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1. INTRODUCTION

The uncertainty principle appears in signal theory and harmonic analysis in various forms that include not only the
signals ϕ and their Fourier transformations F (ϕ), but essentially all representations of signals in the time frequency
space. These mathematical results limit the simultaneous concentration of signals and their Fourier transformations, and
have a significant impact on quantum physics and signal analysis.

In the quantum physics, it is said that the speed and the position of particles cannot be measured with an infinite
precision. On other hand, in the theory of signal analysis, it is said that if we observe signals only for a limited period
of time, we lose the information about the frequency of the signals. Time-limited and band-limited functions are the
basic tools for signal processing and image processing. For example, a simple form of uncertainty inequality tells us that
signals cannot be limited simultaneously to time and bandwidth. This led to research into a set of functions that are almost
time-limited and nearly band-limited, initially conducted by the works of Landau and Pollak [4, 5] and then by the work
of Donoho-Stark [2].

In recent years, the behavior of Weinstein transform was investigated by many researchers, in relation to different
problems already studied in classical Fourier transform. For instance, Wigner and Weyl transform [10, 15], wavelet
transform [13, 14], reproducing kernels [1, 12], pseudo differential operators [17], inequalities and uncertainty principles
[8,9,11]. Motivated by the works of f Faris [3], Price [6,7] and Soltani [16] we prove an Lp local uncertainty inequalities
in the Weinstein setting.

The layout of this manuscript is as follows. Section 2 is devoted to give a brief overview of the Weinstein operator
that will play a significant role in the proofs of our main results. In section 3, we prove a local uncertainty principle for
the Weinstein operator, and we establish for it an Lp version of the Heisenberg-Pauli-Weyl uncertainty inequality. In the
last section, we show some uncertainty inequalities of concentration.

2. PRELIMINAIRES

The Weinstein operator or Laplace Bessel operator ∆d
W,α defined on Rd+1

+ = Rd × (0,∞), by

∆
d
W,α = ∆d +Lα , α >−1/2,
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where ∆d is the Laplacian operator on Rd and Lα is the Bessel operator for the last variable given on (0,∞) by

Lα u =
∂ 2u

∂x2
d+1

+
2α +1
xd+1

∂u
∂xd+1

.

For all λ = (λ1, ...,λd+1) ∈ Cd+1, the following system of equations

∂ 2u
∂x2

j
(x) =−λ

2
j u(x), if 1 ≤ j ≤ d

Lα u(x) =−λ
2
d+1u(x),

u(0) = 1,
∂u

∂xd+1
(0) = 0,

∂u
∂x j

(0) =−iλ j, if 1 ≤ j ≤ d

has a unique solution indicated by Λd
α(λ , .), and denoted by

Λ
d
α(λ ,x) = e−i<x′,λ ′> jα(xd+1λd+1) (1)

where λ = (λ ′,λd+1), x = (x′,xd+1) and jα is represent the normalized Bessel function defined by

jα(x) = Γ(α +1)
∞

∑
k=0

(−1)kx2k

2kk!Γ(α + k+1)
.

(λ ,x) 7→ Λd
α(λ ,x) is named the Weinstein kernel and satisfies for all (λ ,x) ∈ Rd+1 ×Rd+1∣∣∣Λd

α(λ ,x)
∣∣∣≤ 1. (2)

In the following, we note by Lp
α(Rd+1

+ ), 1 ≤ p ≤ ∞, the space of measurable functions f on Rd+1
+ satisfying

∥ f∥
α,p =

(∫
Rd+1
+

| f (x)|p dµα(x)
)1/p

< ∞, p ∈ [1,∞), and ∥ f∥
α,∞ = ess sup

x∈Rd+1
+

| f (x)|< ∞,

where dµα(x) denote measure on Rd+1
+ = Rd × (0,∞) defined by

dµα(x) =
x2α+1

d+1

(2π)
d
2 2α Γ2(α +1)

dx.

If ϕ ∈ L1
α(Rd+1

+ ) is radial function then ϕ̃ defined on R+ by ϕ(x) = ϕ̃(|x|), for all x ∈ Rd+1
+ , is integrable function

with respect to r2α+d+1dr, and we have the equality

aα

∫
∞

0
ϕ̃(r)r2α+d+1dr =

∫
Rd+1
+

ϕ(x)dµα(x), (3)

where aα is a constant given by

aα =
1

2α+ d
2 Γ(α + d

2 +1)
.

The Weinstein (Laplace Bessel) Fourier transform is a hybrid integral transform defined for ϕ ∈ L1
α(Rd+1

+ ) by

∀λ ∈ Rd+1
+ , FW,α(ϕ)(λ ) =

∫
Rd+1
+

ϕ(x)Λd
α(x,λ )dµα(x).

From [11], we list the next properties which are useful in the rest of this paper:

• If ϕ ∈ L1
α(Rd+1

+ ), then FW,α(ϕ) is continuous on Rd+1
+ such that

∥FW,α ϕ∥
α,∞ ≤ ∥ϕ∥

α,1 . (4)
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• For all ϕ ∈ L2
α(Rd+1

+ ), we have
∥FW,α ϕ∥

α,2 = ∥ϕ∥
α,2 . (5)

• For all ϕ ∈ Lp
α(Rd+1

+ ), 1 ≤ p ≤ 2, FW,α(ϕ) belongs to Lq
α(Rd+1

+ ), where q = p/(p−1), and we have

∥FW,α ϕ∥
α,q ≤ ∥ϕ∥

α,p . (6)

Through this paper, we need to give the precise assumptions on the data of the results:

• (A1) Ω be a measurable subset of Rd+1
+ satisfying µα(Ω)< ∞.

• (A2) Σ be a measurable subset of Rd+1
+ such that µα(Σ)< ∞.

• (A3) ϕ ∈ Lp
α(Rd+1

+ ) with 1 < p ≤ 2 and q = p/(p−1).

3. Lp-LOCAL UNCERTAINTY PRINCIPLE

In practice, the uncertainty principle is often discussed in the context of specific measurements made on individual
particles or within localized regions of a quantum system and both the supports of time and frequency are often limited.
In such case, the infinite support fails to hold true. Therefore, there has a great need to discuss the uncertainty principles
in finite support domains. Local uncertainty principles for the classical Fourier transform were firstly attained by Faris
[3] and they were subsequently refined and generalized by Price [6, 7]. Motivated by the above works, we extend the
uncertainty inequality studied in [11].

THEOREM 1. Let s > 0 and µα(Σ)> 0. Under assumptions (A1) and (A3), we have

∥χΣFW,α(ϕ)∥α,q ≤



C1(s)(µα(Σ))
s
β ∥|x|sϕ∥

α,p , sq < β ;

C2(s)(µα(Σ))
1
q ∥ϕ∥

1− β

sq
α,p ∥|x|sϕ∥

β

sq
α,p , sq > β ;

2C1(
s
2 )(µα(Σ))

1
2q ∥ϕ∥

1
2
α,p ∥|x|sϕ∥

1
2
α,p , sq = β ,

where β = 2α +d +2, C1 and C2 are constants depend on s given by

C1(s) =
β

β − sq

(
(β − sq)q−1

2
β

2 −1
Γ(β

2 )(sq)q

) s
β

, C2(s) =
sq

sq−β

(
sq
β

−1
) β

spq

 (sq−β )Γ
(

sq−β

sp

)
Γ

(
β

sp

)
2

β

2 −1 pqs2Γ(β

2 )Γ
(

q
p

)


1
q

.

Proof. (a) The first inequality is trivial if the norm ∥|x|sϕ∥
α,p is infinite. Now, suppose that ∥|x|sϕ∥

α,p < ∞ and we
take Bρ = {x ∈Rd+1

+ : |x|< ρ} and Bc
ρ =Rd+1

+ \Bρ , where ρ > 0. Denote by χΣ, χBρ
and χBc

ρ
the indicator functions. Let

ϕ ∈ Lp
α(Rd+1

+ ), 1 < p ≤ 2 with q = p/(p−1). According to inequality of Minkowski, we obtain for all ρ > 0

∥χΣFW,α(ϕ)∥α,q ≤
∥∥χΣFW,α(χBρ

ϕ)
∥∥

α,q +
∥∥∥χΣFW,α(χBc

ρ
ϕ)
∥∥∥

α,q

≤ (µα(Σ))
1
q
∥∥FW,α(χBρ

ϕ)
∥∥

α,∞
+
∥∥∥FW,α(χBc

ρ
ϕ)
∥∥∥

α,q
,

hence, according to the inequalities (4) and (6), it comes that

∥χΣFW,α(ϕ)∥α,q ≤ (µα(Σ))
1
q
∥∥χBρ

ϕ
∥∥

α,1 +
∥∥∥χBc

ρ
ϕ

∥∥∥
α,p

. (7)

Furthermore, using Hölder’s inequality, we obtain∥∥χBρ
ϕ
∥∥

α,1 ≤
∥∥|x|−s

χBρ

∥∥
α,q ∥|x|

s
ϕ∥

α,p .
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Since sq < β , then according to relation (3) we get

∥∥|x|−s
χBρ

∥∥
α,q =Cα ρ

−s+β/q, with Cα =

(
(β − sq)2

β

2 −1
Γ(

β

2
)

)− 1
q

,

thus, ∥∥χBρ
ϕ
∥∥

α,1 ≤Cα ρ
−s+β/q ∥|x|sϕ∥

α,p . (8)

Moreover, we have ∥∥∥χBc
ρ
ϕ

∥∥∥
α,p

≤
∥∥∥|x|−s

χBc
ρ

∥∥∥
α,∞

∥|x|sϕ∥
α,p ≤ ρ

−s ∥|x|sϕ∥
α,p . (9)

Next, combining the inequalities (7), (8) and (9), we conclude that

∥χΣFW,α(ϕ)∥α,q ≤
[
ρ
−s +Cα (µα(Σ))

1
q ρ

−s+β/q
]
∥|x|sϕ∥

α,p .

Then, the first inequality holds by choosing

r =
(

sq
(β − sq)Cα

) q
β

(µα(Σ))
− 1

β .

(b) The second inequality is true if the norm ∥ϕ∥
α,p or ∥|x|sϕ∥

α,p is infinite. Now, assume that the sum ∥ϕ∥
α,p +

∥|x|sϕ∥
α,p is finite. From the assumption sq > β we conclude that x −→ (1+ |x|sp)−1/p is in Lq

α(Rd+1
+ ), then using

Hölder’s inequality, we get

∥ϕ∥p
α,1 =

(∫
Rd+1
+

(1+ |x|sp)1/p|ϕ(x)|(1+ |x|sp)−1/pdµα(x)
)p

≤
(
∥ϕ∥p

α,p +∥|x|sϕ∥p
α,p

)(∫
Rd+1
+

dµα(x)
(1+ |x|sp)q/p

)p/q

.

Therefore, ϕ ∈ L1
α(Rd+1

+ ), and by replacing ϕ(x) by ϕ(ρx) in the above inequality, we obtain

∥ϕ∥p
α,1 ≤

(
ρ

β (p−1) ∥ϕ∥p
α,p +ρ

β (p−1)−sp ∥|x|sϕ∥p
α,p

)(∫
Rd+1
+

dµα(x)
(1+ |x|sp)q/p

)p/q

.

By taking

ρ =

(
sq
β

−1
) 1

sp
(
∥|x|sϕ∥

α,p

∥ϕ∥
α,p

) 1
s

,

and the fact that ∫
Rd+1
+

dµα(x)
(1+ |x|sp)q/p =

1

2
β

2 −1
Γ(β

2 )

∫
∞

0

ρβ−1dρ

(1+ρsp)q/p =
Γ( sq−β

sp )Γ( β

sp )

2
β

2 −1spΓ(β

2 )Γ(
q
p )
,

we conclude that

∥ϕ∥
α,1 ≤C2(s)∥ϕ∥

1− β

sq
α,p ∥|x|sϕ∥

β

sq
α,p .

Afterwards

∥χΣFW,α(ϕ)∥α,q ≤ (µα(Σ))
1
q ∥FW,α(ϕ)∥α,∞ ≤ (µα(Σ))

1
q ∥FW,α(ϕ)∥α,1 ≤C2(s)(µα(Σ))

1
q ∥ϕ∥

1− β

sq
α,p ∥|x|sϕ∥

β

sq
α,p ,

which gives the second inequality.

(c) Putting ρ > 0. Taking into account the inequality
(
|x|
ρ

) β

2q ≤ 1+
(
|x|
ρ

) β

q
, it follows that∥∥∥∥|x| β

2q ϕ

∥∥∥∥
α,p

≤ ρ
β

2q ∥ϕ∥
α,p +ρ

− β

2q

∥∥∥∥|x| β

q ϕ

∥∥∥∥
α,p

.
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Optimizing in ρ , we obtain ∥∥∥∥|x| β

2q ϕ

∥∥∥∥
α,p

≤ 2∥ϕ∥
1
2
α,p

∥∥∥∥|x| β

q ϕ

∥∥∥∥ 1
2

α,p
.

Therefore,we deduce that

∥χΣFW,α(ϕ)∥α,q ≤C1(
β

2q
)(µα(Σ))

1
2q

∥∥∥∥|x| β

2q ϕ

∥∥∥∥
α,p

≤ 2C1(
β

2q
)≤ (µα(Σ))

1
2q ∥ϕ∥

1
2
α,p

∥∥∥∥|x| β

q ϕ

∥∥∥∥ 1
2

α,p
,

which gives the result for s = β/q.

THEOREM 2. Let s, t > 0, under assumption (A3), we have

∥FW,α(ϕ)∥α,q ≤



C1(s, t)∥|x|sϕ∥
t

s+t
α,p ∥|y|tFW,α(ϕ)∥

s
s+t
α,q , sq < β ;

C2(s, t)∥ϕ∥
t(sq−β )
s(qt+β )
α,p ∥|x|sϕ∥

tβ
s(β+qt)
α,p ∥|y|tFW,α(ϕ)∥

β

β+qt
α,q , sq > β ;

C3(s, t)∥ϕ∥
t

s+2t
α,p ∥|x|sϕ∥

t
s+2t
α,p ∥|y|tFW,α(ϕ)∥

s
s+2t
α,q , sq = β ,

where

C1(s, t) =

( t
s

) s−t
(s+t)q(

2
β

2 Γ

(
β

2 +1
)) st

β (s+t)
(C1(s))

t
s+t , C2(s, t) =

(
qt
β

) β−qt
(β+qt)q

(
2

β

2 Γ

(
β

2 +1
)) t

β+qt
(C2(s))

qt
β+qt ,

and

C3(s, t) =

( 2t
s

) s−2t
(s+2t)q(

2
β

2 Γ

(
β

2 +1
)) t

β+2qt

(
2C1

( s
2

)) 2t
s+2t

.

Proof. (a) Let s, t > 0, 1 < p ≤ 2, with q = p/(p−1) and ϕ ∈ Lp
α(Rd+1

+ ). Then, we have

∥FW,α(ϕ)∥q
α,q =

∥∥χBρ
FW,α(ϕ)

∥∥q
α,q +

∥∥∥χBc
ρ
FW,α(ϕ)

∥∥∥q

α,q
. (10)

On the other hand, we have ∥∥∥χBc
ρ
FW,α(ϕ)

∥∥∥q

α,q
≤ ρ

−qt ∥∥|y|tFW,α(ϕ)
∥∥q

α,q . (11)

According to the relation (3) and Theorem 1, we get

∥∥χBρ
FW,α(ϕ)

∥∥q
α,q ≤C1ρ

qs ∥|x|sϕ∥q
α,q , with C1 = (C1(s))

q
(

2β
Γ(

β

2
+1)

)− sq
β

. (12)

By Combining the above relations (10), (11) and (12), we get

∥FW,α(ϕ)∥q
α,q ≤C1ρ

qs ∥|x|sϕ∥q
α,q +ρ

−qt ∥∥|y|tFW,α(ϕ)
∥∥q

α,q .

Hence, the first inequality holds by choosing

ρ =

(
t

sC1

) 1
q(s+t)

(
∥|y|tFW,α(ϕ)∥α,q

∥|x|sϕ∥
α,q

) 1
s+t

.

(b) We assume that sq > β , t > 0 and ρ > 0. Then, according to the relation (3) and Theorem 1, we get

∥∥χBρ
FW,α(ϕ)

∥∥q
α,q ≤C2ρ

β ∥ϕ∥q− β

s
α,p ∥|x|sϕ∥

β

s
α,p , with C2 = (C2(s))

q
(

2β
Γ(

β

2
+1)

)−1

. (13)
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Next, by combining the relations (10), (11) and (13), we get

∥∥χBρ
FW,α(ϕ)

∥∥q
α,q ≤C2ρ

β ∥ϕ∥q− β

s
α,p ∥|x|sϕ∥

β

s
α,p +ρ

−qt ∥∥|y|tFW,α(ϕ)
∥∥q

α,q .

We obtain the second inequality, by choosing

ρ =

(
qt

βC2

) 1
β+qt

 ∥|y|tFW,α(ϕ)∥q
α,q

∥ϕ∥q− β

s
α,p ∥|x|sϕ∥

β

s
α,p

 1
β+qt

.

(c) We assume that sq = β , t > 0 and ρ > 0. Then, according to Theorem 1, we get

∫
Bρ

|FW,α(ϕ)(y)|qdµα(y)≤C3ρ
β

2 ∥ϕ∥
q
2
α,p

∥∥∥∥|x| β

q ϕ

∥∥∥∥
q
2

α,p
, with C3 =

(
C1(

β

2q
)

)q(
2β

Γ(
β

2
+1)

)− 1
2
.

Thus, we get ∥∥χBρ
FW,α(ϕ)

∥∥q
α,q ≤C3ρ

β

2 ∥ϕ∥
q
2
α,p

∥∥∥∥|x| β

q ϕ

∥∥∥∥
q
2

α,p
+ρ

−qt ∥∥|y|tFW,α(ϕ)
∥∥q

α,q .

We obtain the second inequality, by choosing

ρ =

(
2qt
βC3

) 2
β+2qt


∥|y|tFW,α(ϕ)∥q

α,q

∥ϕ∥
1
2
α,p

∥∥∥∥|x| β

q ϕ

∥∥∥∥ 1
2

α,p


2q

β+2qt

.

4. Lp-DONOHO-STRAK UNCERTAINTY PRINCIPLES

This section is devoted to establish two continuous-time uncertainty inequalities of concentration type.

Definition 1 [11]. Let Ω and Σ be a measurable subsets of Rd+1
+ . The timelimiting operator PΩ, is defined by

PΩϕ := ϕχΩ

and the Weinstein integral operator QΣ is given by

FW,α(QΣϕ) = FW,α(ϕ)χΣ.

Under assumptions (A2) and (A3) then we have the integral representation [11, Proposition 4.2] of QΣ

QΣϕ(x) = F−1
W,α(FW,α(ϕ)χΣ) =

∫
Σ

Λ
d
α(x,λ )FW,α(ϕ)(λ )dµα(λ ). (14)

Using the Lp-local uncertainty inequality introduced in Theorem 1, we get the below inequalities for QΣϕ .

LEMMA 1. Let s > 0. under assumptions (A1) and (A3), we have

∥QΣϕ∥
α,q ≤



C1(s)(µα(Σ))
s
β
+ 2

p−1 ∥|x|sϕ∥
α,p , sq < β ;

C2(s)(µα(Σ))
1
p ∥ϕ∥

1− β

sq
α,p ∥|x|sϕ∥

β

sq
α,p , sq > β ;

2C1(
s
2 )(µα(Σ))

3
2p−

1
2 ∥ϕ∥

1
2
α,p ∥|x|sϕ∥

1
2
α,p , sq = β ,

where C1(s) and C2(s) are determined in Theorem 1.
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Proof. According to (6) and Hölder’s inequality, we get

∥QΣϕ∥
α,q ≤ ∥χΣFW,α(ϕ)∥α,p ≤ (µα(Σ))

2
p−1 ∥χΣFW,α(ϕ)∥α,q .

Then, the results follows from Theorem 1.

Definition 2 [11]. Under the assumptions (A1)− (A3) we give the following definitions.

(i) A function ϕ is εΩ-concentrated to Ω in Lp
α(Rd+1

+ )-norm, if

εΩ ∥ϕ∥
α,p ≥ ∥ϕ −PΩϕ∥

α,p . (15)

(ii) FW,α(ϕ) is εΣ-concentrated to Σ in Lq
α(Rd+1

+ )-norm, with q = p/(p−1), if

εΣ ∥FW,α(ϕ)∥α,q ≥ ∥FW,α(ϕ)−FW,α(QΣϕ)∥
α,q . (16)

(iii) A function ψ is bandlimited to Σ if QΣψ = ψ and we note by Bp
α(Σ) the set of all functions ψ ∈ Lp(Rd

+) that
are bandlimited to Σ.

LEMMA 2. Let s> 0, µα(Σ)> 0 and ϕ ∈Bp
α(Σ). Then, under the assumptions (A1)−(A3), the space of bandlimited

functions satisfies the following property

∥PΩϕ∥
α,p ≤



C1(s)(µα(Ω))
1
p (µα(Σ))

1
p+

s
β ∥|x|sϕ∥

α,p , sq < β ;

C2(s)(µα(Ω))
1
p (µα(Σ))∥ϕ∥

1− β

sq
α,p ∥|x|sϕ∥

β

sq
α,p , sq > β ;

2C1(
s
2 )(µα(Ω))

1
p (µα(Σ))

1
2p+

1
2 ∥ϕ∥

1
2
α,p ∥|x|sϕ∥

1
2
α,p , sq = β ,

where C1(s) and C2(s) are constants determined in Theorem 1.

Proof. The inequality is trivial if µα(Ω) = ∞. Now, assume that µα(Ω) is finite. Then, under the hypothesis of the
lemma, relation (14), inequality (2) and Hölder’s inequality, we get

|ϕ(x)| ≤ (µα(Σ))
1
p ∥χΣFW,α(ϕ)∥α,q .

Therefore,
∥PΩϕ∥

α,p ≤ (µα(Ω))
1
p (µα(Σ))

1
p ∥χΣFW,α(ϕ)∥α,q .

Finally, we get the results by Theorem 1.

THEOREM 3. Let s > 0, µα(Σ) > 0 and ϕ ∈ Bp
α(Σ) that is εΩ-concentrated to Ω in Lp

α(Rd+1
+ )-norm. Then, under

the assumptions (A1)− (A3), we have

∥ϕ∥
α,p ≤



C1(s)
1−εΩ

(µα(Ω))
1
p (µα(Σ))

1
p+

s
β ∥|x|sϕ∥

α,p , sq < β ;

(
C2(s)
1−εΩ

) sq
β

(µα(Ω))
sq
β p (µα(Σ))

sq
β ∥|x|sϕ∥

α,p , sq > β ;

(
2C1(

s
2 )

1−εΩ

)2
(µα(Ω))

2
p (µα(Σ))

1
p+1 ∥|x|sϕ∥

α,p , sq = β ,

where C1(s) and C2(s) are constants determined in Theorem 1.

Proof. Let ϕ ∈ Bp
α(Σ), 1 < p ≤ 2. Since ϕ is εΩ-concentrated to Ω in Lp

α(Rd+1
+ )-norm, then according to the

inequality (15), we get
∥ϕ∥

α,p ≤ εΩ ∥ϕ∥
α,p +∥PΩϕ∥

α,p .
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Therefore,

∥ϕ∥
α,p ≤

1
1− εΩ

∥PΩϕ∥
α,p .

Finally, we obtain the results by Lemma 2.

THEOREM 4. Let s> 0, µα(Σ)> 0 and ϕ ∈ Lp
α(Rd+1

+ ) such that FW,α(ϕ) is εΣ-concentrated to Σ in Lq
α(Rd+1

+ )-norm.
Then, under the assumptions (A1)− (A3), we have

∥FW,α(ϕ)∥α,q ≤



C1(s)
1−εΣ

(µα(Σ))
s
β ∥|x|sϕ∥

α,p , sq < β ;

C2(s)
1−εΣ

(µα(Σ))
1
q ∥ϕ∥

1− β

sq
α,p ∥|x|sϕ∥

β

sq
α,p , sq > β ;

2C1(
s
2 )

1−εΣ
(µα(Σ))

1
2q ∥ϕ∥

1
2
α,p ∥|x|sϕ∥

1
2
α,p , sq = β ,

where C1(s) and C2(s) are constants determined in Theorem 1.

Proof. Let ϕ ∈ Lp
α(Rd+1

+ ), 1 < p ≤ 2. Since FW,α(ϕ) is εΣ-concentrated to Σ in Lq
α(Rd+1

+ )-norm, then according to
the inequality (16), we get

∥FW,α(ϕ)∥α,q ≤ εΣ ∥FW,α(ϕ)∥α,q +∥χΣFW,α(ϕ)∥α,q .

Therefore,

∥FW,α(ϕ)∥α,q ≤
1

1− εΩ

∥χΣFW,α(ϕ)∥α,q .

Finally, we obtain the results by Theorem 1.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the approval and the support of this research study by the grant no. SCIA-2022-
11-1594 from the Deanship of Scientific Research at Northern Border University, Arar, Saudi Arabia.

REFERENCES

[1] Ben Mohamed H, Saoudi A. Calderón type reproducing formula for the Weinstein-Stockwell transform. Rend. Circ. Mat. Palermo (2)
2023;72(8):4195–4208.

[2] Donoho DL, Stark PB. Uncertainty principles and signal recovery. SIAM J. Appl. Math. 1989;49(9):906–931.
[3] Faris WG. Inequalities and uncertainty principles. J. Math. Phys. 1978;19(2):461–466.
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