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Abstract. For discrete-time linear systems, by applying the advantages of data-driven methods and iterative
learning control, this paper proposes three data-driven learning control algorithms based on the linearity of the
system. For iterative learning control, if the initial state shift is zero in each iteration and the system matrix is
known, the algorithm presented in this paper can ensure that the system achieve complete tracking in the entire
interval through a finite number of iterations. If the initial state shift is arbitrary in each iteration and the system
matrix is unknown, the algorithm proposed in this paper can ensure that the system achieve complete tracking
at all points except the initial point through finite iterations. Even for systems with non-repetitive processes, if
the system matrix is unknown, the method in this paper can ensure that the system achieves complete tracking
at all points except a finite number of points in the initial stage. Finally, the effectiveness of the three algorithms
is verified by three examples, and the superiority of the proposed algorithms is demonstrated by comparison.
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1. INTRODUCTION

Data-driven control originated from the computer field, but has developed rapidly in the control field in the
past two decades. The stability of data-driven control systems is essentially related to the model [1] and the
data utilized. According to the utilization of data, data-driven control can be roughly divided into three types of
control theories and methods, including offline-based, online-based, and offline-online-combined. Among the
data-driven control methods based on offline data, the most representative one is the PID (Proportional Integral
Differential) control. In the data-driven control methods based on online data, model-free adaptive control has
attracted the attention. The combination of offline and online data-driven control methods mainly includes
iterative learning control (ILC), repetitive learning control (RLC), and lazy learning control [2].

PID controller is of great concern in the application of offline data control methods. The PID controller
consists of three parts: proportional unit, integral unit, and differential unit. Since the mid-20th century, al-
though various advanced controllers have been introduced, the PID controller has become the most commonly
used method in industrial control processes due to its simple structure, low model requirements, and ease of
operation. In practical applications, the structure of the PID controller is changed based on the control process,
control situations, and control requirements, and only some units are taken to construct the controller, such as
proportional controller, proportional integral controller, proportional differential controller, etc. As of the year
2000, at least 95% of industrial process control is still PID control [3]. When applying PID controller, the most
core content is the tuning of control parameters. Since the Z-N (Ziegler Nichols) method was proposed, many
techniques have been used for parameter tuning of PID controllers. In engineering practice, there are many
methods that have achieved good results [4]. It is worth mentioning that Astrom and Hagglund have published
two monographs on PID controller tuning [5]. In general, PID controllers can enable the system to achieve
asymptotic tracking.

The main ways to use online data for control include the following: model-free control based on SPSA
(Simultaneous perturbation stochastic approximation) [6–9], unfalsified control (UC) [10–13] and model free
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adaptive control (MFAC) [14–18]. Since Spall proposed the SPSA model free control method in 1992 [6],
the SPSA method advanced in [7] obtains the gain value of the PID controller by minimizing the objective
function. The simulation results show that the PID gains optimized by SPSA can provide better control effect
with random uncertainty. [8] improves the SPSA algorithm by combining gradient approximation algorithm.
The analysis shows that the estimation sequence generated by the improved algorithm will almost certainly
converge to its optimal point. The self-tuning mechanism proposed in [9], combined with the SPSA method,
provides effective vibration suppression effects for various controlled objects without manually adjusting the
controller. However, the convergence speed of the model free control method based on SPSA needs to be
improved. Chen et al. constructed a switching algorithm using the UC algorithm [11], which is proposed by
Safonov et al. in 1997 [10], to ensure system stability. In [12], combining H∞ control and UC, the feasibility
of the algorithm is ensured by increasing the degree of freedom of the candidate set of controllers. MFAC was
proposed by Hou in 1994 [14], and has been gradually improved after nearly 30 years of development [15,16].
The basic idea is to replace the original discrete nonlinear model with a dynamic linear model, where only input
and output data are used to estimate relevant parameters online, thereby achieving model-free adaptive control.
To date, the MFAC method has been widely used [17–19]. It is worth noting that model-free control methods do
not exclude the use of system model information. In fact, tracking effect is much better if system information
is used. For these online-based control methods, it is generally difficult to achieve complete tracking.

Lazy learning is a supervised machine learning algorithm that was first applied to control by Schaal and
Atkeson [20], and then popularized in subsequent development [21–23]. Its main idea is to find a mapping
between inputs and outputs based on training data. Yang et al. use the lazy learning algorithm to adjust the
parameters of the online T-S fuzzy model and controller, and the simulation results show that this method can
significantly improve the tracking accuracy and energy efficiency of high-speed trains [21]. The controller de-
signed by Hou et al., combining lazy learning and MFAC, not only exhibits good robustness, but also achieves
adaptive prediction for mutations in expected value [22]. In [23], a controller is proposed for real-time power
generation control based on inert reinforcement learning, which can achieve the highest control performance.
RLC, which uses information from previous cycles and the current cycle to adjust the current input to improve
tracking performance, is generally applicable to systems that run on successive cycles [24]. In contrast, ILC
uses information from previous iterations and current iteration to adjust current input to improve tracking per-
formance, and is generally applicable to systems that run repeatedly on a finite interval [25–27]. Because of
its simple algorithm and small amount of calculation, ILC is widely used in products assemble line, intelligent
robot control, chemical process control and other occasions [28–31]. Both RLC and ILC have one advantage:
suppressing repetitive disturbances. Although RLC and ILC can achieve complete tracking when the number of
repetitions and iterations approaches infinity, in reality, the number of repetitions or iterations cannot increase
indefinitely. Therefore, RLC and ILC can only achieve asymptotic tracking in the actual process.

When applying the ILC method, it is generally required the initial state shift to be zero during each ex-
periment, because the initial value problem not only affects the tracking effect, but also affects the stability of
the system [32, 33]. However, due to measurement errors, experimental environment, and other factors, it is
difficult to make the initial state shift equal to zero during each experiment or iteration. As a consequence,
the ILC problem with initial state shift has been concerned. For discrete-time systems, if there is initial state
shift, even if the number of iterations tends to infinity, it is still difficult to achieve complete tracking, which
has become an open topic of ILC [34–39].

For a class of discrete-time linear systems with arbitrary initial state shifts in the iterations, this paper
applies the data-driven and ILC method to achieve error-free tracking over the whole time interval (except the
initial point) after a limited number of iterations. Even for non-repetitive processes, the proposed algorithm
can still achieve error-free tracking a specified interval. Finally, the effectiveness of the proposed algorithm is
verified by simulation examples.

The main innovations of this work are as follows. (1) The control algorithm proposed in this paper can
achieve complete tracking with initial state shift without knowing the system parameters. (2) The data-driven
control process fully utilizes the linearity of the system, making the control input design simple and parameter
calculation easy. (3) Compared with general iterative learning control, a smaller number of iterations can
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achieve better tracking results, that is, error free tracking.
The remaining parts of the paper are composed as follows. Section 2 presents the class of linear systems

to be discussed in this paper. In Section 3, a controller is designed for the case where the system matrix A is
known and has no initial state shift. Section 4 is about designing controllers for situations where the system
matrix A is unknown and there is initial state shift. In Section 5, the controller design scheme for non repetitive
processes is discussed. Multiple simulation examples are employed in Section 6, and conclusions are drawn in
Section 7.

2. PROBLEM FORMULATION

Consider the following linear system{
xxxk(t +1) = Axxxk(t)+Buuuk(t),
yyyk(t) =Cxxxk(t),

(1)

where t = 0,1,2, · · · ,N; k = 1,2, · · · denotes the number of iterations; xxxk(t) ∈ Rn,yyyk(t) ∈ Rr,uuuk(t) ∈ Rm repre-
sent the system state, control input, and output vectors for the k−th iteration, respectively. A,B,C are system
parameter matrices of appropriate dimensions.

Let eeek(t) = yyyr(t)− yyyk(t) represent the k−th output error, where yyyr(t) is the given reference trajectory, and
set xxxr(t) to represent the given reference state.

For ILC, there is not much difference between linear systems and nonlinear systems using contraction
mapping principle. Actually, for linear systems, utilizing the linearity of the systems in the control process can
produce unexpected results. The purpose of this paper is to solve the problem of how to ensure the complete
tracking of the system under multiple repetitions with the aid of the data-driven methods and the linearity of
the system. In the process of applying data-driven control, if the system matrix A is known, the information of
A will be used. However, if the system matrix A is unknown, this paper only needs to use the linearity of the
system to achieve error free tracking.

3. CONTROLLER DESIGN AND CONVERGENCE ANALYSIS WITH A KNOWN

In this section, the controller design requires not only that the system matrix A is precisely known, but also
that the initial state of the system satisfies the following assumption.

Assumption 1. The initial state is xxxk(0) = xxxr(0), that is, the positioning is accurate at each iteration and
there is no initial state shift.

3.1. Controller design

First, we consider the following learning law

uuuk+1(t) = uuuk(t)+Γeeek(t +1). (2)

where Γ is the gain matrix of appropriate dimension. After repeating the above controller multiple times, we
can obtain the corresponding state variables xxx1(t), xxx2(t), · · · , xxxn(t). Applying the system (1), we get

xxxk(t +1)−Axxxk(t) = Buuuk(t), k = 1,2, · · · ,n. (3)

Suppose there is an ideal control law uuu1,d(t), such that

xxx1,d(t +1)−Axxx1,d(t) = Buuu1,d(t). (4)
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Let ξξξ 1,k(t) = xxxk(t + 1)−Axxxk(t) (k = 1,2, · · · ,n), ξξξ 1,d(t) = xxxr(t +1)−Axxxr(t). If the vectors ξξξ 1,1(t), ξξξ 1,2(t),
· · · , ξξξ 1,n(t) are linearly independent, then the following equation must be true.

ξξξ 1,d(t) = α1,1(t)ξξξ 1,1(t)+α1,2(t)ξξξ 1,2(t)+ · · ·+α1,n(t)ξξξ 1,n(t). (5)

Correspondingly, the following ideal controller can be obtained,

uuu1,d(t) = α1,1(t)uuu1(t)+α1,2(t)uuu2(t)+ · · ·+α1,n(t)uuun(t), (6)

where the parameters are computed by (α1,1(t),α1,2(t), · · · ,α1,n(t))T = (ξξξ 1,1(t) ξξξ 1,2(t) · · · ξξξ 1,n(t))
−1ξξξ 1,d(t).

3.2. Convergence analysis

Suppose that when control law (6) is applied to system (1), the corresponding state vector xxx1,d(t), output
vector yyy1,d(t) and tracking error eee1,d(t) = yyyr(t)− yyy1,d(t) can be obtained. For system (1) and control law (6),
there is the following convergence theorem.

THEOREM 1. Assuming system (1) satisfies Assumption 1, if the system matrix A is accurately known and
the state vector is measurable, and the vectors ξξξ 1,1(t), ξξξ 1,2(t), · · · , ξξξ 1,n(t) are linearly independent, then the
control law (6) can stabilize system (1) and make the tracking error eee1,d(t) = 0, t ∈ {0,1, · · · ,N}.

Proof. Applying control law (6) to system (1), we get

xxxr(t +1)− xxx1,d(t +1) = xxxr(t +1)− (Axxx1,d(t)+Buuu1,d(t)). (7)

Substitute (6) into the above equation to obtain

xxxr(t +1)− xxx1,d(t +1) = xxxr(t +1)− (Axxx1,d(t)+B(α1,1(t)uuu1(t)+α1,2(t)uuu2(t)+ · · ·+α1,n(t)uuun(t))). (8)

By inserting (4) and (5) into the above equation, we can derive

xxxr(t +1)− xxx1,d(t +1) = xxxr(t +1)− (Axxx1,d(t)+ xxxr(t +1)−Axxxr(t)) = A(xxxr(t)− xxx1,d(t)). (9)

Then, we have

eee1,d(t) = yyyr(t)− yyy1,d(t) =C(xxxr(t)− xxx1,d(t)) =CAt(xxxr(0)− xxx1,d(0)). (10)

When t = 0, by Assumption 1, i.e. xxx1,d(0) = xxxr(0), we can get eee1,d(t) = 0, t ∈ {0,1, · · · ,N}.

Remark 1. For system (1) and control law (2),

xxxk+1(t)− xxxk(t) = A(xxxk+1(t −1)− xxxk(t −1))+B∆uuu = A(xxxk+1(t −1)− xxxk(t −1))+BΓeeek(t). (11)

Let δδδ k(t) = xxxr(t)− xxxk(t), then (11) can be converted into

δδδ k+1(t) = (I −BΓC)δδδ k(t)+A(δδδ k+1(t −1)−δδδ k(t −1)). (12)

Set ηηηk(t) = δδδ k+1(t −1)−δδδ k(t −1), we have

ηηηk(t +1) = δδδ k+1(t)−δδδ k(t) = A(δδδ k+1(t −1)−δδδ k(t −1))−BΓCδδδ k(t) = Aηηηk(t)−BΓCδδδ k(t). (13)

Then the following model is obtained(
ηηηk(t +1)
δδδ k+1(t)

)
=

(
A −BΓC
A I −BΓC

)(
ηηηk(t)
δδδ k(t)

)
. (14)
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It can be seen that (14) takes the 2-D Roesser model structure. Therefore, for causal controller (2), the tracking
error of system (1) asymptotically converges to zero if ρ(A)< 1, ρ(I−BΓC)< 1 and ρ(|−A(I−A)−1BΓC+
I −BΓC|) < 1. However, the proposed method does not require that k → ∞ to achieve convergence. In other
words, unlike classical ILC, the conclusion of this method is eee1,d(t) = 0, rather than the limit being equal to
zero.

Remark 2. Multiplying the matrix C on both sides of (12), we have

eeek+1(t) =Cδδδ k+1(t) = (I −CBΓ)eeek(t)+CA(δδδ k+1(t −1)−δδδ k(t −1)). (15)

It follows that (
ηηηk(t +1)
eeek+1(t)

)
=

(
A −BΓ

CA I −CBΓ

)(
ηηηk(t)
eeek(t)

)
. (16)

Thereby, if ρ(A) < 1, ρ(I −CBΓ) < 1 and ρ(| −CA(I −A)−1BΓ+ I −CBΓ|) < 1, control law (2) can also
ensure the convergence of the system (1). Furthermore, the prerequisite for ρ(I −CBΓ)< 1 is that the matrix
CB is right invertible (row full rank). In fact, from our proof above, it is clear that the method in this paper
does not require ρ(I −BΓC)< 1 or ρ(I −CBΓ)< 1, but in order to ensure the validity of the control variable,
we recommend assuming ρ(I −BΓC)< 1 or ρ(I −CBΓ)< 1 holds.

Remark 3. When the dimension n is large, it is difficult to find linearly independent vectors ξξξ 1,1(t), ξξξ 1,2(t),
· · · , ξξξ 1,n(t). At this point, we can reduce the requirement and choose linearly independent vectors ξξξ 1,1(t),
ξξξ 1,2(t), · · · , ξξξ 1,s(t) (s < n). Define Ξ1 = (ξξξ 1,2(t) · · · ξξξ 1,s(t)). Obviously, (ΞT

1 Ξ1)
−1ΞT

1 is the Moore-Penrose
inverse of Ξ1, because it is column full rank. Therefore, the ideal controller can be designed as

uuu1,d(t) = α1,1(t)uuu1(t)+α1,2(t)uuu2(t)+ · · ·+α1,s(t)uuus(t), (17)

where(α1,1(t),α1,2(t), · · · ,α1,s(t))T = (ΞT
1 Ξ1)

−1ΞT
1 ξξξ 1,d(t).

4. CONTROLLER DESIGN AND CONVERGENCE ANALYSIS WITH A UNKNOWN

In this section, the controller design process not only involves the unknown system matrix A, but also
involves more complex initial state conditions that satisfy the following assumption.

Assumption 2. The initial state xxxk(0) is random, that is, the positioning is not accurate enough in each
iteration and there are initial state shifts.

4.1. Controller design

Due to the arbitrary initial state shifts of the system, in order to quickly stabilize the system (1), we first
consider the following ILC law with feedback:

uuuk+1(t) = uuuk(t)+Γ1eeek(t +1)+Γ2eeek+1(t) (18)

with uuu0(t) = 0. Similarly, the controller (18) is iterated multiple times to obtain a sequence of iterative state
variables xxxi+1(t +1), xxxi+2(t +1), · · · , xxxi+n(t +1) (i ≥ 0), and the corresponding control variables are denoted
as uuui+1(t), uuui+2(t), · · · , uuui+n(t) (i ≥ 0). Similar to Section 3.1, we assume that there exists an ideal control law
uuu2,d(t), such that

xxx2,d(t +1)−Axxx2,d(t) = Buuu2,d(t). (19)

As the iterative state variable xxxk(t) in the system dynamics model (1) is n−dimensional, the following
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equations are true if the vectors xxxi+1(t), xxxi+2(t), · · · , xxxi+n(t) (i ≥ 0, t ∈ {0,1, · · · ,N}) are linearly independent.

xxx2,d(t) = β1xxxi+1(t)+ · · ·+βnxxxi+n(t),
xxxr(t +1) = α2,1xxxi+1(t +1)+ · · ·+α2,nxxxi+n(t +1).

(20)

By inserting (20) into (19), we can derive

α2,1xxxi+1(t +1)+ · · ·+α2,nxxxi+n(t +1) = A(β1xxxi+1(t)+ · · ·+βnxxxi+n(t))+Buuu2,d(t). (21)

If α2,i = βi(1 ≤ i ≤ n) , then

α2,1xxxi+1(t +1)+ · · ·+α2,nxxxi+n(t +1) = A(α2,1xxxi+1(t)+ · · ·+α2,nxxxi+n(t))+Buuu2,d(t). (22)

Because xxxi+1(t +1), xxxi+2(t +1), · · · , xxxi+n(t +1) are generated by the corresponding control variables uuui+1(t),
uuui+2(t), · · · , uuui+n(t), we can set uuu2,d(t) = α2,1uuui+1(t) + · · ·+ α2,nuuui+n(t). But in reality, due to the linear
independence of xxxi+1(t+1), xxxi+2(t +1), · · · , xxxi+n(t +1), and xxxr(t +1)= α2,1xxxi+1(t +1) + · · ·+ α2,nxxxi+n(t +1),
we have

(α2,1(t),α2,2(t), · · · ,α2,n(t))T = χi(t +1)−1xxxr(t +1), (23)

where χi(t) = (xxxi+1(t) xxxi+2(t) · · · xxxi+n(t)). Similarly,

(β1(t),β2(t), · · · ,βn(t))T = χi(t)−1xxx2,d(t). (24)

By the properties of solutions to the linear systems, it is clear that α2,i = βi(1 ≤ i ≤ n) cannot be guaranteed.
To get around this problem, we make the following settings:

xxx2,d(t) = β1xxxi+1(t)+ · · ·+β2nxxxi+2n(t),
xxxr(t +1) = α2,1xxxi+1(t +1)+ · · ·+α2,2nxxxi+2n(t +1),

0 = α2,1(t)−β1(t),
...

0 = α2,2n(t)−β2n(t),

(25)

which can be rewritten as

(xxxT
r (t +1),xxxT

2,d(t),0, · · · ,0)T = Ξ2(t)(α2,1(t), · · · ,α2,2n(t),β1(t), · · · ,β2n(t))T , (26)

where

Ξ2(t) =

 Ξ2,1(t +1) 0n×2n

0n×2n Ξ2,1(t)
I2n×2n −I2n×2n

 , (27)

with Ξ2,1(t) = (xxxi+1(t) · · ·xxxi+2n(t)). As a consequence, if Ξ2(t) is invertible, the ideal controllers can be de-
signed as

uuu2,d(t) = α2,1(t)uuui+1(t)+α2,2(t)uuui+2(t)+ · · ·+α2,2n(t)uuui+2n(t). (28)

where the parameters are computed by

(α2,1(t), · · · ,α2,2n(t),β1(t), · · · ,β2n(t))T = Ξ
−1
2 (t)(xxxT

r (t +1),xxxT
2,d(t),0, · · · ,0)T . (29)

Remark 4. Considering that xxxk(t) and uuuk(t) are n−dimensional and m−dimensional, respectively, we can
execute the control law (18) n+m times to generate a sequence of states xxx1(t), · · · , xxxn+m(t). Next, write the
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execution process in matrix form to obtain

( A B )

(
xxx1(t) xxx2(t) · · · xxxn+m(t)
uuu1(t) uuu2(t) · · · uuun+m(t)

)
= (xxx1(t +1),xxx2(t +1), · · · ,xxxn+m(t +1)).

In general, it is not possible unless m = 1. Let Ω(t) =
(

xxx1(t) xxx2(t) · · · xxxn+m(t)
uuu1(t) uuu2(t) · · · uuun+m(t)

)
, which is a square

matrix. In addition, Ω(t) also can be thought of as a space. Let’s assume that xxx1(t), xxx2(t), · · · , xxxn(t) are linearly
independent, then the space represented by (xxx1(t), xxx2(t), · · · , xxxn(t)) is identical to (xxx1(t), xxx2(t), · · · , xxxn+m(t)).
While uuuk(t) is a linear combination of xxxd(t) and xxx1(t), xxx2(t), · · · , xxxn+m(t), so the dimension of space Ω(t) is
at most n+ 1, and the matrix Ω(t) is noninvertible when m > 1. Therefore, the system matrix A cannot be
obtained in this way.

Remark 5. Neither uuu1(t), uuu2(t), · · · , uuun(t) in the previous section nor uuui+1(t), uuui+2(t), · · · , uuui+2n(t) in this
section, require the control sequence to be continuous along the iteration axis during application. Therefore, in
a sense, the form written as uuui1(t), uuui2(t), · · · , uuuin(t) and uuu j1(t), uuu j2(t), · · · , uuu j2n(t) (where i1, i2, · · · , in and j1,
j2, · · · , j2n are arbitrary sequences) is more rigorous. The only caveat is that the iterative indices of state xxxk(t)
and control uuuk(t) should match each other.

Remark 6. From the above control law design process, it can be seen that when the system matrix A is
unknown, the number of iterations required increases significantly, and is closely related to the dimension of
the control variable uuuk(t). Essentially, it depends on the number of unknowns in the system of linear equations.
Only when the number of equations equals the number of unknowns can a system of linear equations have a
unique solution. In practice, if Ξ2(t) is noninvertible (similarly, ξξξ 1,1, ξξξ 1,2, · · · , ξξξ 1,n in the previous section
are linearly dependent) after the corresponding number of iterations, it is necessary to increase the number of
iterations until Ξ2(t) is invertible (ξξξ 1,1, ξξξ 1,2, · · · , ξξξ 1,n are linearly independent).

4.2. Convergence analysis

Suppose that when control law (28) is applied to system (1), the corresponding state vector xxx2,d(t), output
vector yyy2,d(t) and tracking error eee2,d(t) = yyyr(t)− yyy2,d(t) can be obtained. For system (1) and control law (28),
there is the following convergence theorem.

THEOREM 2. Assuming that system (1) satisfies Assumption 2, if the system matrix A is unknown while
the state vector is measurable, and the matrix Ξ2(t) in the equation (27) is invertible, then the control law (28)
can stabilize system (1) and make the tracking error eee2,d(t) = 0, t ∈ {1, · · · ,N}.

Proof. For system (1), by applying the control law (28), we get

δδδ 2,d(t +1) = xxxr(t +1)− xxx2,d(t +1)
= xxxr(t +1)− (Axxx2,d(t)+Buuu2,d(t))
= xxxr(t +1)− (Axxx2,d(t)+B(α2,1(t)uuui+1(t)+α2,2(t)uuui+2(t)+ · · ·+α2,2n(t)uuui+2n(t))).

(30)

Next, combining (25) yields

δδδ 2,d(t +1) = xxxr(t +1)− (A(β1xxxi+1(t)+ · · ·+β2nxxxi+2n(t))
+B(α2,1(t)uuui+1(t)+α2,2(t)uuui+2(t)+ · · ·+α2,2n(t)uuui+2n(t))).

(31)

Because βi(t) = α2,i(t), and based on the dynamic expression of the system (1), the above equation is further
converted to

eee2,d(t +1) = C(xxxr(t +1)− (α2,1(t)xxxi+1(t +1)+α2,2(t)xxxi+2(t +1)+ · · ·+α2,2n(t)xxxi+2n(t +1)))
= C(xxxr(t +1)− xxxr(t +1)) = 0.

(32)

Thus, this proof is complete.
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Remark 7. From the above control design and proof process, it indicates that if the actual tracked target
trajectory (which can be set as xxx∗r (t)) is not consistent with the iterative target, this method is still effective. It
is only necessary to reset the corresponding xxx2,d(t +1) to xxx∗r (t +1) when calculating parameter α2,i(t) in (29).

Remark 8. As is well known, for ILC, when designing control laws, it is necessary to consider the initial
state value of the system, as the initial state value not only affects the convergence speed of the system, but
also affects its stability. However, from the control design process and convergence proof in this section, it is
clear that the initial state value of the system has no real impact on the convergence speed and stability of the
system, which reflects the robustness of the proposed control method.

5. NON-REPETITIVE PROCESS CONTROLLER DESIGN AND CONVERGENCE ANALYSIS

This section specifically explores how to design the controller so that the system can achieve complete
tracking within a specified interval when the control process is not repeatable and the system matrix A is
unknown. In addition, initial state condition satisfies the following assumption.

Assumption 3. The initial state xxx(0) is random, that is, the positioning is not accurate enough and there are
initial state shifts.

5.1. Problem formulation

Consider the following linear system{
xxx(t +1) = Axxx(t)+Buuu(t),
yyy(t) =Cxxx(t),

(33)

where t = 0,1,2, · · · ,N; xxx(t) ∈ Rn, yyy(t) ∈ Rr, uuu(t) ∈ Rm represent the system state, control input, and output
vectors, respectively. A,B,C are the system parameter matrices with appropriate dimensions.

Let eee(t) = yyyr(t)− yyy(t) represent the output error, where yyyr(t) is the given reference trajectory, and accord-
ingly set xxxr(t) as the given reference state.

5.2. Controller design

In this subsection, we divide the controller design into two steps. First, we consider the following control
law

uuu(t) = Γeee(t). (34)

After the control law (34) iteratively runs i+ 2n steps, we can get the corresponding xxx(i+1), xxx(i+2), · · · ,
xxx(i+2n). Similarly, we assume that the control law (34) has an ideal control law uuu3,d(t) after iteratively
running i+2n steps, such that

xxxr(t +1)−Axxxr(t) = Buuu3,d(t), (35)

where t > i+2n, and 

xxx(t) = γ1xxx(i)+ · · ·+ γ2nxxx(i+2n−1),
xxxr(t +1) = α3,1xxx(i+1)+ · · ·+α3,2nxxx(i+2n),

0 = α3,1(t)− γ1(t),
...

0 = α3,2n(t)− γ2n(t).

(36)
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Rewrite the above equation into the following matrix form:

(xxxT
r (t +1),xxxT (t),0, · · · ,0)T = Ξ3(i)(α3,1(t), · · · α3,2n(t),γ1(t), · · · ,γ2n(t))T , (37)

where

Ξ3(i) =

 Ξ3,1(i+1) 0n×2n

0n×2n Ξ3,1(i)
I2n×2n −I2n×2n

 , (38)

and Ξ3,1(i) = (xxx(i) · · ·xxx(i+2n−1)). Moreover, if the matrix Ξ3(i) is invertible, the ideal controllers can be
designed as follow,

uuu3,d(t) = α3,1(t)uuu(i+1)+α3,2(t)uuu(i+2)+ · · ·+α3,2n(t)uuu(i+2n), (39)

with the parameters are computed by

(α3,1(t), · · · α3,2n(t),γ1(t), · · · ,γ2n(t))T = Ξ
−1
3 (i)(xxxT

r (t +1),xxxT (t),0, · · · ,0)T . (40)

As a consequence, for the whole control process, we propose the following segmentation controller:

uuu(t) =
{

Γeee(t), t ≤ i+2n,
α3,1(t)uuu(i+1)+α3,2(t)uuu(i+2)+ · · ·+α3,2n(t)uuu(i+2n), t > i+2n.

(41)

Remark 9. In fact, Ξ3,1(i) in (38) can be designed to vary with time. However, considering issues such as
computational complexity and timeliness, we do not choose Ξ3,1(i) to vary with time. But no matter which
design method is adopted, it is necessary to ensure that the matrix Ξ3,1(i) is invertible.

5.3. Convergence analysis

For the system (33) and the control law (41), there is the following convergence theorem.

THEOREM 3. Assuming that system (33) satisfies Assumption 3, if the system matrix A is unknown but
the state vector is measurable, ρ(A − BΓC) < 1 holds, and Ξ3(i) is an invertible matrix, then the control
law (41) can stabilize the system (33), and ensure that the tracking error eee(t) asymptotically converges on
{0,1, · · · , i+2n}, and eee(t) = 0 on {i+2n+1, · · · ,N}.

Proof. When t ≥ 1, substituting the controller (34) into the system (33) yields

xxx(t +1)
= Axxx(t)+Buuu(t) = Axxx(t)+BΓeee(t)
= Axxx(t)+BΓC(xxxr(t)− xxx(t))
= (A−BΓC)xxx(t)+BΓCxxxr(t).

(42)

In the above equation, if ρ(A−BΓC)< 1, then the control law (34) can ensure that the system (33) asymptoti-
cally converges on {0,1, · · · , i+2n}. The subsequent proof is similar to the proof of Theorem 2 and is omitted
here.

Remark 10. For the traditional process control, it is generally only possible to achieve asymptotic tracking
and difficult to achieve complete tracking. In contrast, the method provided in this paper can achieve complete
tracking a specified interval, which demonstrates the effectiveness of the proposed method.

Remark 11. The above control design and proof process indicates that, after finite iterations, the proposed
method can make the system (1) achieve complete tracking on {1, · · · ,N}; Without iteration, the method
can still make the system (33) achieve complete tracking on {i+ 2n+ 1, · · · ,N}. Superficially, there is not



234 Tiantian LU, Guojun LI, Yingsheng FAN, Dongjie CHEN 10

significantly difference in the control effect of the proposed method between on repetitive and non-repetitive
processes, but this is not the case in reality. In fact, for repetitive processes, this method can suppress repetitive
disturbances due to its repeatability, while for non-repetitive processes, this method cannot suppress process
disturbances. As for the disturbance problem during the control process, we will conduct specific research in
the future.

6. NUMERICAL SIMULATION

In this section, we will verify the effectiveness of the proposed algorithms by three examples. Example 1
is the case where the system matrix A is accurately known, Example 2 is for the case where the system matrix
A is unknown, and Example 3 is the case of non-repetitive system.

6.1. Example 1

In this example, the parameters in the system (1) are as follows

A =

[
0 −0.5996

0.7843 0.5994

]
, B =

[
−0.5965 0 0.4213

0.67 1.0780 0.5657

]
, C =

 0 1
0.5 0.3
0.2 0.76

 . (43)

The operating interval of the system is t ∈ {0, · · · ,400}, and the system reference state is described by xxxr(t) =
(10sin( πt

200),20cos( πt
200))

T . Correspondingly, the reference trajectory yyyr(t) = Cxxxr(t). The initial state of the
system is set to xxxk(0) = (0;20). We select Γ = 0.5848 in the control law (2), then ρ(I −BΓC) = 0.8604 < 1.
During the simulation process, 2 iterations are performed, and the simulation results are shown in Figs. 1–4.

In Fig. 1, the blue chain line yr(1, t) and solid line yr(2, t) represent the two expected outputs, while the red
chain line y1,d(1, t) and solid line y2,d(2, t) represent the actual outputs. It is easy to see from the figure that the
red and blue curves basically coincide, which reflects the effectiveness of the algorithm in this paper. This can
also be confirmed by the error information in Fig. 2, where the red and blue solid lines represent two output
errors. The tracking error at each moment is on the order of 10−13, which is caused by the inevitable error
generated by Matlab software when calculating the inverse matrix. Theoretically, without calculation errors,
the error will be zero at all points.

In Fig. 3, the green dotted, chain, and solid lines represent the inputs during the second iteration (the error
during the first iteration is yyyd(t)), correspondingly, the blue curves represent the inputs at the third iteration,
while the red curves represent the actual inputs. Fig. 3 shows that the inputs at the second and third iterations
have slight flutters, while the red input signal is smooth. According to the expression of the system (1), if the
reference signal is smooth, then the input signal must be smooth. Therefore, it is the slight flutters of the initial
stage of the second and third iterations that lead to the slight flutters of the parameters α1,1(t) and α1,2(t) in
Fig. 4.
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6.2. Example 2

In this simulation, we set the parameters in the system (1) as follows

A =

 0.1490 0.78 −0.3453
−0.71 0.902 0.1212
1.504 0.1976 0.2534

, B =

 0.1456 0.843 0.843
0.2578 0.239 0.2578
−0.25 0.24 0.239

, C =

 −0.234 0.789 1.534
0.478 0.982 0.76
−0.789 0.478 −0.982

 (44)

The operating interval of the system is t ∈ {0, · · · ,100}, and the system reference state is formulated by
xxxr(t) = (20−20cos(0.02πt),6( t

50)
5 −15( t

50)
4 +10( t

50)
3, exp(t/50))T . The initial state of the system is given

by xxxk(0) = [rand; rand; rand] (rand generates a random number between 0 and 1). We choose

Γ2 =

 −1.9959 1.2684 0.4103
−28.5193 −6.4753 −20.6746
28.2330 6.9730 20.1727

, Γ1 =

 2.8052 −3.6351 2.7584
0.4676 −33.0223 −0.2747
−1.3468 34.5817 0.2781

 in control law (2),

thus ρ(I −BΓC) = 0.30 < 1. 10 iterations are conducted in the simulation process, and the simulation results
are shown in Figs. 5–8.

In Fig. 5, the chain lines represent reference signals yyyr(t), while the solid lines represent the actual outputs
yyy2,d(t). Notice that in the figure, the actual outputs and reference signals basically coincide (except for the
initial time), which demonstrates the effectiveness of the proposed algorithm. This can also be verified by the
error information in the right figure of Fig. 6, where the solid lines represent the output errors, and the tracking
error at every moment except the initial moment is 10−9 level. Similarly, if there is no calculation error, then the
error of all points will be zero. This implies that the proposed algorithm is robust to the initial state shifts of the
system. The left figure of Fig. 6 shows the error information after the ILC law running 10 times. On account of
the influence of arbitrary initial state shifts, though the control law is iterated 10 times, complete tracking was
not achieved. And in the initial stage of tracking, the tracking error exhibits fluttering. This indicates that any
initial state shift has an impact on tracking performance.
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Fig. 5 – Actual output yyy2,d(t) and reference signal yyyr(t).
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In Fig. 7, the solid lines represent parameters α2,i(t)(i = 1,2, · · · ,6), while the chain lines represent param-
eters βi(t)(i = 1,2, · · · ,6). It is precisely because of the flutters of the tracking errors that the flutters of α2,i(t)
and βi(t) are caused, which is evident in the left of Fig. 6. But during post-tracking process, the flutters of
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α2,i(t) and βi(t) disappear, reaching a steady state. All in all, Fig. 8 shows that although the parameters α2,i(t)
and βi(t) flutter at the beginning, they can still ensure the smoothness of the control signal.

6.3. Example 3

In this example, consider the parameters of the system (33) are

A =


1.1 0.12 −0.3 0.4
0.18 0.16 0.1 1.3
1.5 0.1 0.2 0.9
0.7 1.7 0.2 0.6

, B =


1.14 0.42 0.843 −0.5965

0.0067 −1.08 0.2578 3
−0.25 0.24 0.239 0.3421
0.4213 0.67 0.078 0.5657

, (45)

C =


1 0 1.5 0.33
2 0.02 1.76 0.78

−0.789 0.0478 −1.982 0.6721
0.3402 1.3 1.2 1.76

 .

The operating interval of the system is t ∈ {0, · · · ,60}, and the system reference state is defined as xxxr(t) =
(xr(1, t), sin(πt/30), cos(πt/30),exp(t/30))T , where, xr(1, t) = 2(6( t

30)
5 −15( t

30)
4 +10( t

30)
3), if 0 ≤ t < 30,

xr(1, t) = 2(6(60−t
30 )5 − 15(60−t

30 )4 + 10(60−t
30 )3), if 30 ≤ t ≤ 60. The initial state of the system is xxxk(0) =

5[rand; rand; rand; rand]. In the control law (41), we select i = 1 (i = 0 if the initial state is arbitrary) and
Γ = 0.5, then ρ(A−BΓC)< 1, thus the control law (41) can ensure that the system (33) tracks asymptotically
on {0, · · · ,9}. Meanwhile, we compare our method with the traditional P−type control law uuu(t) = Γeee(t). The
comparison results are shown in Figs. 9–12.

In Fig. 9, the red, blue and black solid lines represent the outputs of the proposed method, the output of
the traditional P−type control law, and the reference trajectory, respectively. In Figs. 10 and 11, the blue solid
lines represent the output error and control variable of the proposed method, while the red solid lines represent
the output error and control variable of traditional p-type control, respectively. From Fig. 10, it is clear that
the control variables of the two control methods are exactly the same on {0, · · · ,9}, which determines that the
outputs of the two methods in Fig. 10 are completely identical, and correspondingly, the error curves in Fig.
10 are completely consistent. But on {10, · · · ,60}, the difference between the two methods is very obvious. As
Fig. 9 shows, the output curve of the method in this article basically coincides with the reference trajectory, and
the error curve in Fig. 10 also confirms this point. In comparison, the control effect of the traditional P−type
control law is significantly worse, which also reflects the superiority of the proposed method.

Unlike the previous two examples, the curves of parameters α3,i(t) and γi(t) in this example do not exhibit
flutter (see Fig. 12). Because Ξ3(i) in the equation (37) is a constant, correspondingly, Ξ

−1
3 (i) is also a con-

stant, and the vector (xxxT
r (t +1), xxxT (t), 0, · · · , 0)T is smooth, so the curves of parameters α3,i(t) and γi(t) must

be smooth.
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7. CONCLUSION

This paper investigates the convergence performance of data-driven learning control for the discrete-time
linear systems. When discussing convergence, it is divided into three types of problems for discussion. Regard-
less of the type of system, the linearity of the system is connected to the controller design. The analysis shows
that for ILC, the proposed method can achieve complete tracking with finite iterations; In terms of process
control, this method can achieve complete tracking a specified interval. The final simulation examples verify
the effectiveness of the algorithm and demonstrate its superiority through comparison.
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