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Abstract. This paper introduces a novel approach to the conventional model predictive control design 

within a tube model predictive control framework for a DC motor servo system that is an important 

component of various control systems in process industries. Tube model predictive control proves to 

be an effective method in the formulation, analysis, and implementation of robust control strategies. 

The objective is to include all possible trajectories of an uncertain system within a tube of the nominal 

system trajectories. Therefore, the proposed method incorporates discrete-time generalized Malmquist 

orthogonal functions for nominal model predictive controller design, which is the first time that these 

functions are used for this purpose in combination with the auxiliary sliding mode controller. The 

sliding mode controller has a crucial role in determining the robust dynamics of a closed-loop system 

in the presence of disturbances and plant nonlinearities. Experimental results of DC servo motor angular 

position control are presented and discussed for two different sliding mode control algorithms. The 

analysis shows improved performance in terms of fast reference tracking and disturbance rejection. 

Keywords: tube model predictive control, discrete-time Malmquist orthogonal functions, sliding mode 

control, DC motor servo system. 

1. INTRODUCTION 

Due to its good control characteristics, a DC motor servo system is widely used in process industries, 
where precise control of speed and position is required in a large range. On the other hand, it is originally a 
nonlinear system with several non-electrical parameters changing with the time, motor temperature and 
working environment, which are difficult to measure directly. These parameter variations affect the static and 
dynamic control system performance by deteriorating them. The linear model of the DC servo motor is still 
predominant in system design both with the classical PI and PID control algorithms. To attain the desired 
system behavior in the presence of external disturbances, parameter perturbations and plant nonlinearities, 
some robust modifications of latter control laws should be considered. Moreover, the reduced models of DC 
servo motors are often used in the controller design process, as well as in this manuscript. In [1], it is presented 
how to derive one such reduced model and use it to tune the PI controller parameters to alleviate the effects of 
closed-loop zeros on servo system performance. Under set-point change and during load disturbances, PI 
controllers obtained from reduced model-based design fail to keep the servo system overshoot and/or 
undershoot within the acceptable limit. As set-point filtering and weighting methods give acceptable responses 
to set-point changes, but not to load ones, an online dynamic set-point weighting technique in PI controller 
design is shown in [2], demonstrating its effectiveness for DC servo motor position control. The robust stability 
of the closed-loop servo system concerning parametric variations of the DC motor, represented by the first and 
second-order model, as well as PI and PID controller robustness are considered in [3]. PI and PID parametric 
conditions, which provide robust stability to plant parameter perturbations, are derived first from Kharitonov’s 
theorem. Thereafter, other parametric conditions are obtained to provide PI and PID controller robustness 
assuming that the DC servo motor parameters are constant, and the controller parameters are variable within 
the given intervals. These conditions are applied to an extended symmetrical optimum method for tuning PI 
and PID controller parameters resulting in design recommendations. A comparative study of a DC servo motor 
position control using various classical controllers is given in [4]. An interesting approach to DC motor servo 
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system design is discussed in [5], where the sliding mode controller is combined with a model-free PI control 
system structure to compensate for the estimation errors and thus enhance system robustness and performance. 
Another approach to suppress DC motor servo system overshoot and/or undershoot under set-point change and 
load disturbance caused by state/output and input constraints is to implement robust model predictive control 
(MPC) techniques [6, 7]. 

Tube model predictive control (TMPC) has become a good option apart from robust dynamic 

programming [8−11] and min-max feedback model predictive control (MPC) [12−16] for formulating, 

analysing, and getting close to a robust control problem solution. Tube-based control techniques aim to confine 

all potential trajectories of an uncertain system within a tube surrounding the nominal system trajectory. The 

basic TMPC concept implies that the MPC controller essentially controls the nominal plant and an auxiliary 

controller provides robustness i.e. that perturbed plants are inside a “tube” surrounding the nominal plant. The 

auxiliary controller should add little additional computational requirements to the overall control, and that is 

why sliding mode control (SMC) [17] seems to be a good choice due to its simplicity and robust characteristics 

[18, 19]. Even with linear state feedback, it is difficult to calculate tube widths accurately. A set of states must 

be calculated within which the auxiliary controller may maintain the states of the real system. Once this set 

has been computed, the equivalent set within which the auxiliary control input will reside must also be 

calculated. To avoid confining the nominal MPC, the estimated set should be as small as possible; that is, the 

minimal robustly positive invariant (mRPI) set has to be calculated for the system under auxiliary control. 

There are various tractable convex tube MPC formulations for linear systems, including fully parameterized 

TMPC [20, 21], homothetic TMPC [22−24], elastic TMPC [25], and rigid TMPC [26, 27]. The best way to 

implement robust MPC depends on balancing conservatism and improving computational run-time 

performance. The parameterization of the tube is often based on polytopes, ellipsoids, or other sets, which 

affects the run-time and performance of the associated controller. In [28], the authors have utilized a modified 

reference system that operates similarly to the nominal system, with the distinction that the transition between 

different modes of the piecewise affine system is influenced by the real system state. A new type of 

configuration-constrained polytopic robust invariant tubes is presented in [29], allowing for a combined 

parameterization of their facets and vertices. The work described in [30] shows an innovative formulation of 

a resilient MPC designed to track dynamic targets through the unified optimization approach. The controller 

formulation contains parameters that offer additional degrees of freedom, and the new parameters enable the 

management of control objectives like disturbance rejection, output offset prioritization, or expansion of the 

domain of attraction. This paper also demonstrates how these parameters can be computed offline. 

Another approach for TMPC design is not to define the exact tube but to calculate the tube widths under 

the auxiliary controller [31], which is based on [32] where the robustly positive invariant set is not calculated 

directly. In this way, one should determine the measure for the nominal MPC control constraints tightening. 

The authors also presented the tightening procedure along with introducing the auxiliary sliding mode 

controller. In [33], the authors used Laguerre orthogonal functions for the nominal MPC design. Both latter 

control approaches are experimentally verified on DC motor servo system. The goal of introducing orthogonal 

functions is to handle a large control horizon while having a small optimization problem [34]. By decreasing 

the degrees of freedom in optimization, one reduces the computational burden, issued by a large number of 

parameters for online optimization problem-solving. This allows the controller to handle both slow and fast(er) 

dynamics with a small number of decision variables.  

This paper presents the modification of the traditional MPC design method within the TMPC framework, 

where the discrete-time generalized Malmquist orthogonal functions are introduced into MPC design. Their 

employment is justified by the assumption that the control increment behaves similarly to a stable system's 

impulse response, which can be expressed using the Malmquist impulse response model. Employing this class 

of functions has the advantage of having only a few tuning parameters that are independent of the sampling 

time T, which makes the closed-loop tuning process easier. To the authors’ knowledge, discrete-time 

Malmquist functions have never been used in TMPC formulation before. A nominal TMPC is employed, as in 

the original TMPC, to emphasize the robustness provided by the auxiliary controller. However, the SMC-

based auxiliary controller suggested in this work is also applicable to a TMPC formulation in which feedback 

is also used in the MPC component of the TMPC. The auxiliary controller input is very important because it 

affects the closed-loop system dynamics when disturbance is present. There are different procedures for its 

calculation. Here, two well-known SMC approaches for the auxiliary controller design are used [17, 35].  
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In the next sections, a brief definition of the problem is given, followed by the TMPC design with the 

introduction of nominal Malmquist functions based MPC and auxiliary sliding mode controller. Afterwards, 

the experimental results and conclusion remarks are presented. The contributions of this paper are the 

following: 

(1) the design of the TMPC method with the nominal MPC tuned by orthogonal Malmquist functions 

parameters, and the auxiliary controller defined by traditional and chattering-free SMC algorithms, 

(2) the robustness of the proposed TMPC, where the MPC is used to handle the nominal system (nominal 

model) and the deviations from the nominal is handled by sliding mode controller, 

(3) lowering the computational load by employing a parameterization approach based on the orthogonal 

functions for the MPC design, and 

(4) the online computational complexity is related only to solving a nominal MPC scheme, and is not 

influenced by auxiliary controller. 

2. PROBLEM STATEMENT 

Let us consider the state-space model of a single-input-single-output plant in discrete-time domain, 

described by: 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐸𝑤𝑘 
               𝑦𝑘 = 𝐶𝑥𝑘 

(1) 

where 𝑥 ∈ ℝ𝑛𝑥 is the system state, 𝑢 ∈ ℝ is the control input signal, 𝑦 ∈ ℝ is the output, and 𝑤 ∈ ℝ𝑛𝑥 is a 

disturbance. The control input increment Δ𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1 is also determined at time instant k. It is assumed 

that polyhedral, bounded and full dimensional sets 𝕌, 𝕌Δ, and 𝕎 have the origin in their interior and define 

the constraints on the input and its increment as 

𝑢𝑘 ∈ 𝕌 = {𝑢𝑘|Γ𝑢𝑘 ≤ 𝜒}, 

Δ𝑢𝑘 ∈ 𝕌Δ = {Δ𝑢𝑘|ΓΔΔ𝑢𝑘 ≤ 𝜒Δ}, 𝕌Δ ⊂ 𝕌 
 

 

(2) 

and also define the constraints on the possible range of disturbances by 

𝑤 ∈ 𝕎 = {𝑤|H𝑤𝑘 ≤ 𝜆}.  (3) 

The main idea behind the TMPC approach is to split the system state x into two components, a nominal 

component �̅� that is going to be controlled by nominal MPC without considering disturbances, and the 

deviation from the nominal 𝑧 = 𝑥 − �̅� where the control problem is defined as a feedback control problem 

providing that the actual state x follows the nominal state �̅�.  

The block scheme of the proposed TMPC is given in Fig. 1.  

 

 

Fig. 1 – Block scheme of the proposed TMPC. 

Following this concept, the nominal system is defined by 
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�̅�𝑘+1 = 𝐴�̅�𝑘 + 𝐵𝑢𝑘
𝑀𝑃𝐶, (4) 

whereas the perturbed one is described by 

𝑧𝑘+1 = 𝐴𝑧𝑘 + 𝐵𝑢𝑘
𝐴𝑈𝑋 + 𝐸𝑤𝑘. (5) 

It is obvious from (1), (4), (5) and Fig. 1 that the control input is also divided into two parts as well. One 

comes from the nominal MPC denoted by 𝑢𝑀𝑃𝐶, and the other from the auxiliary controller, denoted by 𝑢𝐴𝑈𝑋, 

yielding  

𝑢 = 𝑢𝑀𝑃𝐶 + 𝑢𝐴𝑈𝑋. (6) 

3. NOVEL TUBE MODEL PREDICTIVE CONTROL DESIGN 

This section elaborates TMPC approach, wherein the conventional MPC is substituted by the control 

method that utilizes generalized discrete-time Malmquist orthogonal functions together with sliding mode 

controller as an auxiliary controller. The aim for introducing these functions in the controller design is to 

decrease computational complexity of proposed TMPC that is obtained using Malmquist orthogonal function 

parameters as a decision variable. Comparing to the traditional MPC approach, this method provides handling 

a large control horizon while having a small optimization problem which affects computational burden. The 

Malmquist functions based MPC design is presented first, and then the description of the used SMC approaches 

is shown in the sequel. 

3.1. Malmquist functions based MPC 

In [36−38], discrete-time generalized Malmquist orthogonal functions for system identification have 

been developed. To define the appropriate form of the Malmquist functions for the controller design, the same 

approach from [36] is applied. The following transfer function for the Malmquist network (depicted in Fig. 2) 

is obtained as 

𝑊𝑁(𝑧) =
𝑧

𝑧−𝑎1
∏

𝑧−𝑎𝑘−1
∗

𝑧−𝑎𝑘

𝑁
𝑘=2 ; 𝑎𝑘

∗ =
1

𝑎𝑘
, 𝑎𝑘 ∈ ℝ, 𝑎𝑘 = [0,1],  (7) 

where the symmetric transformations 𝑎𝑘
∗ = 𝑓(𝑎𝑘) and 𝑎𝑘 = 𝑓(𝑎𝑘

∗ ) are used for mapping the zeroes and poles 

as 𝑎𝑘
∗ =

1

𝑎𝑘
 and 𝑎𝑘 =

1

𝑎𝑘
∗ , respectively. 

 

 

Fig. 2 – Discrete Malmquist network. 

Here, these functions are used for the design of nominal MPC. Commonly, generalized discrete-time 

Malmquist functions can be obtained using the inverse Z-transform of the Malmquist network. However, 

applying the inverse Z-transform of the network is not a simple instrument for the calculation of the Malmquist 

functions in discrete-time domain. The practical way of deriving the Malmquist functions is deploying the 

state-space representation of the network as a result of their cascade form. If the Malmquist functions are 

represented in a vector form Φ𝑘 = [𝜑𝑘
1    𝜑𝑘

2   …   𝜑𝑘
𝑁]

𝑇
, the difference equation defining discrete-time 

Malmquist functions can be derived as 

Φ𝑘+1 = 𝐴𝜙Φ𝑘, (8) 

where the matrix 𝐴𝜙, containing the parameters 𝑎1, 𝑎2, … , 𝑎𝑁 of the Malmquist functions, is given in the 

following form 
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𝐴𝛷 =

[
 
 
 
 
 
 

𝑎1 0 0 ⋯ 0

𝑎1 −
1

𝑎1
𝑎2 0 ⋯ 0

𝑎1 −
1

𝑎1
𝑎2 −

1

𝑎2
𝑎3 ⋯ ⋮

⋮ ⋮ ⋮ ⋱ 0

𝑎1 −
1

𝑎1
𝑎2 −

1

𝑎2
⋯ 𝑎𝑁−1 −

1

𝑎𝑁−1
𝑎𝑁]

 
 
 
 
 
 

 , (9) 

with the initial conditions defined by Φ0 = [1   1   ⋯   1]𝑇. 

To design the Malmquist functions based MPC, an augmented state-space model needs to be derived.     

If Δ�̅�𝑘+1 = �̅�𝑘+1 − �̅�𝑘 and Δ𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1 denotation is introduced, the system with embedded integrator 

can be represented by: 

[
Δ�̅�𝑘+1

𝑦𝑘
] = [

𝐴 𝟎𝑛�̅�
𝑇

𝐶𝐴 1
] [

Δ�̅�𝑘

𝑦𝑘
] + [

𝐵
𝐶𝐵

] Δ𝑢𝑘
𝑀𝑃𝐶 , 

𝑦𝑘 = [𝟎𝑛�̅�
1] [

Δ�̅�𝑘

𝑦𝑘
],                                 

(10) 

where it is assumed that the nominal system state �̅� and output 𝑦 are always available and measurable. If the 

following notation: �̅�𝑘+1 = [
Δ�̅�𝑘+1

𝑦𝑘
],  𝑨 = [

𝐴 𝟎𝑛�̅�
𝑇

𝐶𝐴 1
],  𝑩 = [

𝐵
𝐶𝐵

],  𝑪 = [𝟎𝑛�̅�
1] is used, the condensed form 

of (10) is obtained as 

�̅�𝑘+1 = 𝑨�̅�𝑘 + 𝑩Δ𝑢𝑘
𝑀𝑃𝐶 , 

𝑦𝑘 = 𝑪�̅�𝑘,                   
(11) 

where �̅� ∈ ℝ𝑛𝑥+1, Δ𝑢 ∈ ℝ, 𝑦 ∈ ℝ, and it will be used in the sequel for the nominal MPC design. 

The nominal control input and its increment constraints are defined as a set of linear inequalities 

determined by (2) as  

Δ𝑢min
𝑀𝑃𝐶 ≤ Δ𝑢𝑘

𝑀𝑃𝐶 ≤ Δ𝑢max
𝑀𝑃𝐶 , 

 
𝑢min

𝑀𝑃𝐶 ≤ 𝑢𝑘
𝑀𝑃𝐶 ≤ 𝑢max

𝑀𝑃𝐶, 
(12) 

where ⦁min
𝑀𝑃𝐶 defines lower and ⦁max

𝑀𝑃𝐶 upper limits on the appropriate control input signals at each time instant 

k. The control increment trajectory Δ𝑢𝑘
𝑀𝑃𝐶 is approximated by using a set of Malmquist functions 

Δ𝑢𝑘+1 = ∑ 𝑐𝑘
𝑗𝑁

𝑗=1 𝜑𝑖
𝑗
, (13) 

where [𝑐𝑘
1   𝑐𝑘

2    ⋯   𝑐𝑘
𝑁]

𝑇
= 𝜏𝑘 is a vector of Malmquist functions coefficients. To obtain the optimal value of 

the control input increment Δ𝑢𝑘
𝑀𝑃𝐶, the optimal Malmquist functions parameters 𝜏𝑘 have to be calculated and 

have to satisfy the new linear set of constraints defined by 

Ψ𝜏𝑘 ≤ Ξ, (14) 

where 

Ψ =

[
 
 
 
 

Φ𝑖
𝑇

−Φ𝑖
𝑇

∑ Φ𝑗
𝑇𝑖−1

𝑗=0

−∑ Φ𝑗
𝑇𝑖−1

𝑗=0 ]
 
 
 
 

, Ξ = [

Δ𝑢𝑚𝑎𝑥

−Δ𝑢𝑚𝑖𝑛

𝑢𝑚𝑎𝑥 − 𝑢𝑘−1

−𝑢𝑚𝑎𝑥 + 𝑢𝑘−1

]. (15) 

The convexity of the objective function is provided by linearity in the decision variables. Many optimization 

routines can handle this type of optimization problem [39]. Now, the control input, calculated as 

𝑢𝑘
𝑀𝑃𝐶 = 𝑢𝑘−1

𝑀𝑃𝐶 + Δ𝑢𝑘
𝑀𝑃𝐶, (16) 
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is applied to the plant (1) and the nominal system (4). The deviation from nominal system dynamics caused by 

disturbance, parameter uncertainties and nonlinearities is cancelled by using the auxiliary control input 𝑢𝐴𝑈𝑋 

as it is defined in (6). To make sure that the control constraints (2) are respected by (6), the nominal constraints 

on the 𝑢𝑀𝑃𝐶 input have to be narrowed. Under assumption that the disturbance is constant over the prediction 

horizon, the calculation method for offline constraints tightening [31] should be used. The design of the 

proposed auxiliary sliding mode controllers is described in the next subsection. 

3.2. Auxiliary Sliding Mode Controllers 

To apply the auxiliary sliding mode controller, one should consider the perturbed system dynamics (5). 

Two different SMC algorithms are used herein to suppress the disturbance action. The proposed auxiliary SMC 

laws are generally defined by 

𝑢𝐴𝑈𝑋 = −(𝐾𝐵)−1(𝐾𝐴𝑧𝑘 − 𝑔𝑘 + 𝜎(𝑔𝑘) ) (17) 

where 𝑔𝑘 = 𝐾𝑧𝑘 is a switching function, 𝑔𝑘 = 0 is a sliding surface, and K represents a vector of sliding 

surface parameters. In the first SMC algorithm, which is the traditional relay-based SMC, 𝜎(𝑔𝑘) is given by 

𝜎(𝑔𝑘) = Δ𝑢𝑠𝑚𝑐𝑠𝑔𝑛(𝑔𝑘)  (18) 

where Δ𝑢𝑆𝑀𝐶 represents the relay constant.  

If one substitute (17) and (18) in (5) implying that 𝑔𝑘 = 𝐾𝑧𝑘, the switching function dynamics in the 

prediction horizon is then defined by  

𝑔𝑘+𝑖+1 = 𝑔𝑘+𝑖 − Δ𝑢𝑠𝑚𝑐𝑠𝑔𝑛(𝑔𝑘+𝑖) + 𝐾𝐸𝑤𝑘+𝑖;  𝑖 ∈ {0, 1, . . . , 𝑁}.  (19) 

The second used auxiliary controller component is the chattering-free SMC, where 𝜎(𝑔𝑘) is described as [35, 

40] 

𝜎(𝑔𝑘) = min(|𝑔𝑘|, 𝛥𝑢𝑆𝑀𝐶) sgn(𝑔𝑘),  (20) 

Substituting (17) and (20) into (5), using 𝑔𝑘 = 𝐾𝑧𝑘 yields 

𝑔𝑘+𝑖+1 = 𝑔𝑘+𝑖 − min(𝐼|𝑔𝑘+𝑖|, 𝛥𝑢𝑆𝑀𝐶) sgn(𝑔𝑘+𝑖) + 𝐾𝐸𝑤𝑘+𝑖, 𝑖 ∈ {0, 1, . . . , 𝑁}. (21) 

Equations (19) and (21) defines the switching function dynamics inside the prediction horizon. The following 

Theorem defines the existence conditions of a sliding mode. 

 THEOREM [31]. If 𝛥𝑢𝑆𝑀𝐶  satisfies the inequality  

𝛥𝑢𝑆𝑀𝐶 > Ω > max|𝐾𝐸𝑤𝑘|, (22) 

where Ω is a positive real number, there exists a positive integer number 𝑘0 = 𝑘0(𝑔𝑘) < 𝑁 for every initial 

state 𝑔𝑘, such that the system phase trajectory 𝑔𝑘+𝑖+1, 𝑖 ∈ {0,1, . . . , 𝑁}, enters the domain defined by 𝐺 =

{𝑔𝑘+𝑖: |𝑔𝑘+𝑖| < 𝛥𝑢𝑆𝑀𝐶 + Ω}, after 𝑘0 timesteps and stays there for all 𝑖 > 𝑘0.  

This condition ensures stable switching function dynamics. The Proof of the Theorem for both sliding 

mode auxiliary controllers can be found in [31, Appendices A and B]. 

The closed loop system dynamics in sliding mode is then described by 

𝑧𝑘+1 = (𝐴 − 𝐵(𝐾𝐵)−1𝐾(𝐴 − 𝐼)𝑧𝑘 

𝐾𝑧𝑘 = 0. 
(23) 

when the equivalent control 𝑢𝑒𝑞
𝐴𝑈𝑋 = −(𝐾𝐵)−1(𝐾𝐴𝑧𝑘 − 𝑔𝑘) is applied in (5) [40]. 

4. EXPERIMENTAL RESULTS 

The proposed TMPC algorithms were applied to the modular DC motor servo system [41]. This 

experimental setup consists of a DC motor, tachogenerator, encoder, and inertia load of 2 kg connected to the 

motor (see Fig. 3). It enables the rapid real-time application of different control algorithms. The system is 

linked to MATLAB/Simulink using an RT-DAC4/USB board. The DC motor is controlled by a pulse-width 

modulation  
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Fig. 3 – DC servo system setup. 

(PWM) signal that is modulated based on the scaled input voltage 𝑈(𝑡) = 𝑉(𝑡) 𝑉𝑚𝑎𝑥⁄ , −1 ≤ 𝑈(𝑡) ≤ 1,
𝑉𝑚𝑎𝑥 = 12[𝑉]. The accompanying toolbox allows the identification of the DC motor parameters needed for 

deriving an appropriate mathematical model. The nonlinearity existing in DC servo motor angular position 

tasks, is unmodeled disturbance in the form of Coulomb’s friction described by 𝑤 = 𝐹𝑐sign(𝑥2). The dead 

zone which also affects the control signal is between –0.15 and +0.15. 

 

By neglecting these static and dry frictions, as well as saturation, the transfer function of this system can 

be represented as 

𝐺(𝑠) =
𝜃(𝑠)

𝑢(𝑠)
=

𝐾𝑠

𝑠(𝑇𝑠𝑠 + 1)
 (24) 

Using the system identification tool, the DC motor gain 𝐾𝑠 = 184.73 and time constant 𝑇𝑠 = 0.9s are 

obtained. By applying the sampling period 𝑇 = 0.01𝑠 and the zero-order hold circuit, and by choosing the 

state variables as angular position, 𝑥1 = 𝜃, measured in [rad], and angular velocity, 𝑥2 = �̇� = 𝜔, measured in 

[rad/s], the following matrices of the discrete-time state-space model are calculated 

𝐴 = [
1 0.0099
0 0.9890

] ,   𝐵 = [
0.0102
2.0412

] ,   𝐶 = [1 0]. (25) 

The parameters for the nominal Malmquist functions-based MPC are the following:  

• the prediction horizon 𝑁𝑝 = 180, 

• the number of Malmquist network terms 𝑁 = 4, and 

• the Malmquist functions parameters 𝑎1 =
1

2
, 𝑎2 =

1

3
, 𝑎3 =

1

4
, 𝑎4 =

1

5
.  

The SMC parameter 𝛥𝑢𝑆𝑀𝐶  is chosen to cope with DC motor servo system uncertainties. A standard 

approach [40] to the design of the sliding surface parameters 𝐾 is used that is based on the transformation of 

the original system model (5) into the normal form. The system dynamics in sliding mode is defined by 

eigenvalue 𝑧 = exp(−𝛼𝑇) with 𝛼 = 1.9. Parameters for both SMC auxiliary controllers are selected as 

• 𝛥𝑢𝑆𝑀𝐶 = 0.3, and 

• 𝐾 = [−0.9220 −0.4853]. 
The control input constraints are determined from the physical system limitations which are defined by 

−1 ≤ 𝑢𝑘 ≤ 1 (26) 

As explained in the previous section, the control input is divided into two components and both of them 

have to be constrained separately to satisfy (14). The constraints on Malmquist functions-based MPC and its 

increments are 

−0.7 ≤ 𝑢𝑘
𝑀𝑃𝐶 ≤ 0.7,−0.25 ≤ Δ𝑢𝑘

𝑀𝑃𝐶 ≤ 0.25. (27) 

The DC servo motor angular position 𝜃 response is presented in Fig. 4. In the first experiment, the DC 

motor servo system is controlled by the proposed TMPC with traditional relay-based SMC (18). It is shown 

that the output reaches the reference signal in less than 300 time steps. Figures 5 and 6 depict the nominal 

Malmquist functions-based MPC signal and its increment trajectories. It is shown that both signals Δ𝑢𝑀𝑃𝐶 and 

𝑢𝑀𝑃𝐶 do not violate constraints defined by (27). The disturbance is rejected, but there is chattering in the SMC 

signal (Fig. 7). 
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Fig. 4 – Angular position 𝜃. Fig. 5 – Nominal MPC input increment Δ𝑢𝑘
𝑀𝑃𝐶. 

  

Fig. 6 – Nominal MPC input Δ𝑢𝑘
𝑀𝑃𝐶. Fig. 7 – Auxiliary SMC input Δ𝑢𝑘

𝐴𝑈𝑋. 

The next experiment utilizes the control algorithm with the nominal MPC defined by (16) along with the 

auxiliary chattering-free SMC component (21). The angular position 𝜃 response is shown in Fig. 8. The 

nominal Malmquist functions-based MPC input and its increment are the same as in the previous experiment 

(Figs. 5 and 6). Figure 8 demonstrates that the used auxiliary component effectively suppresses disturbance, 

and also reduces the chattering phenomenon. The applied auxiliary sliding mode controller input is presented 

in Fig. 9. 

 

  

Fig. 8 – Angular position 𝜃. Fig. 9 – Auxiliary SMC input Δ𝑢𝑘
𝐴𝑈𝑋. 
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In order to emphasis and justify the robustness properties of the proposed TMPC, gained by using the 

auxiliary SMC, an experiment is done where only nominal MPC is applied to the DC motor servo system. In 

this set-up, the constraints on Malmquist functions-based MPC input and its increment are 

−1 ≤ 𝑢𝑘
𝑀𝑃𝐶 ≤ 1,   − 0.25 ≤ Δ𝑢𝑘

𝑀𝑃𝐶 ≤ 0.25. (28) 

Figure 10 depicts the nominal angular position 𝜃nom and the angular position of the real-time DC motor 

servo system 𝜃 responses. One can see that there is discrepancy of around 12 rad between the responses of the 

nominal model and real system outputs. This highlights the nominal MPC's lack of robustness when applied 

to a real-time DC servo system with disturbance. 

 

Fig. 10 – Angular positions 𝜃 and 𝜃𝑛𝑜𝑚. 

To demonstrate the ability of Malmquist orthogonal functions to better tune the nominal MPC, the 

comparison of Laguerre functions based MPC (LbMPC) [34] with the proposed Malmquist functions based 

MPC (MbMPC) is performed with the same number of terms 𝑁 and also the same value of the prediction 

horizon 𝑁𝑝 of both control methods., The advantage of MbMPC is in the fact that more distinct function 

parameters can be used for better (fine) tuning of the nominal controller. For LbMPC, all parameters have the 

same value, i.e. 𝑎1 = 𝑎2 = 𝑎3 = 𝑎4 = 𝑎 =
1

2
 . The parameters of the MbMPC are defined as in the first 

experiment 𝑎1 =
1

2
, 𝑎2 =

1

3
, 𝑎3 =

1

4
, 𝑎4 =

1

5
. Figure 11 shows slightly faster output response of the proposed 

nominal MbMPC.  

 

Fig. 11 – Angular positions 𝜃 for LbMPC and MbMPC. 
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5. CONCLUSION 

This paper examines the tube model predictive control (TMPC) utilizing generalized discrete-time 

Malmquist orthogonal functions with a sliding mode control (SMC) as an auxiliary controller applied to 

enhance the robustness of DC motor servo system. Usage of Malmquist orthogonal function parameters as 

decision variables reduces computational complexity of the proposed TMPC, and significantly decreases the 

optimization problem size.  In that manner, such approach enables handling a large control horizon with low 

computational burden. Offline tightening constraints on the control input of the nominal model predictive 

control (MPC) component has been performed due to the presence of SMC term. The SMC algorithms, both 

the traditional and the chattering-free ones, are implemented as auxiliary control components to reduce 

disturbances, parameter variations and effects of nonlinearities and enhance the performance of the real DC 

motor servo system. The proposed TMPC formulation demonstrates the efficient online solving of constrained 

optimization problems for Malmquist functions based MPC and the straightforward implementation of the 

proposed SMC methods. This approach is demonstrated by conducting several real-time experiments on the 

modular DC motor servo system where satisfactory system dynamical behaviour are attained.  
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