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Abstract. Recently, deep learning has been applied to medical image segmentation. However, existing meth-
ods based on deep learning still suffer from several disadvantages, such as blurred edge segmentation of image
lesion regions and weak context information extraction. To tackle these problems, this paper proposes an at-
tention mechanism and multi-feature fusion network with the encoder-decoder structure for medical image
segmentation. In the proposed network, the convolutional group encoder module and the self-attention module
are applied to divide images. The convolutional group encoder uses multiple convolution and dilated convo-
lution to enhance the multi-scale information capturing capability of the model. The extracted image features
will be useful for precise segmentation. Moreover, the self-attention module is introduced into the network for
mining and complementing the edge details of segmented images. In the proposed model, convolutional group
encoders and self-attention are applied repeatedly to capture changes in contextual relationships and continu-
ously refine boundary information. Several experiments have been conducted on the BUSI and ISIC datasets
to verify the effectiveness of the proposed method. Compared with other methods, the proposed method can
achieve better segmentation results.
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1. INTRODUCTION

Image segmentation is receiving more and more attention as it’s an essential component of medical-aided
diagnosis. The boundary information of the focus area in the medical image is very critical for doctors to judge
the patient’s condition. Smooth boundaries usually represent positive lesions, while rough boundaries represent
malignant lesions. Fig.1 shows medical skin cancer segmentation results. It indicates that image segmentation
can help physicians focus on suspicious areas of lesions.

(a) Image (b) Label (c) AM-Net

Fig. 1 – An example of medical image segmentation: a) a sample image of skin cancer dataset; b) an image labels made by
pathologists; c) segmentation result obtained by our proposed method.
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Traditional image segmentation strategies have achieved valuable results. For example, threshold segmen-
tation based on region image segmentation is a popular segmentation technique due to its computational sim-
plicity and consistent performance. The edge detection method is an image segmentation method that searches
for a target region’s boundary. And the region extraction method starts from a single pixel and merges gradually
to create a segmented region. The disadvantage of these methods is that they rely on manual manipulation [1,2].

Deep learning techniques have enabled breakthroughs in medical image segmentation. In 2014, Long et
al. proposed a full convolutional network (FCN) [3] model based on a convolutional neural network (CNN),
which solves the problem of image segmentation through pixel level classification. In 2015, Ronneberger et
al. proposed U-Net [4], which is built on top of FCN. U-Net’s U-shaped structure avoids the drawback of
FCN, i.e., that it cannot consider global context information. Among U-Net’s context information is obtained
from neighborhood data, target annotations, and the spatial location of the target. In recent years, researchers
have used the U-Net network or an improved network structure for medical image segmentation. Such as, Swin-
Unet [5], Transformer-Unet [6] and UTNet [7] combined transform with U-Net for medical image segmentation
to achieve optimal results. The above three approaches have modified the structure of U-Net and improved its
model performance. However, despite their continued progress, these methods still encounter difficulties when
faced tasks with high accuracy, especially complex spatial features and edge details.

In fact, more detailed image segmentation results are often driven by context information and boundary fea-
tures, and many work has focused on this approach. For example, CO-Net [8] and T-Net [9] obtained regionally
significant information by fusing cross-layer features. K-Net [10] used a learnable kernel for consistent seg-
mentation. OCR-Net [11] enhanced the description of pixel features by learning the relationship between pixels
and object region features. However, as pointed out in [12], ignoring semantic gaps often affects feature mining
and fusion. References [13, 14] are closely related to feature extraction and medical field, and they achieve
excellent results in the medical image segmentation. In addition, several researches [15–17] have investigated
the direction of weakly supervised semantic segmentation, which aims to learn semantic segmentation with
only image-level object category supervision. Therefore, it remains a challenge to design a network driven by
context information and boundary features to obtain fine-grained results.

To solve the deficiencies of blurred edge segmentation and weak context information extraction in image
lesion areas, we proposed an attention mechanism and multi-feature fusion network (named AM-Net for short).
As shown in Fig. 2, AM-Net includes Convolutional Group Encoder (CGE) and Self-Attention (SA) modules.
In our work, CGE is designed to extract multi-scale image features. In addition, the SA module is used to mine
the edge details of the segmented image, so as to obtain a more accurate segmented image. In summary, the
contributions of this paper include:

• A novel multi-scale feature fusion neural network model (called AM-Net for short) is proposed for med-
ical image segmentation. This method can address the issues of poor context extraction and imprecise
edge detection effectively.

• In the proposed AM-Net, a multi-scale feature fusion module, i.e., CGE, is designed to obtain fine seg-
mentation details. The CGE structure could control the information flow to reduce redundancy, and the
features of each layer gain access to richer context with the help of multi-feature.

• Following the CGE module, the self-attention module is applied, which will pay more attention to the
edge information and solve the problem of unsmooth edge segmentation.

• The model is evaluated on a new ISIC and BUSI dataset and shows excellent performance. The experi-
mental results also verify the superiority of AM-Net.

The remainder of the paper is organized as follows. Section 2 introduces the proposed AM-Net model,
Section 3 explores experimental data, and Section 4 summarizes the study conclusions.
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2. THE PROPOSED MODEL

We propose an attention mechanism and multi-feature fusion network (named AM-Net for short) for med-
ical images segmentation. In this section we introduce the AM-Net structure.

2.1. AM-Net

We design an AM-Net with an encoder-decoder structure, which can segment medical images accurately.
The structure of AM-Net is shown in Fig. 2. The encoder includes convolution, SA, CGE, down-sampling and
spatial pyramid pooling [18]. The encoder is used to extract feature information, while the SA module is used
to gradually improve edge structure information. The CGE module is used to enhance the contextual feature
extraction capability of the network. A spatial pyramid pooling module is used to extract multi-scale infor-
mation further. The decoder includes deconvolution and up-sampling. The decoder is also used to gradually
recover the pixel coordinates of an image, where the Deconvolution Group Decoder (DGD) is used to retain
shape information regarding the input image. Up-sampling is used to recover image size. In the segmentation

Fig. 2 – Overall architecture of the AM-Net.

process, a pre-processed image is first fed into the feature encoder to extract primary features. Then, the CGE is
introduced into the encoding module to capture and dynamically fuse multi-scale contextual semantic informa-
tion. At the same time, the SA module is used to capture more accurate edge structure information. Next, the
features are recovered by the decoder. The encoder outputs a feature tensor, which passes through the decoder
to take the output feature tensor as input. The features are recovered with deconvolution after down-sampling.
After deconvolution, summation, and up-sampling, a prediction map of the same size as the input image is
finally obtained.

2.2. Encoder

An encoder is used to extract the feature information of processed images. It continuously reduces a feature
map to a lower dimension to obtain the features of an image. Herein, we propose the CGE, an encoder that
employs convolution and null convolution to improve multi-scale information capturing capability. Figure 3
depicts the structure of the CGE. The CGE module is composed of dilated convolution and convolution.
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Fig. 3 – Convolutional Group Encoder (CGE).

Assume that the input of CGE is represented by Q. Then the specific calculation process is given as follows:

XCGE = BI(Convn×n(Q),Dilconvm(Q)) (1)

where BI is the splicing operation, Q is the characteristic image received by CGE, Convn×n contains three layers
of convolution, three layers of batch normalization and three layers of activation function, Dilconvm contains
three layers of hole convolution, and XCGE is the output of CGE. n is the convolution kernel and m is the dilution
rate. Assuming that the number of channels of Q is M, the number of channels of XCGE is 4×M.

First we use a 3×3 convolution kernel to convolve the image. Then, the image features are processed using
two CGEs and SA. The first CGE uses a 3×3 convolution kernel of convolution and dilated convolution, where
the dilation rate of the dilated convolution is 3. The second CGE uses a 5×5 convolution kernel of convolution
and dilated convolution, where the dilation rate is 5. We use different scale convolution and dilated convolution
to acquire the features of the image and fuse them. Thus, the feature maps of different scales of the image can
be obtained to the maximum extent possible, and the image can be segmented more effectively. Two pooling
operations are used in our proposed framework, i.e., max pooling and Spatial Pyramid Pooling. We use two
2×2 max pooling layers for halving the resolution of the feature map to enforce spatial invariance, which
helps to aggregate features from different spatial regions. Spatial pyramid pooling consisting of 5×5, 9×9 and
13×13 average pooling is used to divide image blocks into multiple regions to identify the local information of
the images.

SA module is introduced into the network to strengthen the image features obtained by CGE and supplement
the edge details of segmented images. The SA module can effectively improve the blurred edge of image
segmentation. Figure 4 shows the structure of self-attention. In Fig. 4, the “·” represents dot multiplication.
Matrices Q(query), K(key value) and V (value) are used in the calculation. The input of the SA module is the
output of the CGE module. Q, K, and V are derived from the linear transformation of the input matrix. The
calculation of the entire SA module can is represented in Algorithm 1. Q, K and V are calculated using the
following formulars.

Q =WqX (2)

K =WkX (3)

V =WvX (4)

where Wq, Wk, Wv are the parameter matrices of the outer linear mapping.
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Algorithm 1 Algorithm flow of SA method
Input: Characteristic drawing XCGE

Output: Enhanced feature map (H)
1: The characteristic graph XCGE is linearly mapped to obtain Q, K, V (Calculate according to formula 2,3,4.);
2: Calculate the attention score of XCGE : Score=QKT ;
3: Normalization : NL = Softmax(Score);
4: H = V *NL

Fig. 4 – The structure of self-attention.

2.3. Decoder

After the up-sampling layer, the decoder module employs a deconvolution layer. To recover features from
deconvolution layers, a feature stitching approach is used to connect to the deconvolution layer, which captures
more information about edge structure. The DED is mainly responsible for reconstructing the shape of the input
image. To preserve the shape information of the input image, a hierarchy of deconvolution layers is designed. In
addition, after three down-samplings, the encoder output feature tensor is convolved, summed, and upsampled
with operations to finally obtain a 512×512 prediction map with the same size as the input image. Assuming
that P denotes the input, the process of DGD image restoration is given as follows:

XDGD = F(U p(P)) (5)

where F contains a layer of deconvolution, a layer of BN, and Up is the upsampling operation. Assuming that
the number of channels of P is M, the number of channels of XDGD is M

2 .
To obtain high confidence segmentation results, we use the Binary Cross Entropy (named BCE for short)

function, the most frequently used loss function in medical image segmentation. The BCE function is formu-
lated as follows:

LossBCE =−
C

∑
i=1

pi log(qi) (6)

where C represents the number of categories, pi is the true value, and qi is the predicted value. The BCE loss
function operates at the pixel-level.
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3. EXPERIMENTS

To demonstrate the effectiveness and generalization of the proposed method, we conducted experiments on
the ISIC and BUSI datasets.

3.1. Experiment setup

The experiment adopts the ISIC and BUSI datasets. The ISIC data set has 1 252 pictures, and BUSI data
set has 630 pictures. We uniformly set the ISIC and BUSI images to a fixed size of 512 × 512. Then the image
is divided into training set, verification set and test set according to the ratio of 6:2:2, and the division method
is random. All experiments are carried out using the Python deep learning framework and run on the GeForce
RTX 3090 GPU card. The batch size for training is set to 4. The experiment uses the RMSprop optimizer
to adjust the parameters, and the initial learning rate is 0.0001. During the training of the AM-Net, we set a
maximum training period of 120 epochs, and the actual training is manually stopped when the network shows
signs of overfitting using the early stop method. Finally, the model is saved for subsequent validation when the
detection accuracy reaches the maximum.

The proposed model uses Pixel Accuracy (PA), Mean Intersection over Union (MIoU), Precision (Pre),
Recall (Rec) and F-Score to evaluate the measurement equations as shown below.

PA =
T P+T N

T P+T N +FP+FN
·100% (7)

MIoU =
1

K +1

K

∑
i=0

T P
T P+FP+FN

·100% (8)

Pre =
T P

T P+FP
·100% (9)

Rec =
T P

T P+FN
·100% (10)

F-Score = 2 · Pre ·Rec
Pre+Rec

·100% (11)

where K is the number of categories; Pixels that are correctly predicted as areas of interest (true positive(TP));
Pixels that are correctly predicted as non-interesting (true negative(TN)); Non-interesting pixels incorrectly
predicted as such(false positive(FP)); Interesting pixels incorrectly predicted as such (false negative(FN).

3.2. Analysis of the image preprocessing

In this sub-section, we first evaluate the effect of image preprocessing, because some images contain hair
that corrupts the obtained images. Such types of noise have an effect on the image segmentation performed by
the model. Thus, it is necessary to remove hair from the images. Noise such as hair on the skin is removed
using morphological filters [19]. Figure 5 shows an example which presents the original image and processed
image obtained by morphological filtering.

(a) Original Image (b) Processed Image

Fig. 5 – A sample image from the skin cancer dataset.
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The ISIC dataset sets are trained with this paper’s model AM-Net before and after pre-processing, respec-
tively.The Pre and F-Score scores obtained by training the images before and after pre-processing are shown
in Table 1. Figure 6 shows a comparison of Pa, Rec and Miou for the images before and after pre-processing.
Clearly, the training effect of the pre-processed images is better and more stable than that of the original images.
This indicates that the pre-processing image method we chose is suitable for the task.

Table 1

Comparison of Pre and F-Score of preprocessed images and original images

Type Precision F-Score
Original Image 91.44% 92.12%

Pre-Processed Image 95.62% 95.05%

(a) PA (b) Rec (c) MIou

Fig. 6 – Comparison of Pixel Accuracy, Recall and Mean Intersection over Union between preprocessed and original images.

3.3. Ablation experiment

To determine the effectiveness of the various modules in AM-Net, ablation studies were conducted in the
same experimental environment, and the performance of the network was compared after adding the modules.
We compare AM-Net with its four variants on the ISIC dataset in Table 2. We use four variants of AM-Net,
namely, AM-NET-1, AM-NET-2, AM-NET-3 and AM-NET-4, where:

• AM-NET-1 is built by removing the first SA module;

• AM-NET-2 is built by removing the second SA module;

• AM-NET-3 is constructed by transforming the CGE module into a normal convolutional module;

• AM-NET-4 is built using only the CGE module.

Table 2

Comparison of Precision and F-Score of ablation experiments

Modules Precision F-Score
AM-Net 95.62% 95.05%

AM-NET-1 93.68% 94.15%
AM-NET-2 94.20% 93.85%
AM-NET-3 87.26% 82.07%
AM-NET-4 95.35% 94.52%
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(a) PA (b) Rec (c) MIou

Fig. 7 – Comparison of Pixel Accuracy, Recall, and Mean Intersection over Union between ablation experiments.

Using the pre-processed dataset and comparing the AM-NET-1, AM-NET-2, AM-NET-3 and AM-NET-
4 experiments, we obtained the following results. By comparing the results of AM-NET-1 and AM-NET-2,
it can be seen that using the SA module alone will lead to poor performance. However, AM-Net’s Pre and
F-Score show that using two SA modules is effective. AM-Net and models AM-NET-1, AM-NET-2 and AM-
NET-4 all achieve high segmentation accuracy, indicating the effectiveness of using SA to obtain region and
contour information. The segmentation effect is unsatisfactory when the CGE module is converted to a normal
convolutional module. Model AM-NET-3 has the lowest Pre and F-Score of 87.26% and 82.07%, respectively.
This is significantly lower than those of models AM-NET-1, AM-NET-2, and AM-NET-3. This shows that the
CGE can extract features at different image scales, thus enabling more effective segmentation of the image.
Figure 7 shows a comparison of Pa, Rec and Miou for AM-Net and four variants. Clearly, the training effect of
AM-Net is better and more stable than that of its four variants. By comparing the module results, it can be seen
that each individual module significantly improves segmentation accuracy.

3.4. Contrast experiment

We compare the performance of AM-Net and seven other models, UNeXt [21], ISA-Net [22], K-Net [10],
OCR-Net [11], DNL-Net [23], Deeplabv3 [24] and U-Net [4], on the skin cancer dataset. AM-Net scores are
calculated according to the formulas described in Eqs.(7)–(11). The split result maps are annotated manually
by a pathologist. In addition, qualitative and quantitative validation measures are conducted to measure the
efficiency and efficacy of the proposed AM-Net framework.

Qualitative results. The qualitative results of AM-Net on the ISIC and BUSI datasets are shown in Fig. 8
and Fig. 9. In this case, the black area in the segmentation map is detected as the background and the white
area is the lesion area.

Image Label AM-Net UNeXt ISA-Net K-Net OCR-Net DNL-Net Deeplabv3 U-Net-
(a) ISIC dataset segmentation results of different methods. (b) loss curve on ISIC dataset.

Fig. 8 – Segmentation results obtained by different methods on ISIC dataset and loss curves corresponding to AM-Net.
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Image Label AM-Net UNeXt ISA-Net K-Net OCR-Net DNL-Net Deeplabv3 U-Net-
(a) BUSI dataset segmentation results of different methods. (b) loss curve on BUSI dataset.

Fig. 9 – Segmentation results obtained by different methods on BUSI dataset and loss curves corresponding to AM-Net.

Quantitative Results. Quantitative results are also essential for the statistical evaluation of the proposed
framework. The quantification results shown in Table 3 and Table 4 show the performance measurements of
the AM-Net model along with the experimental results of the seven existing models. Table 3 and Table 4 show
that AM-Net is effective as it outperforms the seven segmentation models across all metrics of the skin cancer
dataset.

Analysis. In Fig. 8 and Fig. 9, it shows the segmentation results obtained by different methods on the ISIC
and BUSI datasets. Moreover, the loss curve conesponding to AM-Net is also presented in these two figures.

For the ISIC dataset, we conclude that using AM-Net to classify images at the pixel level leads to good
segmentation performance. In contrast, U-Net bridges this gap, showing that using the encoder-decoder format
is effective. UNeXt adds a convolutional multilayer perceptron on the basis of U-Net, which reduces the number
of parameters and computational complexity, and improves the segmentation accuracy. K-Net performs better
in detailed boundary processing, which shows the effectiveness of boundary information. OCR-Net is unable
to extract rich contextual information with its encoder, resulting in a significant decrease in accuracy.

Table 3

Comparison of different methods on ISIC dataset

Models Year Params(M) PA MIoU Recall Precision F-Score
UNeXt [21] MICCAI-2022 1.47 95.86% 88.10% 92.39% 93.41% 93.66%
ISANet [22] IJCV-2021 - 93.82% 86.14% 93.40% 91.65% 92.46%
K-Net [10] NeurIPS-2021 37.26 95.81% 90.10% 94.45% 95.00% 94.77%

OCR-Net [11] ECCV-2020 - 90.08% 78.99% 89.37% 86.99% 88.04%
DNL-Net [23] ECCV-2020 71.48 94.42% 87.10% 92.81% 93.22% 93.01%

DeepLabv3 [24] ArXiv-2017 - 84.91% 69.68% 82.40% 80.98% 81.63%
U-Net [4] MICCAI-2016 13.39 93.78% 91.05% 86.32% 93.12% 89.72%
AM-Net - 2.89 96.16% 90.72% 94.48% 95.62% 95.05%

Similarly, the networks are tested on the BUSI dataset, and the results of the experiment are shown in
Table 4 and Fig. 9. AM-Net and ISA-Net incorporating the attention structure mostly achieve significant
performance and effectively improve the accuracy of the edge segmentation compared with U-Net. In addition,
compared with ISA-Net, which only uses attention as the basis for network construction, AM-Net uses the
combination of attention and CGE to achieve better performance and further improve segmentation accuracy,
which proves the correctness of AM-Net’s idea of combining attention and CGE. In addition, compared with
other segmentation networks, the multi-scale feature information fusion interaction capability of AM-Net again
improves the accuracy of the model, and the segmentation of lesion edges is more accurate, which proves the
importance and effectiveness of the CGE module for the final segmentation performance improvement.
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4. CONCLUSION

Our AM-Net network for segmenting medical images tackles the present challenges of blurred edges in the
segmentation of lesion regions in medical images and poor contextual information extraction. The segmentation
results are affected by network acquired knowledge about the lesion area and its boundaries. The SA module
of AM-Net captures the edge feature information and enhances the accuracy of the edge segmentation. For
acquisition purposes, the CGE module of AM-Net fuses image information uses multiple scales of convolution
and dilated convolution. As a result, the feature maps of the multiple scales of an image are collected to the
maximum extent possible, and the image is segmented more efficiently.

In addition, our findings suggest that our image preparation strategy is well-suited to the ISIC dataset and
the BUSI dataset, where the AM-Net network achieves 96.16% and 95.12% PA (Pixel Accuracy), 90.72% and
76.62% MIoU (Mean Intersection over Union), 94.48% and 82.84% Rec (Recall), 95.62% and 88.95% Pre
(Precision), and 95.09% and 85.55% F-Scores. A large number of experiments on the skin cancer segmentation
dataset also demonstrate the network’s effectiveness.

Table 4

Comparison of different methods on BUSI dataset

Models Year Params(M) PA MIoU Recall Precision F-Score
UNeXt MICCAI-2022 1.47 94.86% 75.37% 80.19% 85.49% 85.24%
ISA-Net IJCV-2021 - 94.91% 75.58% 81.67% 88.76% 84.75%
K-Net NeurIPS-2021 37.26 94.15% 72.36% 78.82% 86.71% 82.14%

OCR-Net ECCV-2020 - 91.60% 61.57% 68.08% 79.12% 71.89%
DNL-Net ECCV-2020 71.48 94.39% 73.70% 80.46% 86.87% 83.27%

DeepLabv3 ArXiv-2017 - 93.09% 66.25% 71.61% 86.19% 76.56%
U-Net MICCAI-2016 13,39 83.68% 71.92% 81.25% 81.47% 76.12%

AM-Net - 2.89 95.12% 76.62% 82.84% 88.95% 85.55%
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