COMMUTATORS FOR THE FRACTIONAL MAXIMAL AND SHARP FUNCTIONS ON TOTAL MORREY SPACES

Fengyu XUE

Mudanjiang Normal University, Department of Mathematics, Mudanjiang 157011, China E-mail: 1023321525@stu.mdjnu.edu.cn

Abstract: In this paper, we consider the commutators associated with the fractional maximal function and sharp maximal function when symbol function *b* in Lipschitz spaces. We give some characterizations of the Lipschitz spaces via the boundedness of these commutators on total Morrey spaces.

Keywords: fractional maximal function, Lipschitz space, commutator, total Morrey space, singular integral operator.

Mathematics Subject Classification (MSC2020): 42B20, 42B25, 42B35.

1. INTRODUCTION AND MAIN RESULTS

Let *T* a classical singular integral operator, the commutator [T,b] generated by *T* and a suitable function *b* as follows

$$[T,b]f(x) = b(x)T(f)(x) - T(bf)(x).$$
(1)

In 1976, Coifman, Rochberg and Weiss [1] states that [T, b] is bounded on $L^p(\mathbb{R}^n)(1 if and only if <math>b \in BMO(\mathbb{R}^n)$. Moreover, Janson [2] also gave some characterizations of Lipschitz spaces via the commutator. It was proved that [T, b] is bounded from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$ if and only if $b \in \dot{\Lambda}_{\beta}(\mathbb{R}^n)$, where $0 < \beta < 1$, $1 , <math>\beta = n(1/p - 1/q)$.

As usual, a cube $Q \subset \mathbb{R}^n$ always means its sides parallel to the coordinate axes. Denote by |Q| the Lebesgue measure of Q and χ_Q the characteristic function of Q. For a function $f \in L^1_{loc}(\mathbb{R}^n)$, we write $f_Q = |Q|^{-1} \int_Q f(x) dx$.

Let $0 \le \tilde{\alpha} < n$, for a locally integrable function *f*, the maximal and sharp functions are defined by

$$M_{\alpha}(f)(x) = \sup_{Q \ni x} \frac{1}{|Q|^{1-\alpha/n}} \int_{Q} \left| f(y) \right| \mathrm{d}y \quad \text{and} \quad M^{\sharp}(f)(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} \left| f(y) - f_{Q} \right| \mathrm{d}y,$$

where the supremum is taken over all cubes $Q \subset \mathbb{R}^n$ containing *x*.

When $\alpha = 0$, M_0 is the classical Hardy-Littlewood maximal function denoted by M, and M_{α} is the classical fractional maximal function when $0 < \alpha < n$.

The maximal commutator of M_{α} with a locally integrable function b is defined by

$$M_{\alpha,b}(f)(x) = \sup_{Q \ni x} \frac{1}{|Q|^{1-\alpha/n}} \int_{Q} \left| b(x)f(y) - b(y)f(y) \right| \mathrm{d}y,$$

where the supremum is taken over all cubes $Q \subset \mathbb{R}^n$ containing *x*. $[M_{\alpha}, b]$ and $[M^{\sharp}, b]$ can refer to (1).

We would like to remark that operators $M_{\alpha,b}$ and $[M_{\alpha},b]$ essentially differ from each other. For example, $M_{\alpha,b}$ is positive and sublinear, but $[M_{\alpha},b]$ and $[M^{\sharp},b]$ is neither positive nor sublinear.

In 2000, Bastero, Milman and Ruiz [3] gave the necessary and sufficient conditions of the boundedness of [M,b] and $[M^{\sharp},b]$ on Lebesgue spaces, where $b \in BMO(\mathbb{R}^n)$. In 2009, the authors [4] considered the same problem for the fractional maximal function. Then, the commutators theory of maximal functions have been studied intensively by many authors (see [5–14]). In 2017, Zhang [6] gave the necessary and sufficient conditions of the boundedness of M_b and [M,b] on Lebesgue spaces and Morrey spaces when the symbol *b* belong to Lipschitz spaces, by which some new characterizations of Lipschitz functions are given. The results were extended to variable Lebesgue spaces in [11]. In 2018, Zhang, Wu and Sun [9] considered the boundedness of $M_{\alpha,b}$, $[M_{\alpha},b]$ and $[M^{\sharp},b]$ on Orlicz spaces. Recently, Guliyev [14] give necessary and sufficient conditions for the boundedness of M_b and [M,b] in total Morrey spaces when the function *b* belongs to Lipschitz spaces, whereby some new characterizations of non-negative Lipschitz functions are obtained.

Inspired by above results, we want to study the boundedness of $M_{\alpha,b}$, $[M_{\alpha},b]$ and $[M^{\sharp},b]$ on total Morrey spaces. Some new characterizations of non-negative Lipschitz functions are obtained.

To state the results, we first give some definitions and notations.

Definition 1. The Lipschitz space of order β , $0 < \beta < 1$, is the space of function f, such that

$$\dot{\Lambda}_{\beta} = \{ f : |f(x) - f(y)| \le C|x - y|^{\beta} \},\$$

and the smallest constant C > 0 is the Lipschitz norm $\|\cdot\|_{\dot{\Lambda}_{B}}$.

In 1938, the classical Morrey spaces were introduced by Morrey [15], he studied solutions of some quasilinear elliptic partial differential equations. Then, the Morrey type spaces have been widely studied by many scholars [16–20]. In 2022, Guliyev [19] introduced a variant of Morrey spaces called total Morrey spaces $L^{p,\lambda,\mu}(\mathbb{R}^n)$, $0 , <math>\lambda \in \mathbb{R}$ and $\mu \in \mathbb{R}$. It was proved that necessary and sufficient conditions for the boundedness of the maximal commutator operator M_b and the commutator of maximal operator [M,b] on total Morrey spaces $L^{p,\lambda,\mu}(\mathbb{R}^n)$ when b belongs to BMO(\mathbb{R}^n) spaces.

We shall recall the definitions of the classical Morrey space, modified Morrey space and total Morrey space.

Definition 2. Let $0 , <math>\lambda \in \mathbb{R}$, $\mu \in \mathbb{R}$ and $[t]_1 = \min\{1,t\}(t > 0)$. We denote by $L^{p,\lambda}(\mathbb{R}^n)$ the classical Morrey space, by $\widetilde{L}^{p,\lambda}(\mathbb{R}^n)$ the modified Morrey space (see [20]), and by the total Morrey space $L^{p,\lambda,\mu}(\mathbb{R}^n)$ the set of all classes of locally integrable functions f with the finite norms

$$\begin{split} \|f\|_{L^{p,\lambda}} &= \sup_{x \in \mathbb{R}^{n}, t > 0} t^{-\lambda/p} \left(\int_{Q} |f(y)|^{p} \mathrm{d}y \right)^{1/p}, \ \|f\|_{\widetilde{L}^{p,\lambda}} = \sup_{x \in \mathbb{R}^{n}, t > 0} [t]_{1}^{-\lambda/p} \left(\int_{Q} |f(y)|^{p} \mathrm{d}y \right)^{1/p}, \\ \|f\|_{L^{p,\lambda,\mu}} &= \sup_{x \in \mathbb{R}^{n}, t > 0} [t]_{1}^{-\lambda/p} [1/t]_{1}^{\mu/p} \left(\int_{Q} |f(y)|^{p} \mathrm{d}y \right)^{1/p}, \end{split}$$

where t is side length of cube Q.

Remark 1. From [19] (see Lemma 2), when $0 , <math>0 \le \lambda \le n$ and $0 \le \mu \le n$, then

$$L^{p,\lambda,\mu}(\mathbb{R}^n) = L^{p,\min\{\lambda,\mu\}}(\mathbb{R}^n) \cap L^{p,\max\{\lambda,\mu\}}(\mathbb{R}^n)$$

and

$$\|f\|_{L^{p,\lambda,\mu}} = \max\left\{\|f\|_{L^{p,\min\{\lambda,\mu\}}}, \|f\|_{L^{p,\max\{\lambda,\mu\}}}\right\} = \|f\|_{L^{p,\mu,\lambda}}$$

If $\lambda = \mu$ in $L^{p,\lambda,\mu}(\mathbb{R}^n)$, then $L^{p,\lambda,\mu}(\mathbb{R}^n) = L^{p,\lambda}(\mathbb{R}^n)$; if $\mu = 0$ in $L^{p,\lambda,\mu}(\mathbb{R}^n)$, then $L^{p,\lambda,\mu}(\mathbb{R}^n) = \widetilde{L}^{p,\lambda}(\mathbb{R}^n)$. For a fixed cube Q_0 , the maximal function with respect to Q_0 of a function f is given by

$$M_{\alpha,Q_0}(f)(x) = \sup_{\substack{Q \ni x \\ Q \subseteq Q_0}} \frac{1}{|Q|^{1-\alpha/n}} \int_Q |f(y)| \mathrm{d}y, \ x \in Q_0.$$

where the supremum is taken over all cubes Q with $Q \subset Q_0$ and $Q \ni x$. When $\alpha = 0, M_Q = M_{0,Q}$. Our main results in this paper can be stated as follows.

THEOREM 1. Let $b \in L^1_{loc}(\mathbb{R}^n)$, $0 < \beta < 1$, $0 \le \min\{\lambda,\mu\} \le \max\{\lambda,\mu\} < n - p(\alpha + \beta)$, $0 < \alpha < \frac{n - \max\{\lambda,\mu\}}{p}$ and $0 < \alpha + \beta < \frac{n - \max\{\lambda,\mu\}}{p}$. Assume that $1 and <math>\frac{\alpha + \beta}{n - \min\{\lambda,\mu\}} \le \frac{1}{p} - \frac{1}{q} \le \frac{\alpha + \beta}{n - \max\{\lambda,\mu\}}$, then the following assertions are equivalent:

- (1) $b \in \dot{\Lambda}_{\beta}(\mathbb{R}^n)$;
- (2) $M_{\alpha,b}$ is bounded from $L^{p,\lambda,\mu}(\mathbb{R}^n)$ to $L^{q,\lambda,\mu}(\mathbb{R}^n)$;
- (3) There exists a constant C > 0, such that $\sup_{Q} |Q|^{-\beta/n} \frac{\left\| (b-b_Q)\chi_Q \right\|_{L^{q,\lambda,\mu}}}{\|\chi_Q\|_{L^{q,\lambda,\mu}}} \le C$; (4) There exists a constant C > 0, such that $\sup_{Q} |Q|^{-1-\beta/n} \int_Q |b(x) b_Q| dx \le C$.

Remark 2. For the case of $\alpha = 0$, the result of Theorem 1 was proved in [14] (see Theorem 3.5), and we as a solution as a solution and the case $\lambda = \mu$ or $\mu = 0$, we can get similar results on classical Morrey spaces or modified Morrey spaces.

THEOREM 2. Let $1 < p, q < \infty$, $b \in L^1_{loc}(\mathbb{R}^n)$ and $0 < \beta < 1$. Let also $0 \le \lambda, \mu < n, 0 < \alpha < n$ and $0 < \alpha + \beta < n$. If $[M_{\alpha}, b]$ is bounded from $L^{p,\lambda,\mu}(\mathbb{R}^n)$ to $L^{q,\lambda,\mu}(\mathbb{R}^n)$, then $b \in \dot{\Lambda}_{\beta}(\mathbb{R}^n)$ and $b \ge 0$.

Remark 3. For the case of $\alpha = 0$, the result of Theorem 2 was proved in [14] (see Theorem 4.6). From Theorem 2 in the case $\lambda = \mu$ or $\mu = 0$, we get similar results on classical Morrey spaces or modified Morrey spaces.

THEOREM 3. Let $b \in L^1_{loc}(\mathbb{R}^n)$, $0 < \beta < 1$ and $0 \le \min\{\lambda,\mu\} \le \max\{\lambda,\mu\} < n - p\beta$. Assume that $1 and <math>\frac{\beta}{n - \min\{\lambda,\mu\}} \le \frac{1}{p} - \frac{1}{q} \le \frac{\beta}{n - \max\{\lambda,\mu\}}$, then the following assertions are equivalent: (1) $b \in \dot{\Lambda}_{\beta}(\mathbb{R}^n)$ and $b \ge 0$; (2) $[M^{\sharp}, b]$ is bounded from $L^{p,\lambda,\mu}(\mathbb{R}^n)$ to $L^{q,\lambda,\mu}(\mathbb{R}^n)$;

- (3) There exists a constant C > 0, such that $\sup_{Q} |Q|^{-\beta/n} \frac{\left\| (b-2M^{\sharp}(b\chi_{Q}))\chi_{Q} \right\|_{L^{q,\lambda,\mu}}}{\|\chi_{Q}\|_{L^{q,\lambda,\mu}}} \leq C;$ (4) There exists a constant C > 0, such that $\sup_{Q} |Q|^{-1-\beta/n} \int_{Q} |b(x) 2M^{\sharp}(b\chi_{Q})(x)| dx \leq C.$

Remark 4. We note that Theorem 3 extends the Corollary 1.2 when $\lambda = \mu = 0$ in [9]. From Theorem 3 in the case $\lambda = \mu$ or $\mu = 0$, we also may have similar results on classical Morrey spaces or modified Morrey spaces.

2. PRELIMINARIES AND LEMMAS

In this section, we recall some know preliminaries and lemmas. It is known that the Lipschitz space $\Lambda_{\beta}(\mathbb{R}^n)$ coincides with some Morrey-Companato space (see [21] for example) and can be characterized by mean oscillation as follows, which is due to Janson, Taibleson and Weiss [21] and Paluszyński [22].

LEMMA 1. Let $0 < \beta < 1$ and $1 \le q < \infty$. Define

$$\dot{\Lambda}_{\beta,q}(\mathbb{R}^n) := \left\{ f \in L^1_{\mathrm{loc}}(\mathbb{R}^n) : \sup_{\mathcal{Q}} \frac{1}{|\mathcal{Q}|^{\beta/n}} \left(\frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} |f(\mathbf{y}) - f_{\mathcal{Q}}|^q \, \mathrm{d}\mathbf{y} \right)^{\frac{1}{q}} < \infty \right\}.$$

Then, for all $0 < \beta < 1$ and $1 \le p < \infty$, $\dot{\Lambda}_{\beta}(\mathbb{R}^n) = \dot{\Lambda}_{\beta,q}(\mathbb{R}^n)$ with equivalent norms.

From [11], we have the following characterization of non-negative Lipschitz functions.

LEMMA 2 [11]. Let $0 < \beta < 1$ and b be a locally integrable function. Then $b \in \dot{\Lambda}_{\beta}(\mathbb{R}^n)$ and $b \ge 0$ if and only if there exists a constant C > 0 such that $\sup_{Q} |Q|^{-1-\beta/n} \int_{Q} |b(x) - M_Q(b)(x)| \, dx \le C$.

Fengyu XUE

LEMMA 3 [14]. Let $1 , <math>0 \le \min\{\lambda, \mu\} \le \max\{\lambda, \mu\} < n$ and $0 \le \alpha < \frac{n - \max\{\lambda, \mu\}}{p}$. Then the following assertions are equivalent:

(1) $\frac{\alpha}{n-\min\{\lambda,\mu\}} \leq \frac{1}{p} - \frac{1}{q} \leq \frac{\alpha}{n-\max\{\lambda,\mu\}}$;

(2) M_{α} is bounded from $L^{p,\lambda,\mu}(\mathbb{R}^n)$ to $L^{q,\lambda,\mu}(\mathbb{R}^n)$.

LEMMA 4 [14, 19]. Let $1 \le p < \infty$, $0 \le \lambda, \mu < n$, $[r]_1 = \min\{1, r\}(r > 0)$. For any cube Q with side length r, then (see (3.12) in [14] or (11) in [19])

$$\|\boldsymbol{\chi}_{\mathcal{Q}}\|_{L^{p,\lambda,\mu}} \approx r^{n/p} [r]_1^{-\lambda/p} [1/r]_1^{\mu/p}$$

LEMMA 5 [3]. For any cube $Q \ni x$, let $E = \{x \in Q, b(x) \le b_Q\}$ and $F = \{x \in Q, b(x) > b_Q\}$, then

$$\int_{F} |b(x) - b_{\mathcal{Q}}| \mathrm{d}x = \int_{E} |b(x) - b_{\mathcal{Q}}| \mathrm{d}x.$$

LEMMA 6. Let $1 < p,q < \infty$, $b \in L^1_{loc}(\mathbb{R}^n)$ and $0 < \beta < 1$. Let also $0 \le \lambda, \mu < n$, $0 < \alpha < n$ and $0 < \alpha + \beta < n$. If $[M_{\alpha}, b]$ is bounded from $L^{p,\lambda,\mu}(\mathbb{R}^n)$ to $L^{q,\lambda,\mu}(\mathbb{R}^n)$, then there exists a constant C > 0 such that

$$\sup_{Q} |Q|^{-\beta/n} \frac{\left\| \left(b - M_{Q}(b)\right) \chi_{Q} \right\|_{L^{q,\lambda,\mu}}}{\|\chi_{Q}\|_{L^{q,\lambda,\mu}}} \leq C.$$

Proof. For any fixed cube Q,

$$\begin{split} \frac{1}{|\mathcal{Q}|^{\beta/n}} \frac{\|(b - M_{\mathcal{Q}}(b)) \, \chi_{\mathcal{Q}}\|_{L^{q,\lambda,\mu}}}{\|\chi_{\mathcal{Q}}\|_{L^{q,\lambda,\mu}}} &\leq \frac{1}{|\mathcal{Q}|^{\beta/n}} \frac{\|b - |\mathcal{Q}|^{-\alpha/n} M_{\alpha,\mathcal{Q}}(b)\|_{L^{q,\lambda,\mu}}}{\|\chi_{\mathcal{Q}}\|_{L^{q,\lambda,\mu}}} \\ &+ \frac{1}{|\mathcal{Q}|^{\beta/n}} \frac{\||\mathcal{Q}|^{-\alpha/n} M_{\alpha,\mathcal{Q}}(b) - M_{\mathcal{Q}}(b)\|_{L^{q,\lambda,\mu}}}{\|\chi_{\mathcal{Q}}\|_{L^{q,\lambda,\mu}}} \\ &:= I_1 + I_2. \end{split}$$

For I_1 , from the definition of $M_{\alpha,Q}$, it is not difficult to check that

$$M_{\alpha,Q}(\chi_Q)(x) = |Q|^{\alpha/n}$$
 for all $x \in Q$.

For any fixed $Q \subset \mathbb{R}^n$ and $x \in Q$, we have (see (2.4) in [4])

$$M_{\alpha}(\chi_{Q})(x) = M_{\alpha,Q}(\chi_{Q})(x) = |Q|^{\alpha/n} \text{ and } M_{\alpha}(b\chi_{Q})(x) = M_{\alpha,Q}(b)(x)$$

According to $[M_{\alpha}, b]$ is bounded from $L^{p,\lambda,\mu}(\mathbb{R}^n)$ to $L^{q,\lambda,\mu}(\mathbb{R}^n)$ and Lemma 4, then

$$I_{1} \leq \frac{C}{r^{(\alpha+\beta)}} \frac{\left\| \chi_{\mathcal{Q}} \right\|_{L^{p,\lambda,\mu}}}{\left\| \chi_{\mathcal{Q}} \right\|_{L^{q,\lambda,\mu}}} \leq Cr^{-\alpha-\beta+\frac{n}{p}-\frac{n}{q}} [r]_{1}^{\frac{\lambda}{q}-\frac{\lambda}{p}} [1/r]_{1}^{\frac{\mu}{p}-\frac{\mu}{q}}$$
$$\approx C[r]_{1}^{-\alpha-\beta+\frac{n-\lambda}{p}-\frac{n-\lambda}{q}} [1/r]_{1}^{\alpha+\beta-\frac{n-\mu}{p}+\frac{n-\mu}{q}} \leq C,$$

where r is side length of cube Q.

Next, we estimate I_2 . Noting that (see the proof Proposition 4.1 in [3])

$$M(\chi_Q)(x) = \chi_Q(x)$$
 and $M(b\chi_Q)(x) = M_Q(b)(x), x \in Q$.

Then, for any $x \in Q$ we have (for details see [9], page 8)

$$\left| |\mathcal{Q}|^{-\alpha/n} M_{\alpha,\mathcal{Q}}(b)(x) - M_{\mathcal{Q}}(b)(x) \right| \leq \left| |\mathcal{Q}|^{-\alpha/n} [M_{\alpha}, |b|] \chi_{\mathcal{Q}}(x) \right| + \left| [M, |b|] \chi_{\mathcal{Q}}(x) \right|$$

For any fixed cube Q with side length r, by Hölder's inequality, Lemma 4 and estimation of I_1 , it is easy to see that

$$\begin{split} \frac{1}{|\mathcal{Q}|^{1+\beta/n}} \int_{\mathcal{Q}} |b(x) - |\mathcal{Q}|^{-\alpha/n} M_{\alpha,\mathcal{Q}}(b)(x)| \mathrm{d}x &\leq \frac{C}{|\mathcal{Q}|^{1+\beta/n}} \left\| b - |\mathcal{Q}|^{-\alpha/n} M_{\alpha,\mathcal{Q}}(b) \right\|_{L^{p}(\mathcal{Q})} |\mathcal{Q}|^{\frac{1}{p'}} \\ &\leq C |\mathcal{Q}|^{-\frac{1}{q} - \frac{\beta}{n}} [r]_{1}^{\frac{\lambda}{q}} [1/r]_{1}^{-\frac{\mu}{q}} \left\| b - |\mathcal{Q}|^{-\alpha/n} M_{\alpha,\mathcal{Q}}(b) \right\|_{L^{q,\lambda,\mu}} \\ &\leq C r^{-\frac{n}{q}} [r]_{1}^{\frac{\lambda}{q}} [1/r]_{1}^{-\frac{\mu}{q}} r_{\alpha}^{\frac{n}{q}} [r]_{1}^{-\frac{\lambda}{q}} [1/r]_{1}^{\frac{\mu}{q}} \leq C. \end{split}$$

For any cube $Q \subset \mathbb{R}^n$, noticing the obvious estimate $|b_Q| \leq |Q|^{-\alpha/n} M_{\alpha,Q}(b)(x)$, $x \in Q$. From Lemma 5, for any $x \in E$, $b(x) \leq b_Q \leq |b_Q| \leq |Q|^{-\alpha/n} M_{\alpha,Q}(b)(x)$, we have

$$\frac{1}{|\mathcal{Q}|^{1+\beta/n}} \int_{\mathcal{Q}} |b(x) - b_{\mathcal{Q}}| \mathrm{d}x = \frac{2}{|\mathcal{Q}|^{1+\beta/n}} \int_{E} |b(x) - b_{\mathcal{Q}}| \mathrm{d}x$$
$$\leq \frac{2}{|\mathcal{Q}|^{1+\beta/n}} \int_{\mathcal{Q}} |b(x) - |\mathcal{Q}|^{-\alpha/n} M_{\alpha,\mathcal{Q}}(b)(x)| \mathrm{d}x \leq C,$$

thus, $b \in \dot{\Lambda}_{\beta}(\mathbb{R}^n)$, which implies $|b| \in \dot{\Lambda}_{\beta}(\mathbb{R}^n)$.

By the definitions of $[M_{\alpha}, b]$ and M_{α} , we have, for any $x \in Q$,

$$|[M_{\alpha}, |b|](\boldsymbol{\chi}_{Q})(\boldsymbol{x})| \leq ||b||_{\dot{\Lambda}_{\beta}} |Q|^{(\alpha+\beta)/n} \boldsymbol{\chi}_{Q}(\boldsymbol{x}).$$

Similarly, we have

$$|[M,|b|](\chi_Q)(x)| \le ||b||_{\dot{\Lambda}_{\beta}}|Q|^{\beta/n}\chi_Q(x)$$
 for any $x \in Q$.

So, we obtain, for any $x \in Q$,

$$\left| |\mathcal{Q}|^{-\alpha/n} M_{\alpha,\mathcal{Q}}(b)(x) - M_{\mathcal{Q}}(b)(x) \right| \le C ||b||_{\dot{\Lambda}_{\beta}} |\mathcal{Q}|^{\beta/n} \chi_{\mathcal{Q}}(x).$$

Then, by Lemma 4 have

$$I_2 \leq C \frac{\|\boldsymbol{\chi}_Q\|_{L^{q,\lambda,\mu}}}{\|\boldsymbol{\chi}_Q\|_{L^{q,\lambda,\mu}}} \leq C.$$

Combining I_1 and I_2 , we may get

$$\frac{1}{|Q|^{\beta/n}}\frac{\|(b-M_Q(b))\chi_Q\|_{L^{q,\lambda,\mu}}}{\|\chi_Q\|_{L^{q,\lambda,\mu}}}\leq C.$$

Since the cube $Q \subset \mathbb{R}^n$ is arbitrary, then the poof of Lemma 6 is completed.

3. PROOF OF MAIN RESULTS

Proof of Theorem 1. (1) \Rightarrow (2) Assume $b \in \dot{\Lambda}_{\beta}(\mathbb{R}^n)$. For any fixed cube $Q \subset \mathbb{R}^n$, we have ([5], Lemma 4.3)

$$M_{\alpha,b}(f)(x) \leq C \|b\|_{\dot{\Lambda}_{\beta}(\mathbb{R}^n)} M_{\alpha+\beta}f(x).$$

This, together with Lemma 3, shows that $M_{\alpha,b}$ is bounded from $L^{p,\lambda,\mu}(\mathbb{R}^n)$ to $L^{q,\lambda,\mu}(\mathbb{R}^n)$.

(2) \Rightarrow (3) For any fixed cube *Q* with side length *r*, we have for all $x \in Q$,

$$|b(x) - b_{\mathcal{Q}}| \leq \frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} |b(x) - b(y)| \mathrm{d}y \leq |\mathcal{Q}|^{-\alpha/n} M_{\alpha,b}\left(\chi_{\mathcal{Q}}\right)(x).$$

Since $M_{\alpha,b}$ is bounded from $L^{p,\lambda,\mu}(\mathbb{R}^n)$ to $L^{q,\lambda,\mu}(\mathbb{R}^n)$, then by Lemma 4 we obtain that

$$\begin{aligned} \frac{1}{|\mathcal{Q}|^{\beta/n}} \frac{\|(b-b_{\mathcal{Q}})\chi_{\mathcal{Q}}\|_{L^{q,\lambda,\mu}}}{\|\chi_{\mathcal{Q}}\|_{L^{q,\lambda,\mu}}} &\leq \frac{C}{r^{\alpha+\beta}} \frac{\|\chi_{\mathcal{Q}}\|_{L^{p,\lambda,\mu}}}{\|\chi_{\mathcal{Q}}\|_{L^{q,\lambda,\mu}}} \\ &\leq Cr^{-\alpha-\beta+\frac{n}{p}-\frac{n}{q}}[r]_{1}^{\frac{\lambda}{q}-\frac{\lambda}{p}}[1/r]_{1}^{\frac{\mu}{p}-\frac{\mu}{q}} \\ &\approx C[r]_{1}^{-\alpha-\beta+\frac{n-\lambda}{p}-\frac{n-\lambda}{q}}[1/r]_{1}^{\alpha+\beta-\frac{n-\mu}{p}+\frac{n-\mu}{q}} \leq C. \end{aligned}$$

which implies (3) since the cube $Q \subset \mathbb{R}^n$ is arbitrary.

 $(3) \Rightarrow (4)$ By using Lemma 5, Hölder's inequality and condition (3), we have

$$\begin{aligned} \frac{1}{|\mathcal{Q}|^{1+\beta/n}} \int_{\mathcal{Q}} |b(y) - b_{\mathcal{Q}}| \, \mathrm{d}y &\leq \frac{2}{|\mathcal{Q}|^{1+\beta/n}} \, \|b - b_{\mathcal{Q}}\|_{L^{q}(\mathcal{Q})} \, |\mathcal{Q}|^{\frac{1}{q'}} \\ &\leq 2|\mathcal{Q}|^{-\frac{1}{q} - \frac{\beta}{n}} [r]_{1}^{\frac{\lambda}{q}} [1/r]_{1}^{-\frac{\mu}{q}} \, \|(b - b_{\mathcal{Q}}) \, \chi_{\mathcal{Q}}\|_{L^{q,\lambda,\mu}} \\ &\leq Cr^{-\frac{n}{q}} [r]_{1}^{\frac{\lambda}{q}} [1/r]_{1}^{-\frac{\mu}{q}} \, \|\chi_{\mathcal{Q}}\|_{L^{q,\lambda,\mu}} \\ &\leq Cr^{-\frac{n}{q}} [r]_{1}^{\frac{\lambda}{q}} [1/r]_{1}^{-\frac{\mu}{q}} r^{\frac{n}{q}} [r]_{1}^{-\frac{\lambda}{q}} [1/r]_{1}^{\frac{\mu}{q}} \leq C. \end{aligned}$$

which implies (4) since the cube $Q \subset \mathbb{R}^n$ is arbitrary.

(4) \Rightarrow (1) For any fixed cube Q, we assume that

$$\sup_{\mathcal{Q}} \frac{1}{|\mathcal{Q}|^{1+\beta/n}} \int_{\mathcal{Q}} |b(y) - b_{\mathcal{Q}}| \, \mathrm{d} y \leq C.$$

By using Lemma 1, we have $b \in \dot{\Lambda}_{\beta,1}(\mathbb{R}^n)$. For all $1 \le q < \infty$, because of $\dot{\Lambda}_{\beta}(\mathbb{R}^n) = \dot{\Lambda}_{\beta,q}(\mathbb{R}^n)$ with equivalent norms, thus $b \in \dot{\Lambda}_{\beta}(\mathbb{R}^n)$.

Proof of Theorem 2. Assume that $[M_{\alpha}, b]$ is bounded from $L^{p,\lambda,\mu}(\mathbb{R}^n)$ to $L^{q,\lambda,\mu}(\mathbb{R}^n)$. For any fixed cube Q with side length r, by Hölder's inequality, Lemma 4 and Lemma 6, we have

$$\begin{split} \frac{1}{|\mathcal{Q}|^{1+\beta/n}} \int_{\mathcal{Q}} |b(x) - M_{\mathcal{Q}}(b)(x)| \mathrm{d}x &\leq \frac{1}{|\mathcal{Q}|^{1+\beta/n}} \left\| b - M_{\mathcal{Q}}(b) \right\|_{L^{q}(\mathcal{Q})} |\mathcal{Q}|^{\frac{1}{q'}} \\ &\leq |\mathcal{Q}|^{-\frac{1}{q} - \frac{\beta}{n}} [r]_{1}^{\frac{\lambda}{q}} [1/r]_{1}^{-\frac{\mu}{q}} \left\| (b - M_{\mathcal{Q}}(b)) \chi_{\mathcal{Q}} \right\|_{L^{q,\lambda,\mu}} \\ &\leq Cr^{-\frac{n}{q}} [r]_{1}^{\frac{\lambda}{q}} [1/r]_{1}^{-\frac{\mu}{q}} r^{\frac{n}{q}} [r]_{1}^{-\frac{\lambda}{q}} [1/r]_{1}^{\frac{\mu}{q}} \leq C. \end{split}$$

Thus, by using Lemma 2, we get $b \in \dot{\Lambda}_{\beta}(\mathbb{R}^n)$ and $b \ge 0$.

Proof of Theorem 3. (1) \Rightarrow (2) Assume $b \in \dot{\Lambda}_{\beta}(\mathbb{R}^n)$, $b \ge 0$. For any $f \in L^{p,\lambda,\mu}(\mathbb{R}^n)$, by using Lemma 3 (case of $\alpha = 0$) and $M^{\sharp}f(x) \le 2Mf(x)$, we have $M^{\sharp}f(x) < \infty$ for a.e. $x \in \mathbb{R}^n$. Then the following estimate was given in [10] (see page 1422):

$$|[M^{\sharp},b]f(x)| \le ||b||_{\dot{\Lambda}_{\beta}}M_{\beta}f(x)$$
 for a.e. $x \in \mathbb{R}^n$.

Thus, it follows from Lemma 3 that $[M^{\sharp}, b]$ is bounded from $L^{p,\lambda,\mu}(\mathbb{R}^n)$ to $L^{q,\lambda,\mu}(\mathbb{R}^n)$.

(2) \Rightarrow (3) Assume $[M^{\sharp}, b]$ is bounded from $L^{p,\lambda,\mu}(\mathbb{R}^n)$ to $L^{q,\lambda,\mu}(\mathbb{R}^n)$. For any fixed cube Q, we have (see [3],

page 3333)

$$M^{\sharp}(\chi_Q)(x) = 1/2$$
 for $x \in Q$.

Then, by applying Lemma 4 we get

$$\begin{split} \frac{1}{|\mathcal{Q}|^{\beta/n}} \frac{\|\left(b - 2M^{\sharp}(b\chi_{\mathcal{Q}})\right)\chi_{\mathcal{Q}}\|_{L^{q,\lambda,\mu}}}{\|\chi_{\mathcal{Q}}\|_{L^{q,\lambda,\mu}}} &\leq \frac{C}{r^{\beta}} \frac{\|\chi_{\mathcal{Q}}\|_{L^{p,\lambda,\mu}}}{\|\chi_{\mathcal{Q}}\|_{L^{q,\lambda,\mu}}} \\ &\leq Cr^{-\beta+\frac{n}{p}-\frac{n}{q}}[r]_{1}^{\frac{\lambda}{q}-\frac{\lambda}{p}}[1/r]_{1}^{\frac{\mu}{p}-\frac{\mu}{q}} \\ &\approx C[r]_{1}^{-\beta+\frac{n-\lambda}{p}-\frac{n-\lambda}{q}}[1/r]_{1}^{\beta-\frac{n-\mu}{p}+\frac{n-\mu}{q}} \leq C, \end{split}$$

which implies (3) since the cube $Q \subset \mathbb{R}^n$ is arbitrary.

(3) \Rightarrow (4) For any fixed cube Q with side length r, by Hölder's inequality, condition (3) and Lemma 4, it is easy to see that

$$\begin{split} \frac{1}{|\mathcal{Q}|^{1+\beta/n}} \int_{\mathcal{Q}} |b(x) - 2M^{\sharp}(b\chi_{\mathcal{Q}})(x)| \mathrm{d}x &\leq \frac{1}{|\mathcal{Q}|^{1+\beta/n}} \left\| b - 2M^{\sharp}(b\chi_{\mathcal{Q}}) \right\|_{L^{p}(\mathcal{Q})} |\mathcal{Q}|^{\frac{1}{p'}} \\ &\leq C |\mathcal{Q}|^{-\frac{1}{q} - \frac{\beta}{n}} [r]_{1}^{\frac{\lambda}{q}} [1/r]_{1}^{-\frac{\mu}{q}} \left\| \left(b - 2M^{\sharp}(b\chi_{\mathcal{Q}}) \right) \chi_{\mathcal{Q}} \right\|_{L^{q,\lambda,\mu}} \\ &\leq Cr^{-\frac{n}{q}} [r]_{1}^{\frac{\lambda}{q}} [1/r]_{1}^{-\frac{\mu}{q}} \|\chi_{\mathcal{Q}}\|_{L^{q,\lambda,\mu}} \\ &\leq Cr^{-\frac{n}{q}} [r]_{1}^{\frac{\lambda}{q}} [1/r]_{1}^{-\frac{\mu}{q}} r^{\frac{n}{q}} [r]_{1}^{-\frac{\lambda}{q}} [1/r]_{1}^{\frac{\mu}{q}} \leq C, \end{split}$$

which implies (4) since the cube $Q \subset \mathbb{R}^n$ is arbitrary.

(4) \Rightarrow (1) For any fixed cube Q, Bastero, Milman and Ruiz [3] given the following equality

$$|b_Q| \le 2M^{\sharp}(b\chi_Q)(x), \ x \in Q.$$

From Lemma 5, condition (4) and $b(x) \le b_Q \le |b_Q| \le 2M^{\sharp}(b\chi_Q)(x)$, we have

$$\frac{1}{|\mathcal{Q}|^{1+\beta/n}}\int_{\mathcal{Q}}|b(x)-b_{\mathcal{Q}}|\mathrm{d} x\leq \frac{2}{|\mathcal{Q}|^{1+\beta/n}}\int_{\mathcal{Q}}|b(x)-2M^{\sharp}(b\chi_{\mathcal{Q}})(x)|\mathrm{d} x\leq C.$$

Thus, we may obtain $b \in \dot{\Lambda}_{\beta}(\mathbb{R}^n)$.

Next, we will prove $b \ge 0$, it suffices to show $b^- = 0$, where $b^- = -\min\{b,0\}$ and let $b^+ = |b| - b^-$. For any fixed cube Q, observe that (for details see [3,9])

$$2M^{\sharp}(b\chi_{Q})(x) - b(x) \ge |b_{Q}| - b(x) = |b_{Q}| - b^{+}(x) + b^{-}(x) \text{ for } x \in Q.$$

Hence, there exists a constant C > 0 such that for any cube Q

$$C \ge \frac{1}{|Q|^{1+\beta/n}} \int_{Q} |2M^{\sharp}(b\chi_{Q})(x) - b(x)| dx$$

$$\ge \frac{1}{|Q|^{1+\beta/n}} \int_{Q} (|b_{Q}| - b^{+}(x) + b^{-}(x)) dx$$

$$= \frac{1}{|Q|^{\beta/n}} \left(|b_{Q}| - \frac{1}{|Q|} \int_{Q} b^{+}(x) dx + \frac{1}{|Q|} \int_{Q} b^{-}(x) dx \right).$$

This gives

$$|b_Q| - \frac{1}{|Q|} \int_Q b^+(x) \mathrm{d}x + \frac{1}{|Q|} \int_Q b^-(x) \mathrm{d}x \le C |Q|^{\beta/n}.$$

Thus, $b^- = 0$ follows from Lebesgue differentiation theorem.

So far, the proofs of Theorem 1, 2 and 3 are completed.

ACKNOWLEDGEMENTS

This work was supported by the Fundamental Research Funds for Education Department of Heilongjiang Province (NO.1453ZD031)

REFERENCES

- Coifman RR, Rochberg R, Weiss G. Factorization theorems for Hardy spaces in several variables. Annals of Mathematics 1976; 103(3):611–635.
- [2] Janson S. Mean oscillation and commutators of singular integral operators. Arkiv för Matematik 1978;16(1):263–270.
- [3] Bastero J, Milman M, Ruiz F. Commutators for the maximal and sharp functions. Proceedings of the American Mathematical Society 2000;128(11):3329–3334.
- [4] Zhang P, Wu JL. Commutators of the fractional maximal functions. Acta Mathematica Sinica, Chinese Series 2009;52(6):1235– 1238.
- [5] Guliyev VS, Deringoz F. Some characterizations of Lipschitz spaces via commutators on generalized Orlicz-Morrey spaces. Mediterranean Journal of Mathematics 2018;15(4):180.
- [6] Zhang P. Characterization of Lipschitz spaces via commutators of the Hardy-Littlewood maximal function. Comptes Rendus Mathematique 2017;355(3):336–344.
- [7] Zhang P, Wu JL. Commutators for the maximal functions on Lebesgue spaces with variable exponent. Mathematical Inequalities Applications 2014;17(4):1375–1386.
- [8] Zhang P, Wu J. Commutators of the fractional maximal function on variable exponent Lebesgue spaces. Czechoslovak Mathematical Journal 2014;64:183–197.
- [9] Zhang P, Wu J, Sun J. Commutators of some maximal functions with Lipschitz function on Orlicz spaces. Mediterranean Journal of Mathematics 2018;15(6):216.
- [10] Zhang P. Characterization of boundedness of some commutators of maximal functions in terms of Lipschitz spaces. Analysis and Mathematical Physics 2019;9(3):1411–1427.
- [11] Zhang P, Si Z, Wu J. Some notes on commutators of the fractional maximal function on variable Lebesgue spaces. Journal of Inequalities and Applications 2019:9.
- [12] Yang H, Zhou J. Some characterization of Lipschitz spaces via commutators of the Hardy-Littlewood maximal operator on Slice spaces. Proceedings of the Romanian Academy, Series A: Mathematics, Physics, Technical Sciences, Information Science 2023;24(3):223–230.
- [13] Ağcayazi M, Zhang P. Characterization of Lipschitz functions on ball Banach function spaces. Mediterranean Journal of Mathematics 2024;21(1):31.
- [14] Guliyev VS. Characterizations of Lipschitz functions via the commutators of maximal function in total Morrey spaces. Mathematical Methods in the Applied Sciences 2024. DOI: 10.1002/mma.10038.
- [15] Morrey CB. On the solutions of quasi-linear elliptic partial differential equations. Transactions of the American Mathematical Society 1938;43(1):126–166.
- [16] Imerlishvili G, Meskhi A, Ragusa MA. One-sided potentials in weighted central Morrey spaces. Journal of Mathematical Sciences 2024;280:495–499.
- [17] Shi Y, Li L, Shen Z. Boundedness of-Adic singular integrals and multilinear commutator on Morrey-Herz spaces. Journal of Function Spaces 2023:9965919.
- [18] Yang H, Zhou J. Commutators of parameter Marcinkiwicz integral with functions in Campanato spaces on Orlicz-Morrey spaces. Filomat 2023;37(21):7255–7273.
- [19] Guliyev VS. Maximal commutator and commutator of maximal function on total Morrey spaces. Journal of Mathematical Inequalities 2022;16(4):1509–1524.
- [20] Guliyev VS, Hasanov JJ, Zeren Y. Necessary and sufficient conditions for the boundedness of the Riesz potential in modified Morrey spaces. Journal of Mathematical Inequalities 2011;5(4):491–506.
- [21] Janson S, Taibleson M, Weiss G. Elementary characterizations of the Morrey-Campanato spaces. Lecture Notes in Mathematics 1983;992:101–114.
- [22] Paluszyński M. Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss. Indiana University Mathematics Journal 1995;44(1):1–17.

Received April 9, 2024