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Abstract. This paper presents the determining of the critical cooling time and preheating temperature 

for welding. The primary equation which represents the cooling temperature is transcendent and, as 

such, it is not suitable for explicit solving. Hence, the author has investigated the appropriate 

interpolation polynomial which should align the polynomial level with the possibility of providing 

good accuracy of the approximation. Since the application and design of the welding included 

calculation of the derivatives of the polynomial, it is concluded that the accuracy of the derivative is 

not precise, nor does it follow the accuracy of the polynomial approximation. This research showed 

that the current theory for differentiation of the polynomial approximation does not provide precise 

results, although all the requirements of differentiability are provided. There are certain shortcomings 

in these actions, which imply that the currently known method of differentiation cannot be used. The 

new method of differentiating includes relatively small differentiating error regarding the exact value 

of the derivative, and the error for the polynomial approximation relating to the exact formula is not 

surpassed. The attempt to solve the design problem in thermal processes also makes a contribution in 

differentiation. 
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1. INTRODUCTION 

The research in this work was developed through analysis and study of the literature provided in [1−5]. 

It is important to mention also the results of famous researchers presented in [6−10], whose results have 

contributed to the work of other researchers in the area of thermal processes, heating and welding. The 

research in this work is focused on a significant number of professional and scientific works that deal with 

determining the critical cooling time and preheating temperature, as reported in references [10−24]. 

These works used theoretical models and dependencies, simulation packages, results from practice, and 

the determination of the mentioned dimensions according to the carbon equivalent or CE equivalent, 

including various other experiments. 

Since the previous formulas for the calculation of the essential components of thermal processes have 

proved to be rough in terms of accuracy and resolution, simple analytical expressions for the preheating 

temperature were derived using numerous and selected studies in mathematics and numerical analysis 

25−37, which will be of great use to researchers and technologists dealing with welding technology. The 

published works 38−49 have contributed to the results of this work with their originality and inventiveness. 

The main objective of this work is to approximate an important transcendent relation from welding 

using a polynomial with sufficient accuracy and the possibility of being solved in an analytical way, and to 

make this available to many researchers and experts in practice. Approximations can be conducted in one of 

the following ways: 1) through the application of interpolations with various polynomials, 2) through 

middle-square approximation, and 3) through the approximation of the smallest square method. The resulting 

polynomials that have been differentiated created problems because they made large errors. This paper deals 

with these researches by solving the problem of differentiating polynomials using a new method. 

https://www.doi.org/10.59277/PRA-SER.A.25.3.06
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2. THE NEW MODEL FOR CALCULATING THE PREHEATING TEMPERATURE  

FOR WELDING 

The distribution of temperature on the welding plate can be described by the Fourier equation 

𝜕𝑇

𝜕𝑡
= 𝑎 (

𝜕2𝑇

𝜕𝑥2
 +  

𝜕2𝑇

𝜕𝑦2), (1) 

where 𝑎 =
l

𝑐g
 is the coefficient of temperature conductivity, c – specific heat and g – specific mass. 

Using experiments from 6−9, the solution of the Fourier equation develops to 

𝑇(𝑟, 𝑥) =
𝑞

2πl
exp (−

𝑣𝑥

2𝑎
) 𝐾0 [𝑟 (

𝑣2

4𝑎2
+

𝑏

𝑎
)]

0.5

 (2) 

where the symbol K0 represents the modified Bessel function of type II and zero order. When the intensity of 

heating q is higher, the previous equation develops to equation 

𝑇(𝑦0, 𝑡) =
𝑞

𝑣𝑑√4𝜋l𝑐g 𝑡
exp (−

𝑦2

4𝑎𝑡
− 𝑏𝑡) , (3) 

where it is assumed that the previous equation is the heat flux along the axis x = 0. In case of the highest 

speed of cooling in the zone of the weld, it can be concluded that y = 0, so that part in the exponent can be 

neglected. Therefore, we get the equation 

𝑇(𝑡) =
𝑞

𝑣𝑑√4𝜋l𝑐g 𝑡
 . (4) 

During welding, the dimensions of time are important relating to cooling, after welding at temperatures 

of 800 °C and 500 °C. So far, in 1−10, these modes have been described and researched using the 2D and 

3D Rosenthal model of equations. For the 2D model for determining the welding dimensions, there is a 

certain relation 

𝑡8,5 =
𝑞2

4𝜋lg 𝑐𝑑2
[

1

(500 − 𝑇𝑝)
2 −

1

(800 − 𝑇𝑝)
2] , (5) 

where d – thickness of the material, q – the entering heat, Tp – preheating temperature, t8,5 – critical time of 

cooling, l – thermal conductivity Js−1 m−10 C, c – specific heat J kg−10 C−1 and g – specific weight kg m−3. 

For the 3D model for determining the welding dimensions, there is a relation 

𝑡8,5 =
𝑞

2𝜋l
[

1

500 − 𝑇𝑝
−

1

800 − 𝑇𝑝
] . (6) 

To select the model for welding, the equation 

𝑑gr = [
𝑞

𝜌𝑐
(

1

500 − 𝑇𝑝
) +(

1

800 − 𝑇𝑝
)]

0.5

, (7) 

for the 2D type model will be used. Otherwise, the 3D model would be used. All of this is intended to 

improve the accuracy.  

Equations (5) and (6) were used for a long time, during which their critical analysis was not conducted 

during practical applications, which included the entire scope of the use of variables and various types of 

welding. Some books mentioned that formulas adopted in advance were used. Also, some PhD theses used 

relations (5) and (6), which suggested the use of these relations in this research. 

A smaller number of papers mentioned deviation of the calculated cooling time, but no corrections, 

confirmation or proofs of the accuracy of the solution were provided. Therefore, in work [14], which 

includes 15 examples, none of the solutions for t8,5 was correct and the deviations were high. Due to 

deviations in the accuracy of the cooling time, during the development of British Standards for this type of 



3 A new contribution to the Newton-Leibnitz differentiation of polynomial approximations in thermal processes 203 

welding [28], the correction was conducted in terms of more accurate calculations, which are provided by 

Eqs. (8) and (9) respectively, for the 2D and 3D models 

𝑡8,5 = (4 300 − 4.3𝑇𝑝)
𝑞2

𝑑2
[

1

(500 − 𝑇𝑝)
2 −

1

(800 − 𝑇𝑝)
2] (8) 

𝑡8,5 =  (6 700 − 5𝑇𝑝)𝑞 [
1

500−𝑇𝑝
−

1

800−𝑇𝑝
]. (9) 

Through the applied researches using numerical calculations, it was concluded that there were 

deviations in relations (8) and (9) in some parts of their scope of use.  

3. PRESENTATION OF THEORETICAL AND APPLIED RESULTS WITH A CONTRIBUTION 

TO THE NEW METHOD OF DIFFERENTIATION 

For the sake of rationalization in the paper, the part that refers to various types of differentiation is 

given in 51. The numbers of the tables and figures are linked in the paper to the document numbers from 

the site for easier monitoring. Every reference to the table numbers in the paper refers to the mentioned 

website document. 

3.1. Approximate determination of the preheating temperature  

using the Lagrange interpolation method 

In order to accurately determine the critical cooling time and preheating temperature in the works 

38−49, in addition to exact calculation, iterative methods were also applied in solving the transcendental 

equations. 

These solutions can be found in a graphical way, but this is not always a good approach in the case of 

preparing the technology for various welding processes.  

Therefore, the relation (3) will be solved in such a way as to approximate the transcendent part, which 

includes the square root and exponential function using Lagrange’s interpolation according to the experiment 

in 49, which used a 15 s step for interpolation that led to greater mistakes. In this paper, the use of 31, 32 

provided the optimal interpolation of h = 2, which created the conditions for introducing an efficient new 

differentiation. Since, in many cases of welding, the process T(t) ends ata maximum of 50 seconds, this 

scope will be observed for approximation in the next example. 

 

Example 1. The task is to design the welding of steel sheets using the arc method. The thickness of the 

sheets is 7.4 mm and the entering heat is q1=13 610 J/cm. The optimal temperature of preheating of the steel 

material should be calculated in order to obtain a good weld without disturbing the structure of the base 

material in the welding product. Steel with a critical cooling speed of 15 oC/s is used. In order to achieve the 

cooling speed, Eq. (3) will be differentiated by t, which will develop. 

𝑊0 =
d𝑇

d𝑡
=

𝑞

𝑣𝑑√4𝜋l𝑐g 𝑡
exp (−

𝑦2

4𝑎𝑡
− 𝑏𝑡)

√𝑡

𝑡
[(

𝑦2

4𝑎𝑡2
− 𝑏) √𝑡 −

1

2√𝑡
] . (10) 

Substituting (3) into (10) gives Equation (11). 

𝑊0 =
d𝑇

d𝑡
= 𝑇(𝑦, 𝑡) [

1

2𝑡
(

𝑦2

2𝑎𝑡
− 1) − 𝑏] . (11) 

The relation (11) defines the cooling speed of the material, which represents the first derivative of the 

cooling temperature and will be used for calculation of the preheating temperature. If y = 0, Equation (11) 

becomes 

𝑊0 =
d𝑇

d𝑡
= −𝑇(𝑡) [

1

2𝑡
+ 𝑏] . (12) 
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In relation (12), which is the original with the basic expression for temperature T, it is observed that the 

expression in the middle bracket represents the “differentiating operator”. In this way, it is possible to 

calculate the cooling speed in a shorter way and to use it for calculation of the other elements needed for the 

preheating temperature. 

For this example, known elements will be separated from elements that need to be approximated so 

that Equation (3) can become 

𝑇(𝑡) = 𝑘
e−𝑏𝑡

√𝑡
 , (13) 

and, after replacement of the known dimensions, the equation will be developed. 

𝑇(𝑡) = 4015
e−𝑏𝑡

√𝑡
 . (14) 

Equation (14) showed that the part with the square root and exponential article are replaceable and the 

approximation will be conducted using Lagrange’s interpolation polynomial of the third order, which will 

provide easier analytical solving of the task. 

In common cases, for the unknown function f (x), which is added by a table containing numerical 

values, Lagrange’s interpolation 25−34 is used to define the solution in the form of the polynomial  

𝑦 = ∑ 𝑎𝑖𝑥𝑖

𝑚

𝑖=0

 (15) 

and to define the unknown coefficients ai .

 For different values of the time t, the time-dependent element of Eq. (15) is calculated. For pairs 

selected in that way: 

(26; 0.1417),  (28; 0.1332),  (30; 0.1255)  and  (32; 0.1185),

 
(16) 

Lagrange’s interpolation polynomial in the form of Eq. (17) will be developed. 

𝑃3(𝑡) = −0,000002617 𝑡3 + 0,00032402 𝑡2 − 0,01603391 𝑡 + 0,385538 . (17) 

The function given by expression (14) approximates our transcendent article of Eq. (14) with a certain 

error that must be explained and soluble in an analytical way. Since this is a polynomial of the third order, it 

can be solved using known mathematical Cardan patterns. Figure 2 presents a graph of the cooling speeds 

using values from Table 2. Analysis of this graphic showed that the cooling speed and the first derivative by 

the approximate formula significantly deviate from the exact value, which leads to impreciseness of the 

differentiation. Because of that, this work will separately investigate this problem. In that way, the time t8, 

which represents the time when the temperature on the T(t) diagram reaches the value of 800oC, can be 

calculated along with time t5, when the temperature of 500 oC is reached. Their difference represents the 

critical time of cooling in thermia, and it is known as t8,5. In order to develop a pattern for the speed of 

cooling, it is important to differentiate polynomial (17) by t, to obtain the expression  

𝑊(𝑡) =
d𝑃3(𝑡)

d𝑡
=  −0,000007851 𝑡2 +  0,00064804 𝑡 − 0,016033391 . (18) 

In calculating the values of expressions (17) and (18), it is important to multiply them with the constant 

k = 4015 to obtain nominal values for the real temperature and speed of cooling. 

Table 1 gives the temperature values according to relations (14) and (17). 

Figure 1 presents the graph of the exact value of the cooling temperature (14) and the approximate 

value (17) obtained using Lagrange’s interpolation formula of the third order. It can be concluded that the 

approximation curve follows the real curve within the given range of temperatures. 

Figure 2 presents the graph of the cooling speed using the values from Table 2. Analysis of this graph 

shows that the cooling speed (12) and first derivative by the approximate formula (18) significantly deviate 

from the exact value, which leads to impreciseness of the differentiation. Because of that, this work will 

separately investigate this problem. 
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Table 1 

Values of temperature for exact values and approximate values obtained using Lagrange’s interpolation polynomial  

with deviation in percentages 

t [s] Temperature TT(t) [C] Temperature TA(t) [C] Relative error [%] 

6 1520.7 1206.25 20.6 

8 1284 1110.84 13.5 

10 1120 1023.82 8.7 

12 997.6 944.71 5.3 

14 900.8 872.99 3.1 

16 821.8 808.18 1.65 

18 755.7 749.76 0.78 

20 699.19 697.24 0.3 

22 650.2 650.12 0.01 

24 607 607.9 0.15 

26 569 570.1 0.2 

28 534.7 536.12 0.26 

30 503.81 505.57 0.35 

32 475.76 477.92 0.45 

34 450 452.65 0.6 

36 426.7 429.3 0.6 

38 405 407.3 0.56 

40 385 386.17 0.3 

42 366.5 365.45 0.28 

44 349 344.62 1.2 

46 333 323.16 2.95 

48 318 300.6 5.47 

50 304 276.4 9.1 

52 291 250.1 14 

54 278 221.17 20.4 

56 266 189.11 28.9 

58 255 153.44 39.8 

 

 

 

Fig. 1 – Presentation of graphic for exact (14) and approximate temperature (17) T [°C] as a function of time 

 t s  ( t=10+2i, i=1,...,24). 

Since this work suggests the introduction of the new type of differentiation for a more accurate cooling 

speed, Table 3 is compiled. Its first column includes the exact values for the cooling speed (12) and the 

second column includes values obtained according to expressions (10) and (11) for concrete values from the 

suggested example. This column presents approximate values of the cooling speed (18) which are very close 

to the exact value, which is confirmed by the values of the relative percentage of deviation. 



206 Miroslav S. MILIĆEVIĆ, Valentina M. NEJKOVIĆ 6 

 

 

Fig. 2 – Graphics of cooling speeds [oC/s] for the exact (curve 1) (11) and approximate formula (curve 2) (18) developed by  

classic and current differentiation as a function of time t s  (t=10+2i, i=1,…,24). 

However, the mentioned error of the first deviation is the same as the errors of the interpolation 

approximation which are given in Table 1. 

Since the differentiation errors that are given in Table 3 are significantly smaller than the values 

presented in Table 2, it can be concluded that the new principle of temperature differentiation T(t) provides 

more precise differentiation results. This will make it possible to calculate more accurately the real and 

optimal temperatures for preheating of the welding material. 

 

Table 2 

Percentage of deviation of the first derivative (speeds of 

cooling) for exact and approximate formula from the 

expression (18) and according to existing theory 

t [s] 

First 

derivative 

[oC/s] 

Approximate first 

derivative (31)  

[oC/s] 

Relative 

error [%] 

6 −145.7 −49.89 65.7 

8 −96.3 −45.56 52.7 

10 −70 −41.49 40.7 

12 −54.04 −37.66 30.3 

14 −43.43 −34.09 21.5 

16 −35.95 −30.76 14.4 

18 −30.44 −27.69 9 

20 −26.22 −24.87 5.1 

22 −22.9 −22.29 2.6 

24 −20.23 −19.97 1.28 

26 −18.05 −17.9 0.83 

28 −16.23 −16.08 0.9 

30 −14.69 −14.51 1.2 

32 −13.38 −13.19 1.4 

34 −12.24 −12.12 0.98 

36 −11.6 −11.3 2.6 

38 −10.39 −10.73 3.3 

40 −9.63 −10.41 8.1 

42 −8.94 −10.34 15.6 

44 −8.33 −10.53 26.4 

46 −7.78 −10.96 40.9 

48 −7.29 −11.65 59.8 

50 −6.84 −12.58 87 

52 −6.43 −13.76 114 

54 −6.05 −15.2 151 

56 −5.7 −16.89 196 

58 −5.39 −18.82 249 
 

Table 3 

Percentage of deviation of the first derivative (speed of cooling) 

exact and using the new type of differentiating 

t [s] 

Exact first 

derivative 

[oC/s]  

First derivative with 

new method 

−𝑃3(𝑡) [
1

2𝑡
+ 𝑏]  [oC/s] 

Relative 

error [%] 

6 −145.7 −115.6 20.6 

8 −96.3 −83.3 13.5 

10 −70 −63.98 8.6 

12 −54.04 −51.2 5.2 

14 −43.43 −42.1 3 

16 −35.95 −35.3 1.8 

18 −30.44 −30.2 0.7 

20 −26.22 −26.15 0.2 

22 −22.9 −22.9 0 

24 −20.23 −20.26 0.1 

26 −18.05 −18.09 0.2 

28 −16.23 −16.27 0.2 

30 −14.69 −14.7 0.06 

32 −13.38 −13.4 0.1 

34 −12.24 −12.31 0.5 

36 −11.6 −11.3 2.5 

38 −10.39 −10.45 3.3 

40 −9.63 −9.65 0.2 

42 −8.94 −8.82 0.2 

44 −8.33 −8.22 1.3 

46 −7.78 −7.55 2.9 

48 −7.29 −6.89 5.4 

50 −6.84 −6.22 9 

52 −6.43 −5.53 13.9 

54 −6.05 −4.81 20 

56 −5.7 −4.05 28 

58 −5.39 −3.24 39 
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Figure 3 is the graphical representation of the cooling speeds that are numerically presented in Table 3. 

The two curves are nearly aligned and they are significantly favourable, unlike the curves from Fig 2, which 

shows a high deviation. It is concluded that the new way of differentiating the polynomial approximation and 

the new and original approach adopted in this work are superior to the current traditional practice of 

differentiating in a classical way. Details of this error will be explained later in this work. 

When observing the values of the relative percentage deviation in the cooling speed – the first 

derivatives of the interpolation polynomial, a large error in the calculation of the first derivative is present, 

although the function from expression (17) is differentiable and fulfils all the requirements for differentiation 

according to the references in the attachment of this paper. Hence, in the point of the interpolation 

polynomial for the time of 50 s, the relative deviation is about 87%, while for 54 s this deviation is 151%, 

which is an unacceptably large deviation. 
 

 

Fig. 3 – Graphic of exact speed of cooling (curve 1) (11) [oC/s] and speed obtained by new and original way of  

differentiating (curve 2), Eq. (22) of polynomial as a function of time t s (t=4+2i, i=1,...,27). 

3.2. Analysis of finding higher derivatives using new type of differentiation and  

observing the accuracy of the method 

The first derivative of the cooling temperature after welding was given by the earlier relation in the 

form of 

𝑊0 =
d𝑇

d𝑡
=

𝑞

𝑣𝑑√4𝜋l𝑐g 𝑡
exp (−

𝑦2

4𝑎𝑡
− 𝑏𝑡)

√𝑡

𝑡
[(

𝑦2

4𝑎𝑡2
− 𝑏) √t −

1

2√t
] , (19) 

which, after elementary transformations, turns into the form 

𝑊0 =
d𝑇

d𝑡
= 𝑇(𝑦, 𝑡) [

1

2𝑡
(

𝑦2

2𝑎𝑡
− 1) − 𝑏] . (20) 

When y = 0, we get the relation 

𝑊0 =
d𝑇

d𝑡
= −𝑇(𝑡) [

1

2𝑡
+ 𝑏] , (21) 

which, after the replacement of the expression for the temperature with the expression obtained using the 

interpolation polynomial, provides the relation 

d𝑇

d𝑡
= −𝑃3(𝑡) (𝑏 +

1

2𝑡
) . (22) 

The part of the work that numerically processed multiple derivatives was omitted due to the scope of 

the work. This was also the case because higher derivatives are not needed in this application, which is why 

those equations and tables were omitted. Research shows that the errors of higher derivatives compared to 

the first derivative are significantly greater. The error according to the method of this paper is the same for 

all derivatives and equal to the error that occurs when obtaining the polynomial approximation. 
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4. ANALYSIS OF RESULTS AND DISCUSSION 

The previous part of the work included the successfully approximated dependency for the temperature 

T(t), which created the conditions for simple analytic calculations of the temperature as a function of time and 

the critical cooling time. The real temperature is equal to the approximate one using the introduced correction 

𝑇(𝑡) = 𝑃3(𝑡) + 𝑅 , (23) 

while R is a permissible approximation error. Therefore, the current expression for the speed of cooling is 
d𝑇

d𝑡
= −𝑃3(𝑡) (𝑏 +

1

2𝑡
) . (24) 

Regarding Example 1, the replacement with W0 =15 
oC/s, and for P3(t) from the relation (17) provided 

the value for the time tp as 29.5 s, which is common and critical for determining the preheating temperature. 

The replacement of this part for t provides the temperature 

𝑇(𝑡) = 500.6 C (25) 

and the difference with the temperature of 800 °C presents the preheating temperature as 

𝑇𝑝 = 800 − 500.6 = 299.39 C. (26) 

Welding from Example 1 should be obtained previously in order to provide preheating at the temperature of 

300 °C. This would be an original way in which, beside the problem with incorrect differentiating, the 

original correct analytical algorithm can be provided. This algorithm would be used for solving problems 

related to thermia, through the introduction of the new type of differentiation. The new differentiation is 

applied from the expression obtained after differentiating the correct expression T(t) in such a way as to use 

the new expression without T(t) and to multiply the interpolation polynomial that is obtained in this paper 

using Lagrange’s interpolation. 

For the case of applying expression (18), there are two values of the preheating temperature, which is a 

kind of problem related to choice and large deviations in the observed interval, averaging 44%. These 

situations are not favourable for application in practice. As a consequence, it would result in a low quality 

weld with a high percentage of carbon and thick structure as in 4. The errors made by interpolations are 

dependent on the kind of function that is approximated and on the degree of polynomial approximation 

obtained. The first derivative, as a result of first differentiating the obtained polynomial, is correct but it 

significantly deviates from the first derivative of the main function, which needs to be approximated. This is 

confirmed by calculation of the first derivative of the real function on the one hand, and according to the 

definition of the derivative provided by calculation of tg of the angle of the tangent line at the point of 

derivative calculation, on the other hand. Many tables and graphics have been produced which proved that 

these claims are correct. Problems remain with the calculation of higher derivatives where the deviation is 

higher. This work provides the evidence that the problem lies in the nature of the functions obtained using 

interpolation polynomials. 

The curve obtained by approximations is oscillatory, “twisted” around the real curve, and it thus 

changes the tan of the angle of the tangent line, which is the actual first derivative. This also happens with 

the definition of the higher derivatives. This is also clear in works 35−37, since they process the method of 

connecting certain functions which corrects the curves obtained by the interpolations, but without grading the 

correctness of the differentiating of the functions obtained in this way. 

For the purpose of engineering practice, the approximation is defined in order not to exceed the error of 

5%. In that way, the approximate polynomial satisfied these requirements in the scope from 10 to 50 s. All 

the tables in this work – in the column of errors – include in bold the numbers of the value which fulfils the 

mentioned requirements. Numerous tables and graphs of the dimensions confirm the validity of the claims 

and accuracy of the newly provided differentiation. 

For the designing of filters in electronics and communications, polynomials assumed to be error-free in 

differentiating have been largely used. This is not favourable given the scope of shortcomings, sensitivity of 

filters and other relevant parameters. The results of applied research, which are described in references 

41, 42, indicate that polynomial differentiation failures when designing filters for MTK devices have 

required additional hardware intervention on the device for adjustment. 

All of this implies that this is not only a theory but confirmed in seriously practically realized devices 

which have been tested by accredited institutions.  
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Interpolation polynomials are widely applied in chemistry. The author of this paper therefore believes 

that this work will be very useful. Also, the mentioned approximations and interpolation polynomial are 

highly present in cubature formulas for the numerical calculation of integrals. Therefore, the results of the 

new differentiating method are useful for both theorists, according to which they will get numerous ideas for 

development, and practitioners who will get closer to practice.  

5. CONCLUSION 

This work is the result of theoretically applied researches over a long period of time. The condition of 

the techniques was processed and presented at a time when more formulas for calculation of the essential 

dimensions in thermia were being provided. Thus, it is concluded that such formulas do not provide precise 

results in all the segments of calculation which are needed in thermia regarding welding. These formulas are 

applied in numerous works, books, and papers without identifying the accuracy of the results. 

For the approximation of transcendent equations, Lagrange’s interpolation was selected, so a soluble 

polynomial of the third order is obtained analytically for applied research. Since derivatives are also needed 

for calculation of the cooling speed, it is concluded that they introduce significant errors regarding the real 

values. Hence, the work is extended and aimed at solving this problem. After identification, it is concluded 

that the interpolation polynomial does not provide precise results after differentiation. The reason for that is 

the feature of the polynomial to twist around the approximated curve, while the tangent lines which present 

the first derivatives vary significantly. With further differentiation for derivatives of higher degree, the errors 

increase. Due to such problems, the idea was to realise a new form of differentiation, which does not make 

any error in k’s derivative, except that it transfers the error made by the polynomial in the observed 

approximation interval. 

This problem inspired an inventive investigation to obtain the correct first derivative (which represents 

the cooling speed) in a way that directly multiplies the interpolation polynomial with a separate expression 

for differentiating, which originates from the main function. The results were correct, as was confirmed by 

numerous tables and graphs. The analytical expressions obtained for the cooling temperature and speed are 

not transcendent, but they are soluble for applied research and practice. 

The new method of differentiation could be used in many applications, among which it is worth 

mentioning the solving of filters based on the interpolation polynomial, the solving of cubature formulas for 

obtaining integrals, and many other applications in technical sciences. Due to its common features, the new 

method of differentiation will become part of numerical analysis and mathematics as a whole. 
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