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Abstract. In this note, we establish a bijection between two kinds of subsets of the set of all partitions of n by
extending Chapman’s conjugation of 2-modular diagrams. Based on this bijection, we provide a combinatorial
proof of the q-binomial theorem.
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1. INTRODUCTION

One of the most important summation formulae in the q-series is the following q-binomial theorem [4,
(1.3.2)]:

∞

∑
k=0

(a;q)k

(q;q)k
zk =

(az;q)∞

(z;q)∞

, |z|< 1, |q|< 1, (1)

which was proved by Cauchy in 1843, by Heine in 1847, and by other mathematicians (see [4, page 9]). Here
and throughout the paper, the q-shifted factorial is defined by (a;q)0 = 1,(a;q)n =(1−a)(1−aq) · · ·(1−aqn−1)
for a positive integer n and (a;q)∞ = ∏

∞
k=0(1−aqk). We refer the reader to [2, Section 2.2] for a simple proof

of (1), and to [1, 6] for combinatorial proofs of (1).
Based on the work of Chapman [3], Guo [5] provided a new combinatorial proof of (1) through conjugation

of 2-modular diagrams.
Motivated by the works due to Chapman [3] and Guo [5], we present a bijective proof of the following

equivalent form of the q-binomial theorem (1).

THEOREM 1 (Equivalent form of (1)). For positive integers m and r with m ≥ 2 and 1 ≤ r ≤ m− 1, we
have

∞

∑
k=0

(−xqr;qm)k

(qm;qm)k
qmkyk =

(−xyqm+r;qm)∞

(yqm;qm)∞

. (2)

Note that letting x →−a/qr/m,y → z/q and q → m
√

q on both sides of (2) reduces to (1).
The main idea of the bijective proof is to extend Chapman’s conjugation of 2-modular diagrams to con-

jugation of m-modular diagrams. The rest of the note is organized as follows. In Section 2, we translate (2)
into its combinatorial interpretation. We provide a bijective proof of the combinatorial interpretation of (2) in
Section 3.
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2. COMBINATORIAL INTERPRETATION OF (2)

A partition λ of a positive integer n is a finite non-increasing sequence of positive integers λ =(λ1,λ2, · · · ,λk)
such that ∑

k
i=1 λi = n. For a partition λ of n, we define the following three partition statistics:

l(λ ) = the number of the parts of λ ,

sm,r(λ ) = the number of the parts of λ which are congruent to r modulo m,

tm(λ ) = one mth of the largest part of λ which is a multiple of m.

Let n,m and r be positive integers with m ≥ 2 and 1 ≤ r ≤ m−1. Let An,m,r be the set of all partitions λ of
n such that all parts of λ are congruent to 0 or r modulo m, the parts congruent to r modulo m are distinct and
the largest part of λ is a multiple of m. Let Bn,m,r be the set of all partitions λ of n such that all parts of λ are
congruent to 0 or r modulo m, the parts congruent to r modulo m are distinct and r is not a part of λ .

Note that (2) can be translated into the following combinatorial interpretation:

∑
n≥1

qn
∑

λ∈An,m,r

xsm,r(λ )ytm(λ ) = ∑
n≥1

qn
∑

λ∈Bn,m,r

xsm,r(λ )yl(λ ). (3)

In order to prove (3), it suffices to show that

∑
λ∈An,m,r

xsm,r(λ )ytm(λ ) = ∑
λ∈Bn,m,r

xsm,r(λ )yl(λ ), (4)

where n,m and r are positive integers with m ≥ 2 and 1 ≤ r ≤ m−1.
In the next section, we shall establish a bijection ϕm,r : An,m,r → Bn,m,r such that sm,r (ϕm,r(λ )) = sm,r(λ )

and l (ϕm,r(λ )) = tm(λ ), which implies (4).

3. A BIJECTION BETWEEN An,m,r AND Bn,m,r

THEOREM 2. There exists a bijection ϕm,r : An,m,r →Bn,m,r such that sm,r (ϕm,r(λ ))= sm,r(λ ) and l (ϕm,r(λ ))=
tm(λ ).

The map ϕm,r from An,m,r to Bn,m,r : For λ = (λ1,λ2, · · · ,λk) ∈ An,m,r, we split the part λi into some copies
of m for λi ≡ 0 (mod m) and into some copies of m and one r for λi ≡ r (mod m), and put them in the ith row
of a matrix in a non-increasing order (i = 1, · · · ,k). Summing up the entries in each column of the matrix, we
obtain a partition ϕm,r(λ ) of n. Since no part ≡ r (mod m) of λ is repeated, the r’s can only occur at the bottom
of columns, and so the parts ≡ r (mod m) of ϕm,r(λ ) are distinct. Since the largest part of λ is a multiple of m,
the first row of the matrix is made up of m’s, and so r is not a part of ϕm,r(λ ). It follows that ϕm,r(λ ) ∈ Bn,m,r,
sm,r (ϕm,r(λ )) = sm,r(λ ) and l (ϕm,r(λ )) = tm(λ ).

For example,

ϕ3,1 : (12,10,9,9,4,1)→



12
10
9
9
4
1

→



3 3 3 3
3 3 3 1
3 3 3
3 3 3
3 1
1

→ (16,13,12,4).

The map ϕ−1
m,r from Bn,m,r to An,m,r : For λ = (λ1,λ2, · · · ,λk) ∈Bn,m,r, we split the part λi into some copies

of m for λi ≡ 0 (mod m) and into some copies of m and one r for λi ≡ r (mod m), and put them in the ith
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column of a matrix in a non-increasing order (i = 1, · · · ,k). Summing up the entries in each row of the matrix,
we obtain a partition ϕ−1

m,r(λ ) of n. Since no part ≡ r (mod m) of λ is repeated, the r’s can only occur at
the rightmost of rows, and so the parts ≡ r (mod m) of ϕ−1

m,r(λ ) are distinct. Since r is not a part of λ , the
first row of the matrix is made up of m’s, and so the largest part of ϕ−1

m,r(λ ) is a multiple of m. It follows that
ϕ−1

m,r(λ ) ∈ An,m,r.
For example,

ϕ
−1
3,1 : (16,13,12,4)→



3 3 3 3
3 3 3 1
3 3 3
3 3 3
3 1
1

→



12
10
9
9
4
1

→ (12,10,9,9,4,1).
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