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Abstract. Parallel robots have many remarkable advantages over their conventional serial counterparts. 

Highly accurate positioning capability and high payload-to-weight ratio are among the main ones. The 

main factor underlying all these advantages is their closed-loop construction. However, this 

constructional feature also causes a special singularity problem, which constitutes their biggest 

disadvantage. Characteristic singularities classified as Type II exist inside their workspace, around 

which the magnitude of the inverse dynamic solution grows unboundedly. This naturally yields the 

saturation of the actuators and eventually in uncontrollability of the robot. Consequently, the whole 

workspace becomes impossible to be used. In order to pass through a Type II singularity, the 

consistency of the motion equations of the robot must be maintained at that singularity. However, any 

Type II singular configuration can transform into a high-order singularity, which, in order to be passed 

through, requires additional conditions other than the consistency. Therefore, full utilization of the 

whole workspace with a minimum number of conditions requires to avoid high-order singularities. The 

present article contributes to the literature by developing path and trajectory planning principles for 

preventing a two-degree-of-freedom planar parallel robot with RPRPR structure from experiencing 

high-order singularities. 
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1. INTRODUCTION 

Thanks to their closed-loop structure, parallel mechanisms have many important capabilities such as 

highly accurate positioning, working under high loads, and performing high-speed and high-acceleration tasks 

[1, 2]. For these reasons, they are more and more preferred in simulator technologies [3, 4], industrial robots 

[5, 6], machining [7−9], additive manufacturing [10, 11], medical and surgical robotics [12−14]. 

The biggest disadvantage of parallel robots compared to their conventional serial counterparts is that 

there exist Type II singularities inside their workspace [15]. Around these singularities, the magnitude of the 

inverse dynamic solution diverges to infinity. Accordingly, the actuators get saturated, and the robot becomes 

uncontrollable [16]. Based on these dynamical aspects, they are also called drive singularities [17] or actuation 

singularities [17, 18]. 

As can be appreciated from the consequences mentioned above, Type II singularities cause a parallel 

robot to use only a small part of its workspace, and for this reason, they have been the subject of many studies 

in the literature. Initially, studies had generally focused on determining the loci of these singularities [19−22]. 

This is because it was common practice at the time to avoid singularities when planning paths [23, 24]. Over 

time, however, the focus has shifted more to developing methods that will enable parallel robots to pass through 

them. A condition to be met in this regard is that the motion equations of the robot must be consistent at the 

singularity to be crossed [17, 25, 26]. 
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However, as shown by Özdemir [27], parallel robots may also encounter singularities that require 

additional conditions besides consistency in order to be passed through. These singularities are high-order 

singularities of parallel robots [28]. Any Type II singular configuration can transform into a high-order 

singularity depending on the path and trajectory of the end-effector [27−29]. 

High-order singularities of parallel robots are much more critical than their classical Type II singularities, 

as they are much more difficult to remove by requiring a greater number of conditions to be met. In this sense, 

avoidance of high-order singularities has a key role in the optimization of the desingularization process of 

parallel robots. The present article contributes to the literature by establishing the path and trajectory design 

principles of high-order singularity prevention for a two-degree-of-freedom planar parallel robot with RPRPR 

structure where R and P denote revolute and prismatic joints, respectively. This closed kinematic chain belongs 

to the classical five-bar family and it is one of the mostly used planar parallel robot architectures with two 

common actuation schemes, namely RPRPR and RPRPR [30] where the underlines show the actuated joints. 

The RPRPR architecture is considered in the present study. 

2. EQUATIONS OF MOTION 

The robot under study is shown in Fig. 1. The fixed Cartesian coordinate system 𝑥𝑦 has its origin at point 

𝐴. Point 𝐸 is the endpoint of the robot, and 𝑥𝐸 and 𝑦𝐸  are its horizontal and vertical Cartesian coordinates, 

respectively. The torques provided to the robot by the motors at joints 𝐴 and 𝐵 are 𝑇1 and 𝑇2, respectively. 

Link 1 is the fixed link whereas links 2, 3, 4 and 5 are the moving links. The length of the fixed link is 𝑎1 = |𝐴𝐵|. 

The prismatic joint variables are 𝑠1 = |𝐴𝐸| and 𝑠2 = |𝐵𝐸|. The revolute joint variables 𝜃1 and 𝜃2 are defined 

on the figure. The gravity acceleration 𝑔 is taken to be along the negative 𝑦-axis. Link 𝑖 (𝑖 = 2, 3, 4, 5) has 

mass 𝑚𝑖, mass center 𝐺𝑖, and centroidal mass moment of inertia 𝐼𝑖. The distances used to express the positions 

of the moving mass centers are as follows: 𝑟2 = |𝐴𝐺2|, 𝑟3 = |𝐸𝐺3|, 𝑟4 = |𝐵𝐺4| and 𝑟5 = |𝐸𝐺5|. 
The velocity loop equations can be written as 

𝐉�̇� = [
0
0

] (1) 

where 

𝐪 = [

θ1

𝑠1

θ2

𝑠2

] (2) 

𝐉 = [
−𝑠1 sin(θ1) cos(θ1) 𝑠2 sin(θ2) − cos(θ2)

𝑠1 cos(θ1) sin(θ1) −𝑠2 cos(θ2) − sin(θ2)
] (3) 

The equations of motion of the robot can be expressed in joint space as 

𝐌�̈� + 𝐍 = 𝐐 + 𝐉𝑇𝛌 (4) 

where 

𝐌 = [

𝑀11 0 0 0
0 𝑀22 0 0
0 0 𝑀33 0
0 0 0 𝑀44

] (5) 

𝐍 = [

𝑁1

𝑁2

𝑁3

𝑁4

] (6) 
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Fig. 1 – A RPRPR planar parallel robot. 

The diagonal elements of 𝐌 and the elements of 𝐍 are given by 

𝑀11 = 𝑚2𝑟2
2 + 𝐼2 + 𝑚3(𝑠1 − 𝑟3)2 + 𝐼3 (7) 

𝑀22 =  𝑚3 (8) 

𝑀33 = 𝑚4𝑟4
2 + 𝐼4 + 𝑚5(𝑠2 − 𝑟5)2 + 𝐼5 (9) 

𝑀44 =  𝑚5 (10) 

𝑁1 = 2𝑚3�̇�1�̇�1(𝑠1 − 𝑟3) + (𝑚2𝑟2 + 𝑚3(𝑠1 − 𝑟3))𝑔 𝑐𝑜𝑠(𝜃1) (11) 

𝑁2 = − 𝑚3(𝑠1 − 𝑟3)�̇�1
2

+ 𝑚3𝑔 𝑠𝑖𝑛(𝜃1) (12) 

𝑁3 = 2𝑚5�̇�2�̇�2(𝑠2 − 𝑟5) + (𝑚4𝑟4 + 𝑚5(𝑠2 − 𝑟5))𝑔 𝑐𝑜𝑠(𝜃2) (13) 

𝑁4 = −𝑚5(𝑠2 − 𝑟5)�̇�2
2

+ 𝑚5𝑔 𝑠𝑖𝑛(𝜃2) (14) 

𝐐 is the vector of generalized nonconservative forces. We assume that the motor torques are the only external 

torques and no other external nonconservative forces or moments act on the robot. Then 

𝑸 =  [

𝑇1

0
𝑇2

0

] (15) 

𝛌 is the vector of Lagrange multipliers of the form 

𝝀 =  [
𝜆1

𝜆2
] (16) 



68 Mustafa ÖZDEMİR, Levent KARAKAYA 4 

3. HIGH-ORDER SINGULARITIES AND ESTABLISHMENT OF PATH AND TRAJECTORY 

PLANNING PRINCIPLES FOR PREVENTING THEM 

It is seen from equation (15) that the elements of 𝐐 that correspond to the unactuated joint variables are 

equal to zero. Based on this fact, equation (4) can be separated into two parts as follows: 

𝐌𝑎�̈� + 𝐍𝑎 = 𝐐𝑎 + (𝐉𝑎)𝑇𝛌 (17) 

𝐌𝑢�̈� + 𝐍𝑢 = 𝐐𝑢 + (𝐉𝑢)𝑇𝛌 (18) 

where 

𝐌𝑎 = [
𝑀11 0 0 0

0 0 𝑀33 0
] (19) 

𝐌𝑢 = [
0 𝑀22 0 0
0 0 0 𝑀44

] (20) 

𝐍𝑎 = [
𝑁1

𝑁3
] (21) 

𝐍𝑢 = [
𝑁2

𝑁4
] (22) 

𝐉𝑎 = [
−𝑠1 sin(θ1) 𝑠2 sin(θ2)

𝑠1 cos(θ1) −𝑠2 cos(θ2)
] (23) 

𝐉𝑢 = [
cos(θ1) − cos(θ2)

sin(θ1) − sin(θ2)
] (24) 

𝐐𝑎 = [
𝑇1

𝑇2
] (25) 

𝐐𝑢 = [
0
0

] (26) 

Hence, provided that the matrix (𝐉𝑢)𝑇 is invertible, equation (18) can be solved for 𝛌 as 

𝛌 = [(𝐉𝑢)𝑇]−1(𝐌𝑢�̈� + 𝐍𝑢) (27) 

Then, the required motor torques can be computed as 

[
𝑇1

𝑇2
] = 𝐌𝑎�̈� + 𝐍𝑎 − (𝐉𝑎)𝑇[(𝐉𝑢)𝑇]−1(𝐌𝑢�̈� + 𝐍𝑢) (28) 

When the determinant of (𝐉𝑢)𝑇 vanishes at a point, a Type II singularity occurs at that point [17]. Thus, Type 

II singularities of the robot can be determined from 

𝛿 = 𝑑𝑒𝑡((𝑱𝑢)𝑇) = 𝑠𝑖𝑛(𝜃1 − 𝜃2) = 0 (29) 

It can be seen by inspecting the geometry of the robot that there are three possible cases at a Type II singularity. 

These are presented in Table 1. Notice that (𝐉𝑢)𝑇 becomes rank-deficient by one at Type II singularities of the 

robot. 

Table 1 

Three different cases of Type II singular configurations of the robot 

Type II singularity case Values of the joint variables 

1 θ1 = θ2 = 0 

2 θ1 = θ2 = π 

3 θ1 = 0 and θ2 = π 
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Equation (27) gives 

λ1 =
μ1

δ
 (30) 

λ2 =
μ2

δ
 (31) 

where 

μ1 = − sin(θ2) (𝑀22�̈�1 + 𝑁2) − sin(θ1) (𝑀44�̈�2 + 𝑁4) (32) 

μ2 = cos(θ2) (𝑀22�̈�1 + 𝑁2) + cos(θ1) (𝑀44�̈�2 + 𝑁4) (33) 

The condition that the robot must satisfy for maintaining consistency of its equations of motion at a singularity 

can be determined as follows: 

σ(𝑀22�̈�1 + 𝑁2) + 𝑀44�̈�2 + 𝑁4 = 0 (34) 

where the values of σ are provided in Table 2. 

Table 2 

Values of σ 

Type II singularity case σ 

1 1 

2 1 

3 −1 

 

Satisfaction of equation (34) at the singularity time 𝑡𝑠 is equivalent to satisfaction of 

μ1(𝑡𝑠) = μ2(𝑡𝑠) = 0 (35) 

So, if the trajectory is consistent, then 

λ1(𝑡𝑠) = λ2(𝑡𝑠) =
0

0
 (36) 

Note that μ1(𝑡𝑠) = 0 is automatically satisfied for the robot under study. But to have μ2(𝑡𝑠) = 0, equation 

(34) must be satisfied at the singularity. 

The boundedness of the inverse dynamic solution requires the limits lim
𝑡→𝑡𝑠

λ1 and lim
𝑡→𝑡𝑠

λ2 to be finite. 

Equation (36) suggests the application of l’Hôpital’s Rule as: 

lim
𝑡→𝑡𝑠

λ1 = lim
𝑡→𝑡𝑠

dμ1
d𝑡
dδ
d𝑡

 (37) 

lim
𝑡→𝑡𝑠

λ2 = lim
𝑡→𝑡𝑠

dμ2
d𝑡
dδ
d𝑡

 (38) 

Equations (37) and (38) show that if dδ d𝑡⁄  vanishes at time 𝑡 = 𝑡𝑠, then extra conditions other than 

consistency must be satisfied for a bounded inverse dynamic solution. This means that in order the robot to 

have a high-order singularity, it is required that 

dδ

d𝑡
|

𝑡=𝑡𝑠

= 0 (39) 

Recalling that sine and cosine of an angle cannot be simultaneously equal to zero, this high-order singularity 

condition can be equivalently expressed as 
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θ̇1(𝑡𝑠) − θ̇2(𝑡𝑠) = 0 (40) 

The velocity inverse kinematics solution gives 

θ̇1 = −
sin(θ1)

𝑠1
�̇�𝐸 +

cos(θ1)

𝑠1
�̇�𝐸 (41) 

θ̇2 = −
sin(θ2)

𝑠2
�̇�𝐸 +

cos(θ2)

𝑠2
�̇�𝐸  (42) 

In this study, we assume that there are no inverse kinematic singularities; hence 𝑠1 and 𝑠2 are always nonzero 

throughout the motion. 

θ̇1(𝑡𝑠) =
𝜓

𝑠1(𝑡𝑠)
�̇�𝐸(𝑡𝑠) (43) 

θ̇2(𝑡𝑠) = σ
ψ

𝑠2(𝑡𝑠)
�̇�𝐸(𝑡𝑠) (44) 

where the values of ψ are provided in Table 3. 

Table 3 

Values of ψ 

Type II singularity case ψ 

1 1 

2 −1 

3 1 

 

Substituting equations (43) and (44) into equation (40), we get 

ψ (
1

𝑠1(𝑡𝑠)
− σ

1

𝑠2(𝑡𝑠)
) �̇�𝐸(𝑡𝑠) = 0 (45) 

or 

−σ
𝑎1�̇�𝐸(𝑡𝑠)

𝑠1(𝑡𝑠)𝑠2(𝑡𝑠)
= 0 (46) 

Equation (46) reveals that a high-order singularity of the robot under investigation occurs when 

�̇�𝐸(𝑡𝑠) = 0 (47) 

The condition given by equation (47) implies that a Type II singular configuration becomes of high order 

if the trajectory is such that the endpoint 𝐸 has zero velocity at the singularity time or if the endpoint path is 

such that it has a horizontal tangent at that singular configuration; that is, if the following equation holds: 

d𝑦𝐸

d𝑥𝐸
|

𝑡=𝑡𝑠

= 0 (48) 

Hence, the path design principle to avoid the occurrence of a high-order singularity of the RPRPR robot is that 

the endpoint path must have a nonzero slope at the Type II singular configurations. Additionally, the trajectory 

design principle in this regard is that the endpoint must have a nonzero velocity at Type II singularities. These 

path and trajectory design principles are quite easy to implement in practice. 

4. NUMERICAL EXAMPLES 

To illustrate the application of our findings, let us consider an RPRPR robot with 𝑎1 = 6 m. The task is 

to move the endpoint 𝐸 along a cubic path from (𝑥, 𝑦) = (2 m, −1 m) to (𝑥, 𝑦) = (4 m, 1 m) in 𝑡𝑓 = 5 s. It 
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is worth noting that the robot will inevitably pass through a Type II singular configuration because the endpoint 

path will cross the 𝑥-axis during the realization of this task. At the initial configuration, the joint variables are 

as follows: θ1 = −26.5651°, 𝑠1 = 2.2361 m, 𝜃2 = −165.9638° and 𝑠2 = 4.1231 m. The starting and ending 

velocities and accelerations are zero. In accordance with the task requirements, the 𝑥-coordinate trajectory of 

the endpoint is generated by the following quintic polynomial of time 𝑡: 

𝑥𝐸(𝑡) = 2 +
4

25
𝑡3 −

6

125
𝑡4 +

12

3125
𝑡5 (49) 

This equation is plotted in Fig. 2. From equation (49) it can be deduced that �̇�𝐸 > 0 for all 𝑡 in the open interval 

from 0 to 5 s. This guarantees that the endpoint will have a nonzero velocity when the Type II singularity 

occurs. 

 

Fig. 2 – The 𝑥-coordinate trajectory of the endpoint. 

As a first example, let us take the endpoint path given by 

𝑦 = 𝑥3 − 9𝑥2 + 27𝑥 − 27 (50) 

This path is the path 1 in Fig. 3, and it connects the required starting and ending positions of the endpoint. 

There are no inverse kinematic singularities along this path, but a Type II singular configuration occurs when 

the endpoint arrives at the point (𝑥, 𝑦) = (3 m, 0) at time 𝑡 = 2.5 s. So, 𝑡𝑠 = 2.5 s. 

 

Fig. 3 – Endpoint paths considered in the examples. 
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The singularity encountered in this first example is of high order since we have δ(𝑡𝑠) = δ̇(𝑡𝑠) = δ̈(𝑡𝑠) = 0 

(see Fig. 4). This is because path 1 has zero slope and curvature at the singular point (𝑥, 𝑦) = (3 m, 0). 

 

Fig. 4 – Variations of the determinant δ over time in the examples with path 1 and path 2. 

To prevent the singularity from transforming into a high-order singularity, the path planning principle 

introduced in this article must be applied. To show this, in our second example the endpoint path is slightly 

modified to have a nonzero slope at the singular point, namely, to have a slope of 0.2 at the point (𝑥, 𝑦) =
(3 m, 0). The new path is the path 2 in Fig. 3 and is given by 

𝑦 = 0.8𝑥3 − 7.2𝑥2 + 21.8𝑥 − 22.2 (51) 

In this second example with path 2 there are again no inverse kinematic singularities, and the same Type II 

singular configuration is encountered again at the same time 𝑡 = 2.5 s. However, this singular configuration 

is now not a high-order singularity since the first-order time derivative of the determinant δ at the singularity 

time is not equal to zero (see Fig. 4). Figure 5 shows the actuated joint variables required to follow path 2 in 

the second example. 

 

Fig. 5 – Variation of the actuated joint variables over time in the second example with path 2. 

5. CONCLUSIONS 

The present article contributes to the literature by deriving the high-order singularity condition of a five-

link planar parallel robot with RPRPR architecture. It is shown that any Type II singular configuration of this 
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robot transforms into a high-order singularity if the slope of the endpoint path is zero at that singular 

configuration or if the endpoint velocity is zero at the singularity time. The occurrence of a high-order 

singularity can be prevented by properly planning the endpoint path and trajectory in accordance with these 

findings. 

The application and effectiveness of these path and trajectory design principles are illustrated by 

numerical examples. These examples demonstrate that transformation of a Type II singularity of the RPRPR 

planar parallel robot into a high-order singularity can be avoided by planning the endpoint path to have a 

nonzero slope at the singular point and, additionally, by ensuring that the endpoint has a nonzero velocity at 

the singularity time. In order to better understand the practical importance of the results of this article, it should 

be recalled that it is necessary to pass through Type II singular configurations for fully utilizing the whole 

workspace of RPRPR planar parallel robots, and this can be achieved without any additional conditions other 

than consistency if and only if the occurrence of high-order singularities is prevented. 
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