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1. INTRODUCTION AND MAIN RESULTS

Let T a classical singular integral operator, the commutator [T,b] generated by T and a suitable function b
as follows

[T,b] f (x) = b(x)T ( f )(x)−T (b f )(x). (1)

In 1976, Coifman, Rochberg and Weiss [1] states that [T,b] is bounded on Lp(Rn)(1 < p < ∞) if and only if
b ∈ BMO(Rn). Moreover, Janson [2] also gave some characterizations of Lipschitz spaces via the commutator.
It was proved that [T,b] is bounded from Lp(Rn) to Lq(Rn) if and only if b ∈ Λ̇β (Rn), where 0 < β < 1,
1 < p < n/β , β = n(1/p−1/q).

As usual, a cube Q ⊂ Rn always means its sides parallel to the coordinate axes. Denote by |Q| the
Lebesgue measure of Q and χQ the characteristic function of Q. For a function f ∈ L1

loc(Rn), we write
fQ = |Q|−1 ∫

Q f (x)dx.
Let 0 ≤ α < n, for a locally integrable function f , the maximal and sharp functions are defined by

Mα( f )(x) = sup
Q∋x

1
|Q|1−α/n

∫
Q

∣∣ f (y)
∣∣dy and M♯( f )(x) = sup

Q∋x

1
|Q|

∫
Q

∣∣ f (y)− fQ
∣∣dy,

where the supremum is taken over all cubes Q ⊂ Rn containing x.
When α = 0, M0 is the classical Hardy-Littlewood maximal function denoted by M, and Mα is the classical

fractional maximal function when 0 < α < n.
The maximal commutator of Mα with a locally integrable function b is defined by

Mα,b( f )(x) = sup
Q∋x

1
|Q|1−α/n

∫
Q

∣∣b(x) f (y)−b(y) f (y)
∣∣dy,

where the supremum is taken over all cubes Q ⊂ Rn containing x. [Mα ,b] and [M♯,b] can refer to (1).
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We would like to remark that operators Mα,b and [Mα ,b] essentially differ from each other. For example,
Mα,b is positive and sublinear, but [Mα ,b] and [M♯,b] is neither positive nor sublinear.

In 2000, Bastero, Milman and Ruiz [3] gave the necessary and sufficient conditions of the boundedness
of [M,b] and [M♯,b] on Lebesgue spaces, where b ∈ BMO(Rn). In 2009, the authors [4] considered the same
problem for the fractional maximal function. Then, the commutators theory of maximal functions have been
studied intensively by many authors (see [5–14]). In 2017, Zhang [6] gave the necessary and sufficient condi-
tions of the boundedness of Mb and [M,b] on Lebesgue spaces and Morrey spaces when the symbol b belong
to Lipschitz spaces, by which some new characterizations of Lipschitz functions are given. The results were
extended to variable Lebesgue spaces in [11]. In 2018, Zhang, Wu and Sun [9] considered the boundedness
of Mα,b, [Mα ,b] and [M♯,b] on Orlicz spaces. Recently, Guliyev [14] give necessary and sufficient conditions
for the boundedness of Mb and [M,b] in total Morrey spaces when the function b belongs to Lipschitz spaces,
whereby some new characterizations of non-negative Lipschitz functions are obtained.

Inspired by above results, we want to study the boundedness of Mα,b, [Mα ,b] and [M♯,b] on total Morrey
spaces. Some new characterizations of non-negative Lipschitz functions are obtained.

To state the results, we first give some definitions and notations.

Definition 1. The Lipschitz space of order β , 0 < β < 1, is the space of function f , such that

Λ̇β = { f : | f (x)− f (y)| ≤C|x− y|β},

and the smallest constant C > 0 is the Lipschitz norm ∥ · ∥
Λ̇β

.

In 1938, the classical Morrey spaces were introduced by Morrey [15], he studied solutions of some quasi-
linear elliptic partial differential equations. Then, the Morrey type spaces have been widely studied by many
scholars [16–20]. In 2022, Guliyev [19] introduced a variant of Morrey spaces called total Morrey spaces
Lp,λ ,µ(Rn), 0 < p < ∞, λ ∈ R and µ ∈ R. It was proved that necessary and sufficient conditions for the
boundedness of the maximal commutator operator Mb and the commutator of maximal operator [M,b] on total
Morrey spaces Lp,λ ,µ(Rn) when b belongs to BMO(Rn) spaces.

We shall recall the definitions of the classical Morrey space, modified Morrey space and total Morrey space.

Definition 2. Let 0 < p < ∞, λ ∈R, µ ∈R and [t]1 = min{1, t}(t > 0). We denote by Lp,λ (Rn) the classical
Morrey space, by L̃p,λ (Rn) the modified Morrey space (see [20]), and by the total Morrey space Lp,λ ,µ(Rn) the
set of all classes of locally integrable functions f with the finite norms

∥ f∥Lp,λ = sup
x∈Rn,t>0

t−λ/p
(∫

Q

∣∣ f (y)
∣∣pdy

)1/p

, ∥ f∥L̃p,λ = sup
x∈Rn,t>0

[t]−λ/p
1

(∫
Q

∣∣ f (y)
∣∣pdy

)1/p

,

∥ f∥Lp,λ ,µ = sup
x∈Rn,t>0

[t]−λ/p
1 [1/t]µ/p

1

(∫
Q

∣∣ f (y)
∣∣pdy

)1/p

,

where t is side length of cube Q.

Remark 1. From [19] (see Lemma 2), when 0 < p < ∞, 0 ≤ λ ≤ n and 0 ≤ µ ≤ n, then

Lp,λ ,µ(Rn) = Lp,min{λ ,µ}(Rn)∩Lp,max{λ ,µ}(Rn)

and
∥ f∥Lp,λ ,µ = max{∥ f∥Lp,min{λ ,µ} ,∥ f∥Lp,max{λ ,µ}}= ∥ f∥Lp,µ,λ .

If λ = µ in Lp,λ ,µ(Rn), then Lp,λ ,µ(Rn) = Lp,λ (Rn); if µ = 0 in Lp,λ ,µ(Rn), then Lp,λ ,µ(Rn) = L̃p,λ (Rn).
For a fixed cube Q0, the maximal function with respect to Q0 of a function f is given by

Mα,Q0( f )(x) = sup
Q∋x

Q⊂Q0

1
|Q|1−α/n

∫
Q

∣∣ f (y)
∣∣dy, x ∈ Q0.
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where the supremum is taken over all cubes Q with Q ⊂ Q0 and Q ∋ x. When α = 0, MQ = M0,Q.
Our main results in this paper can be stated as follows.

THEOREM 1. Let b ∈ L1
loc(Rn), 0 < β < 1, 0 ≤ min{λ ,µ} ≤ max{λ ,µ} < n − p(α + β ), 0 < α <

n−max{λ ,µ}
p and 0<α+β < n−max{λ ,µ}

p . Assume that 1< p< n−max{λ ,µ}
α+β

and α+β

n−min{λ ,µ} ≤
1
p −

1
q ≤

α+β

n−max{λ ,µ} ,
then the following assertions are equivalent:

(1) b ∈ Λ̇β (Rn);
(2) Mα,b is bounded from Lp,λ ,µ(Rn) to Lq,λ ,µ(Rn);

(3) There exists a constant C > 0, such that sup
Q

|Q|−β/n

∥∥(b−bQ)χQ

∥∥
Lq,λ ,µ

∥χQ∥Lq,λ ,µ
≤C;

(4) There exists a constant C > 0, such that sup
Q

|Q|−1−β/n ∫
Q |b(x)−bQ|dx ≤C.

Remark 2. For the case of α = 0, the result of Theorem 1 was proved in [14] (see Theorem 3.5), and we
aslo added two equivalent conditions. From Theorem 1 in the case λ = µ or µ = 0, we can get similar results
on classical Morrey spaces or modified Morrey spaces.

THEOREM 2. Let 1 < p,q < ∞, b ∈ L1
loc(Rn) and 0 < β < 1. Let also 0 ≤ λ ,µ < n, 0 < α < n and

0 < α +β < n. If [Mα ,b] is bounded from Lp,λ ,µ(Rn) to Lq,λ ,µ(Rn), then b ∈ Λ̇β (Rn) and b ≥ 0.

Remark 3. For the case of α = 0, the result of Theorem 2 was proved in [14] (see Theorem 4.6). From
Theorem 2 in the case λ = µ or µ = 0, we get similar results on classical Morrey spaces or modified Morrey
spaces.

THEOREM 3. Let b ∈ L1
loc(Rn), 0 < β < 1 and 0 ≤ min{λ ,µ} ≤ max{λ ,µ} < n− pβ . Assume that

1 < p < n−max{λ ,µ}
β

and β

n−min{λ ,µ} ≤
1
p −

1
q ≤ β

n−max{λ ,µ} , then the following assertions are equivalent:
(1) b ∈ Λ̇β (Rn) and b ≥ 0;
(2) [M♯,b] is bounded from Lp,λ ,µ(Rn) to Lq,λ ,µ(Rn);

(3) There exists a constant C > 0, such that sup
Q

|Q|−β/n

∥∥(b−2M♯(bχQ))χQ

∥∥
Lq,λ ,µ

∥χQ∥Lq,λ ,µ
≤C;

(4) There exists a constant C > 0, such that sup
Q

|Q|−1−β/n ∫
Q |b(x)−2M♯(bχQ)(x)|dx ≤C.

Remark 4. We note that Theorem 3 extends the Corollary 1.2 when λ = µ = 0 in [9]. From Theorem 3
in the case λ = µ or µ = 0, we also may have similar results on classical Morrey spaces or modified Morrey
spaces.

2. PRELIMINARIES AND LEMMAS

In this section, we recall some know preliminaries and lemmas. It is known that the Lipschitz space Λ̇β (Rn)
coincides with some Morrey-Companato space (see [21] for example) and can be characterized by mean oscil-
lation as follows, which is due to Janson, Taibleson and Weiss [21] and Paluszyński [22].

LEMMA 1 . Let 0 < β < 1 and 1 ≤ q < ∞. Define

Λ̇β ,q(Rn) :=

{
f ∈ L1

loc(Rn) : sup
Q

1
|Q|β/n

(
1
|Q|

∫
Q
| f (y)− fQ|q dy

) 1
q

< ∞

}
.

Then, for all 0 < β < 1 and 1 ≤ p < ∞, Λ̇β (Rn) = Λ̇β ,q(Rn) with equivalent norms.

From [11], we have the following characterization of non-negative Lipschitz functions.

LEMMA 2 [11] . Let 0 < β < 1 and b be a locally integrable function. Then b ∈ Λ̇β (Rn) and b ≥ 0 if and
only if there exists a constant C > 0 such that sup

Q
|Q|−1−β/n ∫

Q |b(x)−MQ(b)(x)|dx ≤C.
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LEMMA 3 [14] . Let 1 < p < n−max{λ ,µ}
α

, 0 ≤ min{λ ,µ} ≤ max{λ ,µ} < n and 0 ≤ α < n−max{λ ,µ}
p .

Then the following assertions are equivalent:
(1) α

n−min{λ ,µ} ≤
1
p −

1
q ≤ α

n−max{λ ,µ} ;

(2) Mα is bounded from Lp,λ ,µ(Rn) to Lq,λ ,µ(Rn).

LEMMA 4 [14, 19] . Let 1 ≤ p < ∞, 0 ≤ λ ,µ < n, [r]1 = min{1,r}(r > 0). For any cube Q with side
length r, then (see (3.12) in [14] or (11) in [19])

∥χQ∥Lp,λ ,µ ≈ rn/p[r]−λ/p
1 [1/r]µ/p

1 .

LEMMA 5 [3] . For any cube Q ∋ x, let E = {x ∈ Q,b(x)≤ bQ} and F = {x ∈ Q,b(x)> bQ}, then∫
F
|b(x)−bQ|dx =

∫
E
|b(x)−bQ|dx.

LEMMA 6 . Let 1 < p,q < ∞, b ∈ L1
loc(Rn) and 0 < β < 1. Let also 0 ≤ λ ,µ < n, 0 < α < n and

0 < α +β < n. If [Mα ,b] is bounded from Lp,λ ,µ(Rn) to Lq,λ ,µ(Rn), then there exists a constant C > 0 such
that

sup
Q

|Q|−β/n

∥∥(b−MQ(b))χQ
∥∥

Lq,λ ,µ

∥χQ∥Lq,λ ,µ
≤C.

Proof. For any fixed cube Q,

1
|Q|β/n

∥(b−MQ(b))χQ∥Lq,λ ,µ

∥χQ∥Lq,λ ,µ
≤ 1

|Q|β/n

∥∥b−|Q|−α/nMα,Q(b)
∥∥

Lq,λ ,µ

∥χQ∥Lq,λ ,µ

+
1

|Q|β/n

∥∥|Q|−α/nMα,Q(b)−MQ(b)
∥∥

Lq,λ ,µ

∥χQ∥Lq,λ ,µ

:= I1 + I2.

For I1, from the definition of Mα,Q, it is not difficult to check that

Mα,Q(χQ)(x) = |Q|α/n for all x ∈ Q.

For any fixed Q ⊂ Rn and x ∈ Q, we have (see (2.4) in [4])

Mα (χQ)(x) = Mα,Q (χQ)(x) = |Q|α/n and Mα (bχQ)(x) = Mα,Q(b)(x).

According to [Mα ,b] is bounded from Lp,λ ,µ(Rn) to Lq,λ ,µ(Rn) and Lemma 4, then

I1 ≤
C

r(α+β )

∥∥χQ
∥∥

Lp,λ ,µ

∥χQ∥Lq,λ ,µ
≤Cr−α−β+ n

p−
n
q [r]

λ

q −
λ

p
1 [1/r]

µ

p −
µ

q
1

≈C[r]
−α−β+ n−λ

p − n−λ

q
1 [1/r]

α+β− n−µ

p + n−µ

q
1 ≤C,

where r is side length of cube Q.
Next, we estimate I2. Noting that (see the proof Proposition 4.1 in [3])

M (χQ)(x) = χQ(x) and M (bχQ)(x) = MQ(b)(x), x ∈ Q.

Then, for any x ∈ Q we have (for details see [9], page 8)∣∣∣|Q|−α/nMα,Q(b)(x)−MQ(b)(x)
∣∣∣≤ ∣∣∣|Q|−α/n[Mα , |b|]χQ(x)

∣∣∣+ ∣∣[M, |b|]χQ(x)
∣∣.
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For any fixed cube Q with side length r, by Hölder’s inequality, Lemma 4 and estimation of I1, it is easy to see
that

1
|Q|1+β/n

∫
Q
|b(x)−|Q|−α/nMα,Q(b)(x)|dx ≤ C

|Q|1+β/n

∥∥∥b−|Q|−α/nMα,Q(b)
∥∥∥

Lp(Q)
|Q|

1
p′

≤C|Q|−
1
q−

β

n [r]
λ

q
1 [1/r]

− µ

q
1

∥∥∥b−|Q|−α/nMα,Q(b)
∥∥∥

Lq,λ ,µ

≤Cr−
n
q [r]

λ

q
1 [1/r]

− µ

q
1 ∥χQ∥Lq,λ ,µ

≤Cr−
n
q [r]

λ

q
1 [1/r]

− µ

q
1 r

n
q [r]

− λ

q
1 [1/r]

µ

q
1 ≤C.

For any cube Q ⊂Rn, noticing the obvious estimate |bQ| ≤ |Q|−α/nMα,Q(b)(x), x ∈ Q. From Lemma 5, for
any x ∈ E, b(x)≤ bQ ≤ |bQ| ≤ |Q|−α/nMα,Q(b)(x), we have

1
|Q|1+β/n

∫
Q
|b(x)−bQ|dx =

2
|Q|1+β/n

∫
E
|b(x)−bQ|dx

≤ 2
|Q|1+β/n

∫
Q
|b(x)−|Q|−α/nMα,Q(b)(x)|dx ≤C,

thus, b ∈ Λ̇β (Rn), which implies |b| ∈ Λ̇β (Rn).
By the definitions of [Mα ,b] and Mα , we have, for any x ∈ Q,

|[Mα , |b|] (χQ)(x)| ≤ ∥b∥
Λ̇β
|Q|(α+β )/n

χQ(x).

Similarly, we have ∣∣[M, |b|] (χQ)(x)
∣∣≤ ∥b∥

Λ̇β
|Q|β/n

χQ(x) for any x ∈ Q.

So, we obtain, for any x ∈ Q,∣∣|Q|−α/nMα,Q(b)(x)−MQ(b)(x)
∣∣≤C∥b∥

Λ̇β
|Q|β/n

χQ(x).

Then, by Lemma 4 have

I2 ≤C
∥χQ∥Lq,λ ,µ

∥χQ∥Lq,λ ,µ
≤C.

Combining I1 and I2, we may get

1
|Q|β/n

∥(b−MQ(b))χQ∥Lq,λ ,µ

∥χQ∥Lq,λ ,µ
≤C.

Since the cube Q ⊂ Rn is arbitrary, then the poof of Lemma 6 is completed.

3. PROOF OF MAIN RESULTS

Proof of Theorem 1. (1)⇒(2) Assume b ∈ Λ̇β (Rn). For any fixed cube Q ⊂ Rn, we have ( [5], Lemma 4.3)

Mα,b( f )(x)≤C∥b∥
Λ̇β (Rn)Mα+β f (x).

This, together with Lemma 3, shows that Mα,b is bounded from Lp,λ ,µ(Rn) to Lq,λ ,µ(Rn).
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(2)⇒(3) For any fixed cube Q with side length r, we have for all x ∈ Q,

|b(x)−bQ| ≤
1
|Q|

∫
Q
|b(x)−b(y)|dy ≤ |Q|−α/nMα,b (χQ)(x).

Since Mα,b is bounded from Lp,λ ,µ(Rn) to Lq,λ ,µ(Rn), then by Lemma 4 we obtain that

1
|Q|β/n

∥(b−bQ)χQ∥Lq,λ ,µ

∥χQ∥Lq,λ ,µ
≤ C

rα+β

∥χQ∥Lp,λ ,µ

∥χQ∥Lq,λ ,µ

≤Cr−α−β+ n
p−

n
q [r]

λ

q −
λ

p
1 [1/r]

µ

p −
µ

q
1

≈C[r]
−α−β+ n−λ

p − n−λ

q
1 [1/r]

α+β− n−µ

p + n−µ

q
1 ≤C,

which implies (3) since the cube Q ⊂ Rn is arbitrary.
(3)⇒(4) By using Lemma 5, Hölder’s inequality and condition (3), we have

1
|Q|1+β/n

∫
Q
|b(y)−bQ|dy ≤ 2

|Q|1+β/n
∥b−bQ∥Lq(Q) |Q|

1
q′

≤ 2|Q|−
1
q−

β

n [r]
λ

q
1 [1/r]

− µ

q
1 ∥(b−bQ)χQ∥Lq,λ ,µ

≤Cr−
n
q [r]

λ

q
1 [1/r]

− µ

q
1 ∥χQ∥Lq,λ ,µ

≤Cr−
n
q [r]

λ

q
1 [1/r]

− µ

q
1 r

n
q [r]

− λ

q
1 [1/r]

µ

q
1 ≤C.

which implies (4) since the cube Q ⊂ Rn is arbitrary.
(4)⇒(1) For any fixed cube Q, we assume that

sup
Q

1
|Q|1+β/n

∫
Q
|b(y)−bQ|dy ≤C.

By using Lemma 1, we have b ∈ Λ̇β ,1(Rn). For all 1 ≤ q < ∞, because of Λ̇β (Rn) = Λ̇β ,q(Rn) with equivalent
norms, thus b ∈ Λ̇β (Rn).

Proof of Theorem 2. Assume that [Mα ,b] is bounded from Lp,λ ,µ(Rn) to Lq,λ ,µ(Rn). For any fixed cube Q
with side length r, by Hölder’s inequality, Lemma 4 and Lemma 6, we have

1
|Q|1+β/n

∫
Q
|b(x)−MQ(b)(x)|dx ≤ 1

|Q|1+β/n
∥b−MQ(b)∥Lq(Q) |Q|

1
q′

≤ |Q|−
1
q−

β

n [r]
λ

q
1 [1/r]

− µ

q
1 ∥(b−MQ(b))χQ∥Lq,λ ,µ

≤Cr−
n
q [r]

λ

q
1 [1/r]

− µ

q
1 r

n
q [r]

− λ

q
1 [1/r]

µ

q
1 ≤C.

Thus, by using Lemma 2, we get b ∈ Λ̇β (Rn) and b ≥ 0.

Proof of Theorem 3. (1)⇒(2) Assume b ∈ Λ̇β (Rn), b ≥ 0. For any f ∈ Lp,λ ,µ(Rn), by using Lemma 3 (case
of α = 0) and M♯ f (x)≤ 2M f (x), we have M♯ f (x)< ∞ for a.e. x ∈Rn. Then the following estimate was given
in [10] (see page 1422):

|[M♯,b] f (x)| ≤ ∥b∥
Λ̇β

Mβ f (x) for a.e. x ∈ Rn.

Thus, it follows from Lemma 3 that [M♯,b] is bounded from Lp,λ ,µ(Rn) to Lq,λ ,µ(Rn).
(2)⇒(3) Assume [M♯,b] is bounded from Lp,λ ,µ(Rn) to Lq,λ ,µ(Rn). For any fixed cube Q, we have (see [3],
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page 3333)
M♯ (χQ)(x) = 1/2 for x ∈ Q.

Then, by applying Lemma 4 we get

1
|Q|β/n

∥
(
b−2M♯(bχQ)

)
χQ∥Lq,λ ,µ

∥χQ∥Lq,λ ,µ
≤ C

rβ

∥χQ∥Lp,λ ,µ

∥χQ∥Lq,λ ,µ

≤Cr−β+ n
p−

n
q [r]

λ

q −
λ

p
1 [1/r]

µ

p −
µ

q
1

≈C[r]
−β+ n−λ

p − n−λ

q
1 [1/r]

β− n−µ

p + n−µ

q
1 ≤C,

which implies (3) since the cube Q ⊂ Rn is arbitrary.
(3)⇒(4) For any fixed cube Q with side length r, by Hölder’s inequality, condition (3) and Lemma 4, it is

easy to see that

1
|Q|1+β/n

∫
Q
|b(x)−2M♯(bχQ)(x)|dx ≤ 1

|Q|1+β/n

∥∥b−2M♯(bχQ)
∥∥

Lp(Q)
|Q|

1
p′

≤C|Q|−
1
q−

β

n [r]
λ

q
1 [1/r]

− µ

q
1

∥∥∥(b−2M♯(bχQ)
)

χQ

∥∥∥
Lq,λ ,µ

≤Cr−
n
q [r]

λ

q
1 [1/r]

− µ

q
1 ∥χQ∥Lq,λ ,µ

≤Cr−
n
q [r]

λ

q
1 [1/r]

− µ

q
1 r

n
q [r]

− λ

q
1 [1/r]

µ

q
1 ≤C,

which implies (4) since the cube Q ⊂ Rn is arbitrary.
(4)⇒(1) For any fixed cube Q, Bastero, Milman and Ruiz [3] given the following equality

|bQ| ≤ 2M♯(bχQ)(x), x ∈ Q.

From Lemma 5, condition (4) and b(x)≤ bQ ≤ |bQ| ≤ 2M♯(bχQ)(x), we have

1
|Q|1+β/n

∫
Q
|b(x)−bQ|dx ≤ 2

|Q|1+β/n

∫
Q
|b(x)−2M♯(bχQ)(x)|dx ≤C.

Thus, we may obtain b ∈ Λ̇β (Rn).
Next, we will prove b ≥ 0, it suffices to show b− = 0, where b− =−min{b,0} and let b+ = |b|−b−. For

any fixed cube Q, observe that (for details see [3, 9])

2M♯(bχQ)(x)−b(x)≥ |bQ|−b(x) = |bQ|−b+(x)+b−(x) for x ∈ Q.

Hence, there exists a constant C > 0 such that for any cube Q

C ≥ 1
|Q|1+β/n

∫
Q

∣∣2M♯ (bχQ)(x)−b(x)
∣∣dx

≥ 1
|Q|1+β/n

∫
Q

(
|bQ|−b+(x)+b−(x)

)
dx

=
1

|Q|β/n

(
|bQ|−

1
|Q|

∫
Q

b+(x)dx+
1
|Q|

∫
Q

b−(x)dx
)
.

This gives

|bQ|−
1
|Q|

∫
Q

b+(x)dx+
1
|Q|

∫
Q

b−(x)dx ≤C|Q|β/n.

Thus, b− = 0 follows from Lebesgue differentiation theorem.
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So far, the proofs of Theorem 1, 2 and 3 are completed.
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