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Abstract. With high penetration of renewable energy and novel loads connected to the distribution 

network, the voltage fluctuation becomes more severe and frequent, which may cause over- and 

under-voltage. The distribution system operator should calculate the power flow and validate the state 

to optimize the distribution network. Power flow calculation is the solution to the multivariate 

nonlinear problem, and the Newton-Raphson method is an effective algorithm for solving nonlinear 

problems. However, calculating the Jacobian matrix is a crucial process of the Newton-Raphson 

method, which is time-consuming. Therefore, this paper proposed an improved Newton-Raphson 

method, which simplifies and decreases the iterations of the calculation process of the Jacobian 

matrix to improve the calculation rate. To verify the effectiveness of the proposed method, the power 

flow of the IEEE 33-node power distribution system is calculated by the improved Newton-Raphson 

method and the conventional Newton-Raphson method. 
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1. INTRODUCTION 

Distributed generations (DGs) have the advantages of low investment cost, environmentally friendly 

characteristics, high energy utilization, close to the occupants, and convenient grid connection [1]. Therefore, 

the DGs have been promoted and developed rapidly with a series of policy incentives and support. The 

output power, connection mode, and connection position of the DGs affect the power flow of the distribution 

network and cause voltage problems of over-voltage, under-voltage, and voltage fluctuation [2]. To improve 

the voltage quality of the distribution network, the distribution system operator should analyze the power 

flow of the distribution network and formulate an optimization strategy to guarantee the power quality of the 

distribution network. Therefore, the power flow calculation is crucial to optimize the distribution network [3]. 

The power flow calculation of the power system involves the solution of nonlinear equations. The 

conventional methods include admittance, Newton-Raphson, and P-Q decomposition. The admittance 

method has a simple calculation principle, which is an iteration process based on the impedance matrix [4]. 

Due to the integrality of the impedance matrix, the calculation burden increases. Besides, the Newton-

Raphson method based on the admittance matrix can effectively calculate the power flow of the distribution 

network [5]. The sparsity of the admittance matrix can improve the calculation rate and convergence. 

However, each iteration process needs to calculate the Jacobian matrix, which will consume a lot of time and 

calculation resources. To overcome the weakness of the Newton-Raphson method, the P-Q decomposition 

method is proposed [6]. However, the number of iterations increases, the calculation time decreases, and 

calculation resources are released. The P-Q decomposition method can approximately ignore the influence of 

voltage amplitude change on active power distribution and voltage phase change on reactive power 

distribution. Therefore, the P-Q decomposition method is unsuitable for calculating the power flow of the 

distribution network with a small X/R (X/R represents the ratio of reactance to resistance) ratio. 

The Newton-Raphson algorithm is an iterative numerical method used to solve numerical 

approximation problems of systems of nonlinear equations. In power system power flow calculations, it is 
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usually used to solve complex nonlinear equations of node voltages and phase angles, and is used to analyze 

parameters such as voltage, phase angle, active power, and reactive power of each node in the power system 

[7], [8], which is essential for determining the voltages and phase angles of various nodes in an electrical 

network. Although the Newton-Raphson method consumes an enormous amount of time, it is also widely 

applied to analyze the power flow of the distribution network [9], [10]. To improve the calculation efficiency 

of the Newton-Raphson method, an enormous number of papers on the Newton-Raphson power flow 

algorithm have been proposed. Authors in [11] proposed a V–Q sensitivity analysis method based on the 

integrated Jacobian matrix. The method improved the convergence rate of the Newton-Raphson method. 

Authors in [12] proposed a novel approach to solve the power flow for islanded microgrids using a Modified 

Newton-Raphson, which took into account the droop characteristics of DGs. Authors in [13] used stochastic 

gradient descent to avoid the local optima and saddle points, and the Newton-Raphson method was used to 

accelerate the convergence when the iterations were close to the global optimal. Authors in [14] proposed a 

simplified Newton-Raphson power-flow solution method, which employs nonlinear current mismatch 

equations instead of the commonly used power mismatches to simplify overall equation complexity. The 

proposed simplified Newton-Raphson method spent less execution time than the conventional Newton-

Raphson method with similar convergence characteristics. 

The key to using the Newton-Raphson method to calculate power system power flow is the calculation 

of the Jacobian matrix in iterative operations. During the iteration of the Newton-Raphson method, the 
complex calculation of the Jacobian matrix needs a large amount of computing resources. which will 

decrease the calculation efficiency. Simplifying the calculation process of the Jacobian matrix becomes 

particularly important. On the other hand, the number of iterations also affects the calculation efficiency. 
Insufficient iterations will cause the accuracy of the Newton-Raphson algorithm to decrease, while too many 

iterations will increase computational and time costs. Therefore, formulating a suitable optimization strategy 
is the key to solving power system power flow calculation problems. 

Metaheuristic algorithms have global search capabilities and adaptability, can effectively find optimal 
solutions [15], and reduce the waste of computing resources [16], [17]. At the same time, it can be 

effectively applied to various complex optimization problems [18] and achieves good results in practical 
applications [19, 20]. This type of optimization algorithm is applied to the power flow calculation of the 

Newton-Raphson method, which can well determine the iteration threshold, improve the efficiency and 
stability of the power flow calculation, and meet the high-efficiency requirements of power system analysis. 

In this paper, the Particle Swarm Optimization (PSO) algorithm is used to determine the optimal iteration 
threshold in the Newton-Raphson method. Through the introduction of the PSO algorithm, we can improve 

the performance of the power flow calculation of the entire power system while maintaining calculation 
accuracy, and meet the demand for efficient and robust calculation methods. 

The organization structure of this paper is as follows: Section 2 introduces the conventional Newton-
Raphson method, including the establishment of the node voltage equation, the solution of the nonlinear 

equation, and the calculation process of the Jacobian matrix. Section 3 proposes an improved Newton-
Raphson method, and introduces methods for simplifying the calculation process of the Jacobian matrix and 

optimizing the iteration rate. Section 4 shows the experimental results and verifies the effectiveness of the 

improved method through its application on the IEEE 33-node power distribution network, including the 
reduction of computing time and the improvement of computing efficiency. Section 5 summarizes the main 

findings and conclusions of the study. 

2. CONVENTIONAL NEWTON-RAPHSON METHOD 

The steps of the conventional Newton-Raphson algorithm in power system power flow calculation 
problems are as follows: First, establish the power balance equation of the node, including active power 

balance and reactive power balance. Then the system parameters are initialized, and then the Jacobian matrix 
is calculated and continuously iterated and updated. After iteration, it is judged whether it has converged. 

When the algorithm converges, the power flow calculation result of the power system under given conditions 
is obtained. Calculation of the power flow in the distribution network is performed from the node voltage 

equation [20]. According to the admittance matrix of the distribution network, the equation of voltage and 
power is established, which can be expressed as follows: 
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∑ Yij∙Uj
̇ =

Si
̇

Uj
̇

n

j=1

 (1) 

where Yij is the admittance of nodes i and j, Uj
̇  is the voltage of node i, SI

̇  is the apparent power of node i, so 

the equation can be expressed as follows: 

Pi+jQ
i
=Ui

̇ ∙ ∑ Yij∙Uj
̇

n

j=1

 (2) 

where PI and QI are the active power and reactive power of node i, respectively. The left part of the equation 

expresses active power and reactive power injected into the node, and the right part of the equation expresses 

the required active power and reactive calculated by admittance matrix and node voltage. When the two parts 

are not equal, the node voltage will have a deviation, which will affect the power supply quality of the 

distribution network. Therefore, the active power and reactive power should be corrected to make the 

deviation of the node voltage tend to zero. 

In the Newton-Raphson power flow calculation process, the equations Pi+jQI are nonlinear. The node 

voltage in (2) can be expressed in the polar coordinate system: 

Ui
̇ =Ui∙e

 jθi=Ui∙( cos θi + j sin θi ) (3) 

Uj
̇ =Uj∙e

 jθj=Uj∙( cos θj − j sin θj ) (4) 

Yij=Gij + jBij (5) 

Pi+jQ
i
=Ui∙( cos θi +j sin θi )∙ ∑ (Gij+jBij)∙Uj∙( cos θj − j sin θj )

n

j=1

= 0 (6) 

where Gij and Bij are the real and imaginary parts of admittance of the node i and j, θi is the phase angle of 

the node i. The active power and reactive of (6) can be expressed respectively: 

Pi=Ui ∑ Uj∙(Gij∙ cos θij +Bij∙ sin θij )

n

j=1

= 0 (7) 

Q
i
=Ui ∑ Uj∙(Gij∙ sin θij − Bij∙ cos θij ) = 0

n

j=1

 (8) 

When the nodes of the distribution network are ‘PQ’ nodes, the active power and reactive power 

injected into the node are known as P1
' , Q

1
' . The active and reactive power should be corrected to balance 

supply and demand. The regulation of active power and reactive power can be expressed as follows: 

∆Pi = P1
' − Ui ∑ Uj∙(Gij∙ cos θij +Bij∙ sin θij )

n

j=1

= 0 (9) 

∆Q
i
 = Q

1
' − Ui ∑ Uj∙(Gij∙ sin θij − Bij∙ cos θij )

n

j=1

= 0 (10) 

(9)and (10) expend in the Taylor series and neglect the high-order parts to obtain the modified 

equation: 

[
∆P

∆Q
] = [

 H N 
 M L 

] [
∆θ

 ∆U/U 
] (11) 

where [
 H N 

 M L 
] is the Jacobian matrix, the elements can be expressed as follows: 

Hij=
∂∆Pi

∂θj

= − Ui∙Uj∙(Gij∙ sin θij − Bij∙ cos θij ) (12) 
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Hii =
∂∆Pi

∂θi

= Ui ∑ Uj∙(Gij∙ sin θij − Bij∙ cos θij )

n

j=1, j≠i

 (13) 

 Nij =
∂∆Pi

∂Uj

Uj = − Ui∙Uj∙(Gij∙ cos θij +Bij∙ sin θij ) (14) 

Nii =
∂∆Pi

∂Ui

Ui = − Ui ∑ Uj∙(Gij∙ cos θij +Bij∙ sin θij )

n

j=1, j≠i

 (15) 

Mij = 
∂∆Q

i

∂θj

=Ui∙Uj∙(Gij∙ cos θij +Bij∙ sin θij ) (16) 

Mii = 
∂∆Q

i

∂θi

= − Ui ∑ Uj∙(Gij∙ cos θij +Bij∙ sin θij )

n

j=1, j≠i

 (17) 

Lij =
∂∆Q

i

∂Uj

Uj = − Ui∙Uj∙(Gij∙ sin θij − Bij∙ cos θij ) (18) 

Lii =
∂∆Q

i

∂Ui

Ui = − Ui ∑ Uj∙(Gij∙ sin θij − Bij∙ cos θij )

n

j=1, j≠i

 (19) 

The inversion of the Jacobian matrix can be expressed as the S matrix, which can describe the 

relationship between node voltage/phase angle correction and active/reactive power correction. 

3. IMPROVED NEWTON-RAPHSON METHOD 

In conventional Newton-Raphson power flow calculation, each iteration should calculate the Jacobian 

matrix. Therefore, simplifying the calculation process of the Jacobian matrix can effectively reduce the 

calculation time and release computation resources. Besides, the convergence rate plays a significant role in 

the Newton-Raphson method. Keeping the convergence rate also can improve the calculation efficiency. 

3.1. Simplified Jacobian Matrix 

In the low-voltage distribution network, the distribution line segments will not be for long. The power 

flow of each branch and the voltage difference between nearby nodes are usually small [21]. Therefore, the 

voltage amplitude and phase angle of nearby nodes can be expressed as follow: 

{

 θi= θj               

θij = θi − θj ≈ 0  

|Ui|=|Uj|          

 (20) 

According to (20), each element of the Jacobian matrix can be expressed as: 

Hij=
∂∆Pi

∂θj

=Ui∙Uj∙Bij∙ cos θij (21) 

Hii=
∂∆Pi

∂θi

= − Ui ∑ Uj∙Bij∙ cos θij

n

j=1, j≠i

 (22) 

 Nij=
∂∆Pi

∂Uj

Uj = − Ui∙Uj∙Gij∙ cos θij (23) 

Nii=
∂∆Pi

∂Ui

Ui = −Ui ∑ Uj∙Gij∙ cos θij

n

j=1, j≠i

 (24) 

Mij=
∂∆Q

i

∂θ𝑗
=Ui∙Uj∙Gij∙ cos θij (25) 

Mii=
∂∆Q

i

∂θi

= − Ui ∑ Uj∙Gij∙ cos θij

n

j=1, j≠i

 (26) 
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Lij=
∂∆Q

i

∂Uj

Uj = Ui∙Uj∙Bij∙ cos θij (27) 

Lii=
∂∆Q

i

∂Ui

Ui = Ui ∑ Uj∙Bij∙ cos θij

n

j=1, j≠i

 (28) 

where Hij = Lij, Nij=− Mij, by simplifying and replacing the element of the Jacobian matrix, the time used to 

calculate the Jacobian matrix can be significantly reduced, and the rate of power flow calculation is 

accelerated. 

3.2. Optimized Iteration Rate 

The Newton-Raphson method needs to calculate the Jacobian matrix repeatedly at each iteration. The 
calculation in each iteration is huge, which greatly reduces the calculation rate. When the iterations tend to 
converge, the changes in the elements of the Jacobian matrix obtained are small. Since the changes can be 
negligible, the same Jacobian matrix can be used in several iteration processes. To evaluate the change in the 
Jacobian matrix, an iteration threshold is set. When the changes of the Jacobian matrix in the iterations are 
less than the threshold, the matrix is considered stable enough, which will not be calculated and called a 
frozen Jacobian matrix. Based on the frozen Jacobian matrix, the calculation time of the power flow 
calculation can be significantly reduced, and the calculation rate will increase. 

The setting of the iteration threshold requires comprehensive consideration of the dynamic 
characteristics of the system and the required calculation accuracy. If the threshold is set too low, the 
algorithm may not be able to fully utilize the update of the Jacobian matrix to improve the convergence 
speed, thereby increasing the number of unnecessary iterations. On the contrary, if the threshold is set too 
high, the algorithm may start using the frozen Jacobian matrix before the system has truly converged, which 
may cause the convergence to slow down or even diverge. To more effectively optimize the iteration rate of 
the Newton-Raphson method, this paper uses the Particle Swarm Optimization (PSO) algorithm to explore 
the optimal iteration threshold. The way particles search in the PSO algorithm is very similar to the way a 
flock of birds searches for food. Each particle in the particle swarm represents a solution, and each particle 
will obtain a corresponding fitness value based on the objective function.  

The PSO algorithm is an evolutionary computation to obtain the optimal solution In the PSO 

algorithm, each particle in the particle swarm represents a solution, and each particle will obtain a 

corresponding fitness value based on the objective function. Combined with the iteration threshold, we set 

the fitness function as tpf = f (ξ), where tpf is the time spent in power flow calculation, ξ is the iteration 

threshold, and f (ξ) represents the time of power flow calculation. The lower fitness value of a single particle 

indicates that tpf will be shorter and the iteration threshold is better. 

The speed update of the particle swarm can be expressed as: 

vi(t+1) = w⋅vi(t) + c1⋅r1⋅(pi
− xi(t)) + c2⋅r2⋅(g− xi(t)) (29) 

where vi(t+1) and vi(t) are the updated velocity of the particle and the current velocity of the particle, 𝑤 is 

the inertia factor, 𝑝𝑖  is the individual best value, g  is the global best value. C1  and c2 are acceleration 

constants, r1 and r2 are random numbers between [0,1], xi(t) is the position of the particle at time t. Updating 

the velocity of the particle swarm represents the numerical change of the particles during each iteration. 

Therefore, for the optimization of the iteration threshold ξ, we replace xi(t) with ξ
i
(t), replace vi(t) with 

∆ξ
i
(𝑡), formula (29) can be modified as: 

∆ξ
i
(t +1) = w∙∆ξ

i
(t) + c1⋅r1⋅(p

i
− ξ

i
(t)) + c2⋅r2⋅(ξ

best
− ξ

i
(t)) (30) 

The position update formula of the particle swarm can be expressed as: 

xi(t +1) = xi(t) + vi(t +1) (31) 

 According to formula (30), formula (31) can be modified as: 

ξ
i
(t +1) = ξ

i
(t) + ∆ξ

i
(t +1) (32) 

where ξ
i
(t) is the current iteration threshold, ξ

i
(t +1) is the updated iteration threshold, and ξ

best
 is the best 

iteration threshold found from initialization to the current search. The time of Newton-Raphson power flow 

calculation is f (ξ
i
(t)), if f (ξ

i
(t)) < f (pi), then p

i
= ξ

i
(t); if min f (ξ

i
(t)) < f (ξ

best
), then ξ

best
= ξ

i
(t). Iteration will 
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be continued until the set number of iterations is reached. Then, the iteration threshold will finally select     

ξ = ξ
best

. Through the PSO algorithm, we can obtain the most suitable threshold for the Newton-Raphson 

power flow calculation to improve computational efficiency. 

The flowchart for optimizing the Newton-Raphson method using the PSO algorithm is given in Fig. 1. 
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NO

 

Fig. 1 – The flowchart of the optimization process. 

Figure 1 is divided into two parts. The first part is the process of using the particle swarm optimization 

algorithm to derive the optimal iteration threshold, which can reduce the iteration number of power flow 

calculation. The second part is used to simplify the calculation of the Jacobian matrix elements in the 

Newton-Raphson method, which can improve the efficiency of power flow calculations. To optimize the 

iteration rate, the PSO algorithm calculates the optimal iteration threshold which will be used for the 

improved Newton-Raphson method. The notations γ and ξ indicate the error tolerance and convergence rate 

threshold. The ξ is the maximum error, the difference between the approximation and the true value. During 

the iterative process of the Newton-Raphson method, when the calculated maximum value of the unbalanced 

power is lower than the error tolerance, the iterative process will stop and the approximation will be 

determined to replace the true value to obtain the final result. Otherwise, iteration will be performed. When 

the unbalanced power difference is greater than the iteration threshold, the Jacobian matrix should be 

recalculated to improve the convergence speed. Otherwise, this iteration will use the Jacobian matrix of the 

previous iteration to avoid repeated calculations. Therefore, using the improved Newton-Raphson method 

after particle swarm optimization can reduce the number of calculations of the Jacobian matrix and make 

power flow calculations more efficient. 

4. RESULTS 

The conventional Newton-Raphson method and improved Newton-Raphson method are implemented 

by MATLAB R2018a on a Win10-based i7-7820HK PC. The IEEE 33-node distribution network is used to 

demonstrate the validity of the improved Newton-Raphson power-flow algorithm and compare it with the 

conventional Newton-Raphson method. Node 1 is the reference node, and the voltage value of the reference 

node is 1 p.u. The other nodes are all ‘PQ’ nodes in the distribution network. The base power is 100 MVA. 
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The structure and the admittance of the IEEE 33-node distribution network are shown in Fig. 2 and Table 1. 

The PSO Parameter is given in Table 2. 

 

 

Fig. 2 – IEEE 33-node power distribution system. 

Table 1  

The admittance of the IEEE 33-node distribution network [22] 

Node i Node j Admittance Node i Node j Admittance 

1 2 0.0922+j0.047 17 18 0.3720+j0.5740 

2 3 0.4930+j0.2511 2 19 0.1640+j0.1565 

3 4 0.3660+j0.1864 19 20 1.5042+j1.3554 

4 5 0.3811+j0.1941 20 21 0.4095+j0.4784 

5 6 0.8190+j0.7070 21 22 0.7089+j0.9373 

6 7 0.1872+j0.6188 3 23 0.4512+j0.3083 

7 8 0.7114+j0.2351 23 24 0.8980+j0.7091 

8 9 1.0300+j0.7400 24 25 0.8960+j0.7011 

9 10 1.0440+j0.7400 6 26 0.2030+j0.1034 

10 11 0.1966+j0.0650 26 27 0.2842+j0.1447 

11 12 0.3744+j0.1238 27 28 1.0590+j0.9337 

12 13 1.4680+j1.1550 28 29 0.8042+j0.7006 

13 14 0.5416+j0.7129 29 30 0.5075+ j0.2585 

14 15 0.5910+j0.5260 30 31 0.9744+j0.9630 

15 16 0.7463+j0.5450 31 32 0.3105+j0.3619 

16 17 1.2890+j1.7210 32 33 0.3410+j0.5362 

8 21 2+j2 9 15 2+j2 

12 22 2+j2 18 32 0.5+j0.5 

Table 2  

Optimal Parameter of PSO 

Number of iterations 500 

Learning Factor (C1) 2.0 

Learning Factor (C2) 1.5 

Inertia weight (w) 0.1 

 

 
Fig. 3 – Iterative convergence of particle swarm optimization algorithm. 
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The results of particle swarm optimization iteration are shown in Fig. 3. The particle swarm algorithm 

is set to iterate 500 times, and we found that when the iteration threshold ξ
i
(t)  is 1.2999, f (ξ

i
(t)) converges 

and has a minimum value. The Jacobian matrix will have the best iteration effect and the power flow 

calculation efficiency is the highest. 

 

 
Fig. 4 – Iterative convergence of different methods. 

The conventional Newton-Raphson method and the improved Newton-Raphson method are used to 
calculate the power flow of the IEEE-33 bus power distribution system. The convergence tolerance γ is set to 

10−14. The convergence processes of the two methods are shown in Fig. 4. The conventional Newton-
Raphson algorithm converges after 37 iterations. In the improved Newton-Raphson algorithm without 

particle swarm optimization, the iteration threshold ξ is set to 0.5, 1, 1.5, 2 to compare with the improved 
Newton-Raphson method optimized by the particle swarm optimization. The results show that when the 
improved Newton-Raphson method is not optimized using particle swarm optimization, the Newton-
Raphson algorithm requires 37 iterations to converge when ξ = 1, ξ = 1.5, and ξ = 2, and 55 iterations when 

ξ = 0.5. When using the Newton-Raphson algorithm optimized by particle swarm optimization, the number 
of iterations is reduced to 27, which greatly improves the efficiency of power flow calculation. 

The characteristics (number of iterations, calculation time, and final convergence tolerance) of the 
conventional Newton-Raphson method and the improved Newton-Raphson method are shown in Table 3. 
While ensuring that the power fluctuation error is within the convergence tolerance, the conventional 
Newton-Raphson method has the longest calculation time, reaching 17.09 ms. Due to the different choices of 
iteration thresholds, there may be variations in the calculation time for the improved Newton-Raphson 
method. However, the calculation time after improvement is shorter than that of the conventional Newton-
Raphson method. When ξ = 0.5, the operation time is 16.4 ms. When ξ = 1.5, the operation time is 5.62 ms. 

After using the particle swarm algorithm to optimize the iteration threshold, it can be seen that the power 
flow calculation time of the improved Newton-Raphson method is 3.04 ms, which is 17.05 ms faster than the 
calculation time of the conventional Newton-Raphson method, and the calculation efficiency has increased 
by 660.53%. 

The voltage value of the two method results is shown in Table 4, the value of the node voltage 

calculated by the two methods is consistent, and the maximum error is 4×10−15. Therefore, on the premise of 
keeping the accuracy of power flow calculation, the improved Newton-Raphson method can effectively 
improve the calculation rate of power flow. 
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Table 3  

The result of two Newton-Raphson methods 

 
Conventional Newton-

Raphson method 

Improved Newton-Raphson method 

(Without PSO) Improved Newton-Raphson 

method (With the PSO) 
ξ = 0.5 ξ = 1.0 ξ = 1.5 ξ = 2 

Calculation 

time(ms) 
20.09 16.4 14.6 5.62 5.74 3.04 

Iterations amount 37 58 58 37 37 27 

Convergence 

tolerance 
8.65×10-15 8.54×10−15 8.54×10−15 9.38×10−15 9.37×10−15 9.32×10−15 

Table 4  

The voltage of two Newton-Raphson methods 

Node 
Conventional Newton- 

Raphson method 

Improved Newton- 

Raphson method 
Node 

Conventional Newton- 

Raphson method 

Improved Newton-

Raphson method 

1 1 1 18 0.913090479361055 0.913090479361059 

2 0.997032259729201 0.997032259729201 19 0.996503895654682 0.996503895654681 

3 0.982937983395567 0.982937983395567 20 0.992926299531404 0.992926299531404 

4 0.975456413220923 0.975456413220922 21 0.992221795820546 0.992221795820547 

5 0.968059232356033 0.968059232356032 22 0.991584376857737 0.991584376857737 

6 0.949658177395617 0.949658177395617 23 0.979352257335941 0.979352257335941 

7 0.946172613505425 0.946172613505425 24 0.972681100969174 0.972681100969174 

8 0.941328437217892 0.941328437217892 25 0.969356112454364 0.969356112454364 

9 0.935059372180165 0.935059372180165 26 0.947728910132004 0.947728910132004 

10 0.929244422592416 0.929244422592415 27 0.945165164232633 0.945165164232633 

11 0.928384417163371 0.928384417163371 28 0.933725580913507 0.933725580913507 

12 0.926884836746467 0.926884836746467 29 0.925507478359276 0.925507478359277 

13 0.920771747551763 0.920771747551764 30 0.921950057873221 0.921950057873221 

14 0.918504992768571 0.918504992768573 31 0.917788887087669 0.917788887087669 

15 0.917092680117403 0.917092680117406 32 0.916873465734143 0.916873465734143 

16 0.915724760079141 0.915724760079144 33 0.916589822133527 0.916589822133527 

17 0.913697546157041 0.913697546157045  

5. CONCLUSIONS 

The Newton-Raphson algorithm is an effective method for solving nonlinear problems and can be used 

for power flow calculations in distribution networks. To improve the computing efficiency of the 

conventional Newton-Raphson method, this paper proposes an improved Newton-Raphson method to 

increase the computing speed and release computing resources. First, considering the characteristics of the 

low-voltage distribution network, the calculation of the Jacobian matrix is simplified, saving the calculation 

time of each iteration. Secondly, the concept of iteration threshold is proposed. When the power fluctuation 

of power flow calculation is greater than the iteration threshold, the Jacobian matrix is recalculated to 

improve the accuracy of the calculation. This paper uses the particle swarm optimization algorithm to 

optimize the threshold and obtains the optimal threshold for calculation by the Newton-Raphson method. In 

addition, an effective experiment to improve computational efficiency was conducted in an IEEE-33 node 

distribution network, and the number of iterations, calculation time, and convergence tolerance of the 

improved Newton-Raphson method were compared with the conventional Newton-Raphson algorithm. The 

results show that on the premise of maintaining the accuracy of power flow calculation, the improved 

Newton-Raphson method can reduce 10-31 iterations and increase the calculation efficiency by 660.53%. 

The overall computing rate is improved and computing resources can be significantly released. 
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