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Abstract. In this paper, we investigate the tracking control problem for a class of brush direct current (DC)
motor systems driving a one-link robot manipulator subject to asymmetric full-state constraints. By constructing
a state-dependent nonlinear transformation function (NTF), we present an adaptive robust dynamic surface
control (DSC) strategy that can directly address both symmetric and asymmetric state constraints, so that there
is no need to convert the problem of state constraint into the constraints on tracking errors as necessitated by
the Barrier Lyapunov Function (BLF)-based existing works. Furthermore, by employing the first-order filter
and constructing a new coordinate transformation, the demanding feasibility condition imposed on the BLF
methods is removed, allowing the designer more freedom to select design parameters. Moreover, it is worth
mentioning that under the proposed nonlinear transformation function the extra condition on the constraining
function is not required. The effectiveness of the proposed control is verified via the Simulation results.

Keywords: tracking control, states constraints, brush DC motor systems, Lyapunov stability analysis.

1. INTRODUCTION

For the practical engineering systems [1–3], they face challenges in constrained operation for stability and
performance, i.e., the permanent magnet brush DC motor systems [4–9]. These complexities have attracted
extensive research, leading to innovative strategies for state constraint control, advancing related fields. Be-
ginning with the control techniques, reference [4] introduced the concept of integrator backstepping control to
warrant the load position tracking performance for DC systems in the presence of parameter uncertainties. Rauf
et al. [10] employed a continuous non-singular terminal sliding mode control for the converter-driven DC motor
systems to guarantee the system performance. Based on the state observer technique, Yao et al. [11] presented
a output-feedback robust adaptive control method to cope with the structured and unstructured uncertainties.
However, in the aforementioned works the problem of state/output constraint is not considered in the control
design and stability analysis. If the constraint is not properly accommodated [12–14], it might result in con-
trol inaccuracy, system instability, or even accident, rendering the underlying control problem for DC systems
extremely critical and challenging.

To solve the problem of state constraint and meanwhile to guarantee the closed-loop stability of the DC
systems, there are fruitful results in recent years. Reference [15] provided explicit expressions for the con-
trollability time and lower bounds based on low-dimensional system transformations so that the convex state
constraints can be ensured. Recently, BLF has been employed to handle state constraints for nonlinear systems
in Brunovsky form [16]. Such a function yields a value that approaches infinity whenever its arguments ap-
proach some limits. Inspired by this idea, the authors in [17] proposed a BLF-based adaptive control algorithm
for DC systems to guarantee the time-varying state constraints. By developing an extended disturbance ob-
server, Yang et al in [18] developed a BLF-based adaptive control algorithm for DC motors in the presence of
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uncertain disturbance, so that the time-varying output constraints can be ensured. However, it is worth noting
that under the above BLF-based works, the original output/state constraints are handled indirectly by imposing
transformed constraints on the errors, which imposes extra requirements on the initial states. To handle this
problem, by employing the integral BLF, Liu et al. [19,20] introduced an adaptive control approach to guarantee
the time-varying state constraints directly without the need of error constraint transformation. However, cur-
rent BLF based state-constrained control methods for DC motor systems may involve the feasibility conditions
on virtual controllers, in other words, the virtual controllers must satisfy certain pregiven constrained region,
which poses significant difficulty for the design and implementation of the corresponding control schemes. In
fact, as implied in the pioneering work [21], only if we are able to find a set of design parameters that satisfies
the conditions, the BLF based methods involving those parameters would be feasible. Clearly, the existence
of the design parameters satisfying the feasibility conditions is crucial for most existing BLF methods, which,
prior to the implementation, require offline constrained optimization to verify and to obtain the optimal design
parameters [22–24]. This is a highly undesirable process. It is therefore highly desirable to remove such restric-
tive conditions for control design. Although the nonlinear transformation function has been proposed in [22],
there is no guidance on how to design a robust adaptive control method for DC motor systems.

In this paper, inspired by the previous work [23], we present a robust adaptive control method for the brush
DC motor systems turning a robotic load in the presence of state constraints without involving the demanding
feasibility conditions. The main contributions of this work can be summarised as follows:

• Firstly, by introducing a state-dependent nonlinear transformation function (NTF), the original state-constrained
system is converted into an equivalent “unrestricted” system, so that the corresponding proposed control
framework can directly address both symmetric and asymmetric state constraints, so there is no need to
convert the state constraints into the constraints on tracking errors;

• Secondly, by employing the first-order filter and constructing a new coordinate transformation, the demand-
ing feasibility condition imposed on the BLF methods is removed, allowing the designer more freedom to
select design parameters. Furthermore, it is worth mentioning that under the proposed nonlinear transfor-
mation function the extra condition on the constraining function is not required.

The remainder of this paper is structured as follows: Section 2 delineates the problem formulation alongside
pertinent preliminaries and assumptions. Section 3 articulates the development of a control scheme tailored to
address state constraints. Section 4 validates the efficacy of the proposed algorithm through simulation results.
The paper culminates with Section 5, which provides concluding remarks. Throughout this paper, R denotes
the set of real numbers, R+ := [0,+∞) denotes the non-negative real numbers, and Rm×n denotes the set of
m×n real matrices. ∥·∥ represents the Frobenius norm for matrices and Euclidean norm for vectors, | · | is the
absolute value of real numbers. N+ is a set including all positive integers.

2. PROBLEM FORMULATION AND PRELIMINARIES

In this paper, we consider the bursh DC motor systems driving a one-link robot manuipulator as the follow-
ing form [4]: {

Mq̈+Bq̇+N sin(q) = I,
Lİ = ue −RI −KBq̇,

(1)

where

M =
J

Kη

+
mL2

3Kη

+
ML2

Kη

+
2MR2

5Kη

, B =
b

Kη

, N =
mLG
2Kη

+
MLG
Kη

,

where J ∈ R is the rotor inertia, m ∈ R, M ∈ R, and L ∈ R are the link mass, load mass and link length,
respectively, G ∈R is the gravity coefficient, b ∈R is the coefficient of viscous friction at the joint, q ∈R is the
angular motor position, I ∈ R is the motor armature current, and Kη ∈ R is the coefficient which characterizes
the electromechanical conversion of armature current to torque function, R ∈ R is the armature resistance, KB

is the back-emf coefficient, and ue ∈ R is the input control voltage.
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Let x1 = q, x2 = q̇, x3 = I, u = ue, then the system in (1) can be transformed to the following strict-feedback
form: 

ẋ1 = x2,

ẋ2 = g2x3 +θ1 sin(x1)+θ2x2,

ẋ3 = g3u+θ3x2 +θ4x3.

(2)

where x1,x2,x3 denote the system states, u ∈ R and y ∈ R represent the control input and system output, re-
spectively, g2 =

1
M , g3 =

1
L , θ1 =

−N
M , θ2 =

−B
M , θ3 =

−KB
L , and θ4 =

−R
L . In practice, the considered permanent

magnet brush DC motor is subject to the following full-state constraints defined by:

xi ∈ Di := {(t,xi) ∈ R+×R |κil(t)< xi < κih, κil, κih ∈ R}, (3)

where xi,(i = 1,2,3) is the system state, xi(0) ∈ Di is the initial value of state. The lower constraining function
κil and upper constraining function κih belong to:

Θ :=
{

κil(t) : R+ → R, κih(t) : R+ → R | κil(t)< κih(t)
}

(4)

which are governed/generated dynamically by:

κ̇il = ĥil(t,κil), κil(0) ∈ Ωil, i = 1,2,3 (5)

κ̇ih = ĥih(t,κih), κih(0) ∈ Ωih, i = 1,2,3, (6)

for all (t,κi j) ∈ R+×R, j = l,h, where κil(0) and κih(0) are the initial values of constraining functions, and
Ωil , Ωih are some known bounded compact sets. For practicality, the stability assumption is extended to hold
for all (t,κi j) such that κi j, κ̇i j, and κ̈i j are continuous and bounded. It is important to highlight that the
state constraints introduced by (3)–(6) are inherently dynamic and asymmetric, which differs from the existing
studies that deal with symmetric and static state constraints or predefined time-varying constraints.

In this paper, we propose a robust adaptive control methodology for nonlinear DC motor systems as ar-
ticulated in (1) so that: 1) all signals in the closed-loop systems are bounded; and 2) the time-varying yet
asymmetric state constraints (3) are guaranteed without involving the demanding feasibility conditions.

To this end, we impose the following assumptions.
Assumption 1. There exist positive constants µi such that κih(t)−κil(t)≥ µi > 0, i = 1,2,3.
Assumption 2. The reference trajectory and its derivatives up to second order are known and bounded. In

addition, there exist time-varying functions κdl(t), κdh(t) satisfying κdl(t) < κdh(t) and positive constants θd ,
θd such that κ1h(t)−κdh(t)≥ θd > 0, κdl(t)−κ1l(t)≥ θd > 0, and yd ∈Ud := {(t,yd) ∈ [0,∞)×R : κdl(t)≤
yd ≤ κdh(t)}.

3. MAIN RESULTS

3.1. Nonlinear transformation function

To prevent the system states from violating the constraints dynamically generated by (3)-(6), we introduce
a nonlinear transformation function, defined as follows:

Definition 1 [22]. A scalar function ρ of the variable x on an open region U is a nonlinear transformation
function (NTF) if it can be used to handle the constraining all cases simultaneously without the need for chang-
ing the function structure; and It exhibits the property that ρ → ±∞ as x approaches the boundary of U and
satisfies ρ ≤ B for all x ∈U ′ ⊊U under x(0)∈U , where B represents some bounded constant and U ′ is a closed
interval.

Now we construct such a state-dependent NTF as follows:

ρ1 =
x1 −κ1l

x1 −κ1l(t)
+

x1 −κ1h

κ1h(t)− x1
, (7)
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and
ρi =

xi −κ il

xi −κil(t)
+

xi −κ ih

κih(t)− xi
, i = 2,3 (8)

with the initial states satisfying xi(0) ∈Ui and the constants κ il and κ ih obeying the following inequalities:{
κil(t)< κ il,

κ ih < κih(t)
(9)

It is clearly seen that the proposed NTF ρi as defined in (7)-(8) satisfy the property in Definition 1, i.e., for
any initial states xi(0) ∈Ui, {

ρi →−∞ if and only if xi → κil(t),
ρi →+∞ if and only if xi → κih(t).

(10)

Therefore, it can be deduced that for any initial conditions xi(0) ∈ Ui, as long as the values of ρi are confined
within the specific bounds via the appropriate control, the system states will persist within the respective regions
Ui. In other words, the state constraints are guaranteed. Inspired by this insight, we now turn our attention to
addressing the challenge of dynamically imposed asymmetric state constraints by preserving the boundedness
of ρi.

Note that the expression of ρi as given in (7)–(8) can be rewritten as:

ρi = ρi1xi +ρi2, (11)

where
ρi1 =

κ il −κil +κih −κ ih

(xi −κil)(κih − xi)
, and ρi2 =

κilκ ih −κ ilκih

(xi −κil)(κih − xi)
(12)

Taking the derivative of ρi in (11) w.r.t. time yields:

ρ̇i = µi1ẋi +µi2, (13)

µi1 =
x2

i −κilκih

(xi −κil)2(κih − xi)2 , µi2 =
(κihκ̇il + κ̇ihκil)xi − (κ̇ih + κ̇il)x2

i

(xi −κil)2(κih − xi)2 . (14)

As ρ2 = ρ21x2 +ρ22, then one has

x2 =
ρ2 −ρ22

ρ21
, (15)

we further have

ρ̇1 = µ11x2 +µ12 = µ11

(
1

ρ21
ρ2 −

ρ22

ρ21

)
+µ12 (16)

where the fact that ẋ1 = x2 is used.

3.2. Control design & stability analysis

We now focus on constructing the control framework for DC motor systems in the presence of state con-
straints. Since backstepping technique is the most effective method for strict-feedback/pure-feedback sys-
tems [25–28], then we can conduct the control design with backstepping technique step by step in this work.
To directly handle the dynamic yet asymmetric state constraints and to remove the feasibility conditions on the
virtual controllers in the existing works, we employ the following coordinate transformations:

z1 = ρ1 −ρd ,
z2 = ρ2 −α2 f ,
z3 = ρ3 −α3 f ,

(17)
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where ρd = yd−κ1l
yd−κ1l(t)

+ yd−κ1h
κ1h(t)−yd

is a computable function for control design, αi f , i = 2,3, is the output of the
following first-order filter: {

ξ2α̇2 f +α2 f = ρ21α1,
ξ3α̇3 f +α3 f = ρ31α2,

(18)

where α1 and α2 are the virtual controllers which will be designed later.

To facilitate the control design, we define the following filtered errors:{
y2 = α2 f −ρ21α1,
y3 = α3 f −ρ31α2,

(19)

then it is seen from (17) and (19) that

ρi = zi +αi f = zi + yi +ρi1αi−1, i = 2,3. (20)

Step 1. According to (19), the equation of (16) can be written as:

ρ̇1 = µ11

[
1

ρ21
(z2 + y2)+α1 −

ρ22

ρ21

]
+µ12, (21)

then the derivative of the first virtual error z1 = ρ1 −ρd with respect to time is

ż1 = ρ̇1 − ρ̇d = µ11α1 +µ11

[
1

ρ21
(z2 + y2)−

ρ22

ρ21

]
+µ12 − ρ̇d (22)

where

ρ̇d = µ1d ẏd +µ2d ,

µ1d =
y2

d −κ1lκ1h

(yd −κ1l)2(κ1h − yd)2 ,

µ2d =
(κ1hκ̇1l + κ̇1hκ1l)yd − (κ̇1h + κ̇1l)y2

d
(yd −κ1l)2(κ1h − yd)2 .

Then the derivative of the quadratic function 1
2 z2

1 is

z1ż1 = z1µ11α1 +∆1, (23)

with

∆1 = z1µ11

[
1

ρ21
(z2 + y2)−

ρ22

ρ21

]
+ z1µ12 − z1ρ̇d

Upon employing Young’s inequality, one has

z1µ11
1

ρ21
z2 ≤ g2µ

2
11

1
ρ2

21
z2

1z2
2 +

1
4g2

, (24)

z1µ11
1

ρ21
y2 ≤ µ

2
11z2

1 +
1

4ρ2
21

y2
2, (25)

−z1µ11
ρ22

ρ21
≤ z2

1µ
2
11

(
ρ22

ρ21

)2

+
1
4
, (26)

z1µ12 ≤ z2
1µ

2
12 +

1
4
, (27)

−z1ρ̇d ≤ z2
1ρ̇

2
d +

1
4
. (28)
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Hence, ∆1 can be upper bounded by

∆1 ⩽ z2
1Φ1 +g2µ

2
11

1
ρ2

21
z2

1z2
2 +

1
4ρ2

21
y2

2 +
3
4
+

1
4g2

, (29)

where

Φ1 = ρ̇
2
d +µ

2
12 +µ

2
11

(
ρ22

ρ21

)2

+µ
2
11 (30)

is a computable function. Then (23) can be further expressed as

z1ż1 ⩽ z1µ11α1 + z2
1Φ1 +g2µ

2
11

1
ρ2

21
z2

1z2
2 +

1
4ρ2

21
y2

2 +
3
4
+

1
4g2

(31)

The virtual controller α1 is designed as

α1 =
1

µ11
(−c1z1 − z1Φ1) (32)

with c1 > 0 being a design parameter.

Substituting the virtual controller as shown in (32) into (31), we have

z1ż1 ≤−c1z2
1 +g2µ

2
11

1
ρ2

21
z2

1z2
2 +

1
4ρ2

21
y2

2 +
3
4
+

1
4g2

. (33)

Choosing the first Lyapunov function candidate as:

V1 =
1
2

z2
1 +

1
2

y2
2 (34)

then the derivative of V1 along (33) is

V̇1 = z1ż1 + y2ẏ2 ≤−c1z2
1 +g2µ

2
11

1
ρ2

21
z2

1z2
2 +

1
4ρ2

21
y2

2 +
3
4
+

1
4g2

+ y2ẏ2. (35)

Noting that
ẏ2 = α̇2 f − (ρ21α1)

′ =−y2

ε2
+h1(·),

where h1 is a continuous function over the compact set, then one further has

y2ẏ2 ⩽

(
1
4
− 1

ε2

)
y2

2 +h2
1, (36)

then (35) can be expressed as

V̇1 ≤−c1z2
1 +g2µ

2
11

1
ρ2

21
z2

1z2
2 +

(
1
4
+

1
4ρ2

21
− 1

ε2

)
y2

2 +
3
4
+

1
4g2

+h2
1 (37)

Let
1
ε2

=
1
4
+

1
4ρ2

21
+ ε

∗
2

with ε∗
2 > 0 being an arbitrary constant, we arrive at:

V̇1 ⩽−c1z2
1 − ε

∗
2 y2

2 +g2µ
2
11

1
ρ2

21
z2

1z2
2 +

3
4
+

1
4g2

+h2
1.
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Step 2. Differentiating the second virtual error z2 = ρ2 −α2 f , we obtain

ż2 = ρ̇2 − α̇2 f = µ21ẋ2 +µ22 − α̇2 f = µ21 [g2x3 +θ1 sin(x1)+θ2x2]+µ22 − α̇2 f (38)

As
x3 =

1
ρ31

(z3 + y3)+α2 −
ρ32

ρ31
,

then one has

ż2 = µ21

[
g2 ·

1
ρ31

(z3 + y3)+g2α2 −g2
ρ32

ρ31
+θ1 sin(x1)+θ2x2

]
+µ22 − α̇2 f

= µ21g2α2 +µ21

[
g2

ρ31
(z3 + y3)−

g2ρ32

ρ31
+θ1 sin(x1)+θ2x2

]
+µ22 − α̇2 f

(39)

and
z2ż2 = µ21g2z2α2 +∆2 (40)

where

∆2 = z2µ21

[
g2

ρ31
(z3 + y3 −ρ32)+θ1 sin(x1)+θ2x2

]
+ z2µ22 − z2α̇2 f .

Choose the second the Lyapunov function candidate as

V2 =V1 +
1
2

z2
2 +

1
2

y2
3 +

1
2r2

b̃2
2 (41)

where r2 > 0 is a design parameter, b̃2 = b2− b̂2 is the parameter estimate error with b2 = max{g2,θ
2
0 ,1} being

an unknown parameter and b̂ being the parameter estimate. Its derivative is

V̇2 = V̇1 + z2ż2 + y3ẏ3 −
1
r2

b̃2ḃ2 ⩽−c1z2
1 − ε

∗
2 y2

2 +
3
4
+

1
4g2

+h2
1 +µ21g2z2α2 +∆

1
2 + y3ẏ3 −

1
r2

b̃2
˙̂b2 (42)

where ∆1
2 = ∆2 +g2µ2

11
1

ρ2
21

z2
1z2

2.

Note that

z2µ21
g2

ρ31
z3 ≤ g3µ

2
21

1
ρ2

31
z2

2z2
3 +

g2
2

4g3
,

z2µ21
g2

ρ31
y3 ≤ g2

2µ
2
21z2

2 +
1

4ρ2
31

y2
3,

−z2µ21
g2

ρ31
ρ32 ≤ g2z2

2µ
2
21

(
ρ32

ρ31

)2

+
g2

4
,

z2 (µ22 − α̇2 f )≤ g2z2
2 (µ22 − α̇2 f )

2 +
1

4g2
,

then we have
∆

1
2 ⩽ g2b2z2

2Φ2 +g3µ
2
21

1
ρ2

31
z2

2z2
3 +Γ2 +

1
4ρ2

31
y2

3 (43)

where b2 = max{g2,θ
2
0 ,1}, Γ2 =

1
2g2

+ 1
4 +

g2
2

4g3
, and

Φ2 = µ
2
21 +µ

2
21

(
ρ32

ρ31

)2

+
(
1+ x2

2
)2

µ
2
21 +(µ22 − α̇2 f )

2 +µ
2
11 ·

1
ρ2

21
z2

1

is a computable function.



218 Yongcheng ZHOU, Yuan LI, Ao LIU, Liyuan YANG 8

Therefore (42) can be further rewritten as

V̇2 ≤− c1z2
1 − ε

∗
2 y2

2 +
3
4
+

1
4g2

+h2
1 +µ21g2z2α2 +g2b2z2

2Φ2 +g3µ
2
21

1
ρ2

31
z2

2z2
3 +Γ2

+
1

4ρ2
31

y2
3 +

(
1
4
− 1

ε3

)
y2

3 +h2
2 −

1
r2

b̃2
˙̂b2. (44)

Choosing the virtual controller α2 as

α2 =
1

µ21

(
−c2z2 − b̂2z2Φ2

)
(45)

with c2 being a positive parameter and b̂2 being the parameter estimate that is updated by

˙̂b2 = r2z2
2Φ2 −σ2b̂2, b̂2(0)≥ 0 (46)

where σ2 > 0, b̂2(0) is the arbitrarily chosen initial estimate b̂2(t).

Let 1
ε3

= 1
4 +

1
4ρ2

31
+ ε∗

3 with ε∗
3 > 0 being a positive constant, then substituting the virtual controller and

adaptive law as shown in (45)–(46) into (44), we have

V̇2 ⩽−
2

∑
k=1

ckz2
k −

σ2

2r2
b̃2

2 −
3

∑
k=2

ε
∗
k y2

k +
2

∑
k=1

h2
k +Γ21 +g3µ

2
21

1
ρ2

31
z2

2z2
3, (47)

with Γ21 =
3
4 +

1
4g2

+ τ2 +
σ2
2r2

b2
2.

Step 3. The derivative of the third virtual error z3 is

ż3 = µ31 (g3u+θ31x2 +θ32x3)+µ32 − α̇3 f . (48)

Choosing the Lyapunov function candidate as

V3 =
1
2

z2
3 +V2 +

1
2r3

b̃2
3 , (49)

where b̃3 = b3 − b̂3 is the parameter estimate error with b3 = max{θ 2
3 ,1} being an unknwon constant and b̂3

being the parameter estimate, r3 > 0 is a design parameter.

Noting that the derivative of 1
2 z2

3 is

z3ż3 = g3µ31z3u+ z3µ31 (θ31x2 +θ32x3)+ z3 (µ32 − α̇3 f ) ,

then differentiating V3, we have

V̇3 ⩽−
2

∑
k=1

ckz2
k −

σ2

2r2
b̃2

2 −
3

∑
k=2

ε
∗
k y2

k +
2

∑
k=1

h2
k +Γ21 +g3µ31z3u+∆

′
3 −

1
r3

b̃3
˙̂b3 (50)

where ∆′
3 = z3µ31 (θ31x2 +θ32x3)+ z3 (µ32 − α̇3 f )+g3µ2

21
1

ρ2
31

z2
2z2

3.

Since

z3µ31 (θ31x2 +θ32x3)≤ g3z2
3µ

2
31θ

2
3

(
x2

2 + x2
3 +

1
2

)
+

1
4g3

,

z3 (µ32 − α̇3 f )≤ g3z2
3 (µ32 − α̇3 f )

2 +
1

4g3
,
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then one has
∆

1
3 ≤ g3b3z2

3Φ3 +
1

2g3
, (51)

where b3 = max{θ 2
3 ,1} is an unknown constant and

Φ3 = µ
2
31
(
x2

2 + x2
3 +1

)
+(µ32 − α̇3 f )

2 +
µ2

21

ρ2
31

z2
2z2

3 (52)

is a computable function, then one further has

V̇3 ⩽ −
2

∑
k=1

ckz2
k −

σ2

2r2
b̃2

2 −
3

∑
k=2

ε
∗
k y2

k +
2

∑
k=1

h2
k +Γ21 +g3µ31z3u+g3b3z3

2
Φ3 +

1
2g3

− 1
r3

b̃ ˙̂b (53)

The actual controller is designed as

u =
1

µ31
(−c3z3 − b̂3z3Φ3) (54)

where c3 > 0 is a design parameter and b̂3 is updated by

˙̂b3 = r3z2
3Φ3 −σ3Φ3b̂3, b̂3(0)≥ 0, (55)

where σ3 > 0, b̂3(0) is the arbitrarily chosen initial estimate b̂3(t).
Now, we are ready to state the following result.
THEOREM 1. Consider the permanent magnet brush direct current (DC) motor systems (1) subject to the

asymmetric state constraints (3), if the actual controller (54), the virtual controllers (32) and (45) as well as
the adaptive laws are applied, under the Assumptions 1–2, we can deduce that: 1) all signals in the closed-loop
system are bounded; and 2) the full-state constraints are guaranteed without involving the feasibility conditions.

Proof. Substituting the actual control law u and adaptive law ˙̂b3 into (53), one has

V̇3 ⩽−
2

∑
k=1

ckz2
k −

3

∑
k=2

σk

2rk
b̃2

k −
3

∑
k=2

ε
∗
k y2

k +
2

∑
k=1

h2
k +Γ3, (56)

with Γ3 = Γ21 +
1

2g3
+ σ3

2r3
b2

3, then we have

V̇3 ⩽−ϒV3 +∆3 (57)

where ϒ = min{ck,σ j,2ε∗
j }, k = 1,2,3; j = 2,3, and ∆3 = ∑

2
k=1 h2

k +Γ3. With the above analysis, we now
can proceed to prove the following results. 1) We first prove that the boundedness of all signals is ensured.
According to (56), it can be concluded that V3 converges to the set Ω1 = {V3||V3| ≤ ∆3

ϒ
} as time goes by, which

further implies that zi, b̃2, b̃3 y2, and y3 are ultimately uniformly bounded. Then, it is obvious that ρi is L∞,
so α2 f and α1 are bounded due to the fact that in (24). It follows that the state x1 is bounded. According to
(14) and (30), we can get µ11 and Φ1 are bounded. Following the same procedure, we can conclude that all
the internal signals are bounded. 2) Next, we prove that the full-state of the system satisfies the asymmetry
constraint. Due to ρi ∈ L∞, it obtains that for any initial value κil(t)< xi(0)< κih, the system state remains in
the constrained region κil(t)< xi(t)< κih(t) for t ≥ 0.

Remark 1. The control implementation in this work is straightforward. For example, for the actual control
law u as shown in (54), we only need the variables µ31, z3, Φ3, and the parameter estimate b̂3. As z3 is defined
in (17), then it is easy to obtain the corresponding value; µ31 can be obtained via (14); Φ3 can be computed via
(52); and the parameter estimate b̂3 can be guaranteed via integrating the adaptive law as shown in (55). With
the similar procedure, the virtual controllers α1, α2, and the parameter estimate b̂2, can be computed easily.
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4. SIMULATIONS

To verify the effectiveness of the proposed control scheme, we consider the permanent magnet brush DC motor
systems (1), where the detailed values of system paarameters are given as: Kη = 0.9, J = 1.625 ·10−3, m= 0.506,
M = 0.1, L = 0.1, R = 0.023, b = 16.25 ·10−3, L = 2 ·10−3, R = 5, KB = Kη , B = b

Kη
, and the gravitational

acceleration G = 9.8. In the simulation, the system states are required to remain in the following asymmetric
sets:

xi ∈Ui := {(t,xi) ∈ R+×R | κil(t)< xi < κih(t)},κil ∈ R,κih ∈ R} (58)

for i = 1,2,3, where the constraining functions are governed dynamically by:

κ11 =−0.4+0.2sin(t), κ11(0) =−0.3

κ12 =−0.25exp(−t)−0.25sin(t)+0.25cos(t)+1.2, κ12 = 0.6

κ21 =−0.5sin(t)+0.3cos(t)−1.8, κ21 =−0.3

κ22 =−0.6exp(−t/2)−0.2sin(t)+0.4cos(t)+1, κ22 = 0.6

κ31 =−0.5sin(t)+0.3cos(t)−2, κ31 =−0.3

κ32 =−0.6exp(−t/2)−0.2sin(t)+0.4cos(t)+1, κ32 = 0.6.

(59)

In the simulation, the reference signal is given as yd = 0.1+ 0.5sin(t). In order to guarantee the full-
state constraints, the initial values of the DC system must be within the constrained sets, therefore, they are
chosen as: x1(0) = 0.3, x2(0) =−0.2, x3(0) =−0.6. The initial values of the parameter estimates are given as
b̂2 = b̂3 = 0. The design parameters are chosen as: c1 = 1.65, c2 = 2.5, c3 = 1.1, σ1 = 0.2, σ2 = 0.1, σ3 = 0.1,
γ1 = 2, γ2 = 0.01, γ3 = 0.001, ε2 = 10, and ε3 = 0.0002.

Under the actual controller (54), the virtual controllers (32) and (45) as well as the adpative laws, the sim-
ulation results are shown in Figs. 1–5, in which the trajectories of x1, x2, and x3 under the dynamic asymmetric
state constraints are plotted in Figs. 1–3, from which it is observed that the not only the system states are
effectively constrained within the constrained regions, but also the systems states are bounded.

0 1 2 3 4 5 6 7 8 9 10

Time(sec)

-1

-0.5

0

0.5

1

1.5

2

Fig. 1 – The trajectories of x1 and yd under constraint.

Furthermore, the evolutions of the virtual controllers are plotted in Fig. 4. It should be stressed that, if the
BLF methods are applied, one has to ensure that the feasibility conditions on virtual controllers αi, i= 1,2, must
be satisfied, i.e., −κil < αi < κih. To this end, the offline optimization process must be implemented to obtain
the optimal design parameters. However, this is a demanding condition. If the states are to be constrained in a
small set, such a optimization solution may not exist (namely, the optimal design parameters do not exist). To
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Fig. 2 – The trajectory of x2 under constraint.
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Fig. 3 – The trajectory of x3 under constraint.

solve this issue, in this work a novel state-dependent nonlinear transformation function is developed, based on
which we construct a different coordinate transformation and we only need to ensure the boundedness of the
virtual controllers (rather than to guarantee that the virtual controllers must be within the constrained regions),
which has been verified from Fig. 4. It is seen that, although the trajectories of the virtual controllers are
not confined within the constraining regions (making traditional BLF/IBLF methods invalid/inapplicable), the
proposed control can still ensure that the asymmetric full-state constraints imposed dynamically on the states
are not violated as observed from Fig. 4. Moreover, the evolutions of the virtual errors are plotted in Fig. 5,
which are also bounded.

5. CONCLUSION

In this paper, we introduce a robust adaptive control strategy for the permanent magnet brush DC motor
systems in the presence of asymmetric full-state constraints. Firstly, by constructing a state-dependent nonlinear
transformation function, we convert the problem of state constraint into the stabilization of a new variable.
Secondly, by employing the first-order filter and constructing a new coordinate transformation, the demanding
feasibility condition imposed on the BLF methods in the existing works is removed, allowing the designer more
freedom to select design parameters. The effectiveness of the proposed control is verified via the Simulation
results. It is worth noting that the virtual controllers and the actual control law are designed by using the
backstepping technique, it is somewhat complicated as it contains some partial derivations, some parameter
estimations, system states and other related nonlinear functions, then how to reduce the computational burden
represents an interesting topic in future work.
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Fig. 4 – The trajectories of virtual controllers α1 and α2.
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Fig. 5 – The evolutions of the virtual errors zk, k = 1,2,3.
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