\} + Hs + \frac{c+3s}{4} \left\{ 2mH \right\} - \frac{c-s}{4} \cos\theta f H \right] = 0$$

The first equation is satisfied when $h(H, ne_i) = 0$ and also M has constant mean curvature. Then the second equation becomes,

$$\operatorname{tr}(B(\cdot, A_H \cdot)) = \left\{ s + \frac{c + 3s}{4} \{2m\} \right\} H - \frac{c - s}{4} \{\cos \theta f H\}$$

Moreover, for sub-manifold, $A_H = HA$, which suggests,

$$\operatorname{tr}(B(\cdot, A_H \cdot)) = H \operatorname{tr}(B(\cdot, A \cdot)) = H \|B\|^2$$

Since H is non-zero constant, we get the desired identity

$$H||B||^{2} = \left\{ s + \frac{c+3s}{4} \{2m\} \right\} H - \frac{c-s}{4} \{\cos\theta f H\}$$

By comparing

$$||B||^2 = \left\{ s + \frac{c+3s}{4} \{2m\} \right\}$$
 and $\cos \theta = 0 \Rightarrow \theta = \frac{\pi}{2}$

The Gauss equation gives us the second equivalency:

$$Scal_{M} = \sum_{i,j=1}^{2m+s} h(R(Z_{i}, Z_{j})Z_{j}, Z_{i}) - ||B||^{2} + 9H^{2}$$

Now based on the curvature tensor expression

$$\begin{split} \sum_{i,j=1}^{2m+s} h(R^N(Z_i,Z_j)Z_j,Z_i) &= \sum_{i,j=1}^{2m+s} \{h(fZ_i,fZ_i)\eta_\alpha(Z_j)\eta_\beta(Z_j) - h(fZ_i,fZ_j)\eta_\alpha(Z_j)\eta_\beta(Z_i) \\ &\quad + h(fZ_j,fZ_j)\eta_\alpha(Z_i)\eta_\beta(Z_i) - h(fZ_j,fZ_i)\eta_\alpha(Z_i)\eta_\beta(Z_j) \} \\ &\quad + \frac{c+3s}{4} \sum_{i,j=1}^{2m+s} \{(h(fZ_i,fZ_i)h(fZ_j,fZ_j) - h(fZ_i,fZ_j)h(fZ_j,fZ_i)\} \\ &\quad + \frac{c-s}{4} \sum_{i,j=1}^{2m+s} \{h(Z_i,fZ_i)h(Z_j,fZ_j) - h(Z_i,fZ_j)h(Z_j,fZ_i) - 2h(Z_i,fZ_j)h(Z_j,fZ_i) \} \\ &\quad \sum_{i,j=1}^{2m+s} h(R^N(Z_i,Z_j)Z_j,Z_i) = 4ms + \frac{c+3s}{4} \{4m^2\} + \frac{c-s}{4} \{\cos^2\theta\} \\ &\quad \text{Scal}_M = 4ms + \frac{c+3s}{4} \{4m^2\} + \frac{c-s}{4} \{\cos^2\theta\} - s - \frac{c+3s}{4} \{2m\} + 9H^2 \end{split}$$

Taking component along fH, put $\theta = \frac{\pi}{2}$

$$Scal_M = 4ms + \frac{c+3s}{4} \{4m^2 - 2m\} - s + 9H^2$$

Consequently, we conclude that M is appropriate bi-harmonic iff,

$$||B||^2 = \left\{ s + \frac{c+3s}{4}(2m) \right\}$$
 and $\cos \theta = 0 \Rightarrow \theta = \frac{\pi}{2}$

that is iff,

$$Scal_{M} = 4ms + \frac{c+3s}{4} \{4m^{2} - 2m\} - s + 9H^{2}$$

COROLLARY 5. Let M^{2m} be bi-harmonic slant sub-manifold of even dimensional structure manifold N(c) of dimension (2n) with complex structure f and having mean curvature f which is non-zero constant. Then f is proper bi-harmonic iff

$$||B||^2 = \left\{\frac{c}{4}(2m)\right\}$$
 and $\cos \theta = 0 \Rightarrow \theta = \frac{\pi}{2}$

or equivalently, if the scalar curvature of M fulfills,

$$Scal_M = \frac{c}{4} \{4m^2 - 2m\} + 9H^2$$

Proof. Put s = 0 in Theorem 3.2. we obtain the required outcome.

COROLLARY 6. Let M^{2m+1} be bi-harmonic slant sub-manifold of odd dimensional structure manifold N(c) of dimension (2n+1) with contact structure f and having mean curvature H which is non-zero constant. Consequently, M is proper bi-harmonic iff

$$||B||^2 = \left\{1 + \frac{c+3}{4}\{2m\}\right\}, \quad \cos\theta = 0 \Rightarrow \theta = \frac{\pi}{2}$$

or equivalently, if the scalar curvature of M fulfills

$$Scal_M = 4m + \frac{c+3}{4} \{4m^2 - 2m\} - 1 + 9H^2$$

Proof. Put s = 1 in Theorem 3.2, we obtain the required outcome.

REFERENCES

- [1] Alegre P, Blair DE, Carriazo A. Generalized Sasakian-space-forms. Israel Journal of Mathematics. 2004;141:157–183.
- [2] Blair DE. Riemannian geometry of contact and symplectic manifolds. Boston, MA: Birkhäuser Boston; 2010.
- [3] Boeckx E, Gherghe C. Harmonic maps and cosymplectic manifolds. Journal of the Australian Mathematical Society. 2004;76(1):75–92.
- [4] Balmuş A, Montaldo S, Oniciuc C. Biharmonic maps between warped product manifolds. Journal of Geometry and Physics. 2007;57(2):449–466.
- [5] Balmus A, Oniciuc C. Some remarks on the biharmonic submanifolds of S^3 and their stability. Annals of the Alexandru Ioan Cuza University, Mathematics. 2005;51(1):171–190.
- [6] Chinea D. Harmonicity on maps between almost contact metric manifolds. Acta Mathematica Hungarica. 2010;126(4):352–365.
- [7] Cabrerizo JL, Carriazo A, Fernandez LM, Fernandez M. Slant submanifolds in Sasakian manifolds. Glasgow Mathematical Journal. 2010;42(1):125–138.
- [8] Chen BY. Slant immersions. Bulletin of the Australian Mathematical Society. 1990;41(1):135–147.
- [9] Eells J, Sampson JH. Harmonic mappings of Riemannian manifolds. American Journal of Mathematics. 1964;86(1):109–160.
- [10] Eells J, Lemaire L. Another report on harmonic maps. Bulletin of the London Mathematical Society. 1988;20(5):385–524.
- [11] Gherghe C, Kenmotsu K. Energy minimizer maps on C-manifolds. Differential Geometry and Its Applications. 2004;21(1):55–63.
- [12] Jiang GY. 2-harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A. 1986;7:389-402.
- $[13] \label{lem:condition} \ Gherghe\ C.\ Harmonicity\ on\ cosymplectic\ manifolds.\ The\ Rocky\ Mountain\ Journal\ of\ Mathematics.\ 2010; 40(6):1875-1885.$
- [14] Gherghe C, Ianus S, Pastore AM, CR-manifolds, harmonic maps and stability. Journal of Geometry. 2001;71(1):42–53.
- [15] Karadag HB, Atçeken M. Invariant submanifolds of Sasakian manifolds. Balkan Journal of Geometry and Its Applications. 2007; 12(1):68–75.
- [16] Lichnerowicz A. Applications harmoniques et variétés kähleriennes: Conferenza tenuta il 14 aprile 1969. Rendiconti del Seminario Matematico e Fisico di Milano. 1969;39:186–195.
- [17] Maeta S, Urakawa H. Biharmonic Lagrangian submanifolds in Kähler manifolds. Glasgow Mathematical Journal. 2013;55(2):465–480.
- [18] Meschiari M, Rawnsley JH, Salamon, S, Rawnsley JH. F-structures, F-twistor spaces and harmonic maps. In: Geometry Seminar "Luigi Bianchi" II-1984: Lectures given at the Scuola Normale Superiore. Springer Berlin Heidelberg; 1989, pp. 85–159.
- [19] Roth J, Upadhyay A. Biharmonic submanifolds of generalized space forms. Differential Geometry and its Applications. 2017;50: 88–104
- [20] Rehman NA. Harmonic maps on Kenmotsu manifolds. Analele ştiinţifice ale Universităţii "Ovidius" Constanţa. Seria Matematică. 2013;21(3):197–208.
- [21] Rehman NA, Bari M. Biharmonic maps into S-space forms. European Journal of Pure and Applied Mathematics 2018;11(1):150–159.
- [22] Rehman NA. Harmonic maps and stability on Lorentzian para Sasakian manifolds. Proceedings of the Romanian Academy, Series A 2022;23(2):101–106.
- [23] Tripathi MM, Kim JS, Kim SB. Mean curvature and shape operator of slant immersions in a Sasakian space form. Balkan Journal of Geometry and Its Applications 2002;7(1):101–112.
- [24] Urakawa H. Calculus of variations and harmonic maps. Amerikan Math.; 1993.
- [25] Yano K, Kon M. Structures on manifolds, vol. 3. Series in Pure Math. Singapore: World Scientific; 1984.