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Abstract. In the present paper we are using the solutions to the SO(3,1)-gauge invariant Dirac equation written
on a Rindler spacetime to work out the conserved current density components. Within the so-called semi-
relativistic approximation, the up and down four-spinors are describing either spatially decaying modes or a
propagating field leading to a non-zero current along Oz. A direct connection between the critical value of the
acceleration and the spinor’s phase is established.
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1. INTRODUCTION

The phenomena of creation of scalars and fermions in a system of coordinates associated with an observer
moving with asymptotically uniform acceleration has a long history [1].

As it is known, an accelerated charged particle is seen by a comoving observer as being at rest in a gravi-
tational field while, for an accelerating observer, the particle in a inertial motion is freely falling in the gravita-
tional field.

Despite of being the simplest model, the Rindler background has received considerable attention, in the
context of a better understanding of the deep relation between the Larmor radiation and the equivalence prin-
ciple. Following the seminal paper of Unruh and Wald [2], a lot of works have tried to find an answer to the
fundamental question: What happens when an accelerating observer detects a Rindler particle ?

In order to understand how quantum systems are affected by the structure of spacetime, the equations
describing relativistic particles moving on curved manifolds have been intensively worked out [3–5]. As for
the Rindler spacetime, recently, in a (1+1)-dimensional toy model, the Dirac equation has been discussed [6],
pointing out that the Zitterbewegun of a free relativistic electron is an observable phenomenon in non-inertial
frames [7].

Even though most of the authors are using a two-dimensional setting, the four-dimensional theory is nec-
essary to be developed in view of a complete quantization procedure [8]. As a first step in studying quantum
effects of charged particles in accelerated frames, it is important to derive exact solutions to the field equations.
In this respect, the free of coordinates formalism based on Cartan’s equations, which is employed in the present
paper, is particularly useful.

Our main motivation for this work is to provide more physical results coming from the analysis developed
in our previous paper [9], devoted to the SO(3,1)-gauge invariant Dirac equation on Rindler spacetime, in both
Dirac and Weyl representations. Similar results have been recently obtained for a free scalar field satisfying the
Klein-Gordon equation, where the Rindler modes have been derived in terms of the modified Bessel function
of the second kind [10]. The authors are studying the deep connection between acceleration, radiation, and the
Unruh effect.
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In the next section, after briefly recapitulating the mathematical formalism, we are investigating the con-
served current density components, with a particular emphasis on the semi-relativistic case.

Our results are different from the ones derived in the non-relativistic picture developed in [11], where the
authors have started with the classical Lagrangian and they have shown that the Schrödinger equation for the
accelerated particle can be reduced to the one dimensional hydrogen atom problem. As the quantized energy
levels has been found identical with those of the quantum harmonic oscillator, the existence of a new kind of
quanta can be predicted.

2. DIRAC EQUATION AND CURRENT COMPONENTS

Using the following transformation formulas between the inertial and hyperbolic coordinates

X = x , Y = y , Z = zcosh(αt) , T = zsinh(αt) , α ∈ R (1)

the Minkowski line element ds2 = (dX)2 +(dY )2 +(dZ)2 − (dT )2 turns into the Rindler metric with

ds2 = (dx)2 +(dy)2 +(dz)2 − (αz)2(dt)2 (2)

In order to develop a SO(3,1)-gauge invariant approach, we have introduced the ortho-normal bases [9]

ω
µ = dxµ , ω

4 = (αz)dt ; eµ = ∂µ , e4 =
1

αz
∂t (3)

where µ = 1,3 and derived, using the first Cartan’s equation

dω
a = Γ

a
[bc] ω

b ∧ω
c , 1 ≤ b < c ≤ 4

the one-form connection
Γ34 =

1
z

ω
4 (4)

By employing the second Cartan’s equation, one may notice that the essential curvature 2-form component
R34 = dΓ34 is vanishing, pointing out the existence of a flat spacetime. We only deal with an uniformly-
accelerated frame with α = a/c2, where a is the proper acceleration.

The relativistic fermion is described by the Dirac equation

γ
a
[

ψ|a +
1
4

Γbca γ
b
γ

c
ψ

]
+m0ψ = 0 (5)

with ψ|a = eaψ , which has the explicit form

γ
a
ψ|a +

1
2z

γ
3
ψ +m0ψ = 0

In terms of the defined tetrads (3), the above equation looks like

γ
1
ψ,1 + γ

2
ψ,2 + γ

3
[

ψ,3 +
1
2z

ψ

]
+

1
αz

γ
4
ψ,4 +m0ψ = 0 (6)

and we are using the Dirac representation, γµ =−iβ αµ , γ4 =−iβ , where

β =

(
I 0
0 −I

)
, α

µ =

(
0 σ µ

σ µ 0

)
in signature (+2)-convention.
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As it has been shown in our previous paper [9], for positive energy stationary states, the equation (6) is
satisfied by the following bi-spinor

ψ (⃗x, t) =
e−iEt
√

αz
N

2


F+(z)+ i e−iγF−(z)
F−(z)− i eiγF+(z)

F+(z)− i e−iγF−(z)
F−(z)+ i eiγF+(z)

eipAxA
(7)

where A = 1,2 and F± are expressed in terms of K−Bessel functions [12]

F±(z) =
√

αzK 1
2∓iω(ε⊥z), (8)

with
ε⊥ =

[
p2
⊥+m2

0
]1/2

, ω =
E
α

One should impose the normalization condition

LxLy

∫
∞

0
ψ

†
ψ dz = 1 (9)

i.e.

2LxLy
|N |2

ε⊥

∫
∞

0
K 1

2+iω(ε⊥z)K 1
2−iω(ε⊥z)d(ε⊥z) = 1 ,

which leads, by using the relation [12]∫
∞

0
Kν(t)Kν ′(t)dt =

π

4
Γ(1+ iω)Γ(1− iω) =

π

4
|Γ(1+ iω)|2 = π2ω

4sinh(πω)

to the normalization constant
|N |2 = 2

LxLy

ε⊥
π2ω

sinh(πω) (10)

At this stage, one is able to compute the conserved current density components defined by

jµ = iqψ̄γ
µ

ψ (11)

and these have the following real expressions

jx = q|N |2 cosγ

{
eiγK 1

2+iω(ε⊥z)K∗
1
2−iω(ε⊥z)+ e−iγK∗

1
2+iω(ε⊥z)K 1

2−iω(ε⊥z)
}

jy = q|N |2 sinγ

{
eiγK 1

2+iω(ε⊥z)K∗
1
2−iω(ε⊥z)+ e−iγK∗

1
2+iω(ε⊥z)K 1

2−iω(ε⊥z)
}

(12)

By integrating with respect to the orthogonal surface, one obtains the corresponding currents

Jx =
∫

jx dydz =
qLy

ε⊥
|N |2 cosγ

{
eiγI1 + e−iγI2

}
with

I1,2 =
1
2

(
1
2
± iω

)
π

cosh(πω)

and similarly for Jy, where we have applied the relation (10). Thus, we finally get the real expressions

Jx =
q
Lx

c2α

πE
tanh

(
πE
cα

)
cos2

γ

{
1−2

E
cα

tanγ

}
(13)
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and

Jy =
q
Ly

c2α

πE
tanh

(
πE
cα

)
sinγ cosγ

{
1−2

E
cα

tanγ

}
(14)

and one may notice that, for a given γ ∈ (0, π/2), there is a critical value of the acceleration, αcr = 2E tanγ ,
above which both currents are turning from negative to positive values. Also, for γ = 0, only Jx survives, while
for γ → π/2, one deals with a finite negative current flowing along Oy,

Jy =− 2cq
πLy

tanh
(

πE
cα

)
In what it concerns the vanishing component jz, let us write the bi-spinor (7) as the following superposition

ψ (⃗x, t) = ψ1(⃗x, t)+ψ2(⃗x, t)

with

ψ1(⃗x, t) = N u1 K 1
2−iω(ε⊥z)ei(pAxA−Et)

ψ2(⃗x, t) = N u2 K 1
2+iω(ε⊥z)ei(pAxA−Et)

where the two bi-spinors

u1 =
1
2


1

−i eiγ

1
i eiγ

 , u2 =
1
2


i e−iγ

1
−i e−iγ

1


behave, with respect to the Dirac conjugation ψ̄ = iψ†γ4, like a null complex diad, namely ū1 u1 = 0 = ū2 u2,
ū1 u2 = i e−iγ , ū2 u1 =− i eiγ . The two base oriented equal currents are given by

jz = q|N |2K 1
2−iω(ε⊥z)K 1

2+iω(ε⊥z)

3. THE WEAK FIELD APPROXIMATION

Let us turn now to the physically important weak field-situation, i.e. |αs| ≪ 1, where z = 1
α
+ s. With the

4-spinor given in (7), written in terms of the 2-spinors as

ψ(x) =
[

ϕ (⃗x)
χ (⃗x)

]
e−iEt (15)

the equation (6) splits into the coupled equations

σ
µ

ϕ,µ +
1
2z

σ
3
ϕ = i

[
E
αz

+m0

]
χ

σ
µ

χ,µ +
1
2z

σ
3
χ = i

[
E
αz

−m0

]
ϕ (16)

In the non-relativistic regime ε ≪ m0, with E = m0 + ε , ε ∈ R+, the system (16) casts into the form

σ
µ

ϕ,µ +
α

2
σ

3
ϕ = 2im0 χ

σ
µ

χ,µ +
α

2
σ

3
χ = i [ε −αm0s]ϕ (17)
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With the relation
χ = − i

2m0

[
σ

µ
ϕ,µ +

α

2
σ

3
ϕ

]
, (18)

the second equation in (17) becomes

[
∂

2
x +∂

2
y +∂

2
s
]

ϕ +α
∂ϕ

∂ s
+

[
2m0(ε −αm0s)+

α2

4

]
ϕ = 0 (19)

and, with the function substitution
ϕ (⃗x) = e−

αs
2 C (⃗x), (20)

this turns into the Schrödinger equation

∆C +

[
2m0

(
ε +

α2

4m0
−αm0s

)]
C = 0 (21)

where C (⃗x) = eipAxA
T (s). We introduce the new dimensionless variable

η =
(
2αm2

0
)1/3

[
s− 1

α

(
ε

m0
−

p2
⊥

2m2
0
+

α2

4m2
0

)]
(22)

which might be positive or negative.

In the first case (η > 0), corresponding to the condition

ε∥

m0
+

α2

4m2
0
< αs ≪ 1 (23)

where ε∥ = ε − p2
⊥/(2m0), the relation (21) leads to the Airy equation [12]

d2T
dη2 −ηT = 0 (24)

whose solution is expressed in terms of the Bessel modified function of the first kind as

T (η) =
1√
3π

√
η K1/3

(
2
3

η
3/2

)
(25)

One may easily check that the above expression is decreasing from T (0)≈ 0.63 to zero, for large η’s, pointing
out the existence of decaying modes along Oz.

For the up 2-spinor given by

ϕ
up(⃗x) =

1√
3π

eipAxA
e−

αs
2
√

ηK1/3

(
2
3

η
3/2

)[
1
0

]
(26)

the 2-spinor χ reads

χ
up(⃗x) =− i

2m0

1√
3π

eipAxA
e−

αs
2

[
−
(
2αm2

0
)1/3

ηK2/3
(2

3 η3/2
)

i(px + ipy)
√

ηK1/3
(2

3 η3/2
) ]

(27)
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so that the up 4-spinor ψ(x), defined in (7) is

ψ
up(x) =

N√
3π

ei(pAxA−Et) e−
αs
2


√

ηK1/3
(2

3 η3/2
)

0

i
(

α

4m0

)1/3
ηK2/3

(2
3 η3/2

)
px+ipy

2m0

√
ηK1/3

(2
3 η3/2

)

 (28)

As for the down 4-spinor, this can be computed with the relation

ϕ
down(⃗x) =

1√
3π

eipAxA
e−

αs
2
√

ηK1/3

(
2
3

η
3/2

)[
0
1

]
(29)

and has the expression

ψ
down(x) =

N√
3π

ei(pAxA−Et) e−
αs
2


0√

ηK1/3
(2

3 η3/2
)

px−ipy
2m0

√
ηK1/3

(2
3 η3/2

)
−i

(
α

4m0

)1/3
ηK2/3

(2
3 η3/2

)
 (30)

One may notice that, in the particular case of px = py = 0, the relations (28) and (30) get the simpler form:

ψ
up
0 =

N√
3π

e−iEt e−
αs
2


√

ηK1/3
(2

3 η3/2
)

0

i
(

α

4m0

)1/3
ηK2/3

(2
3 η3/2

)
0


and

ψ
down
0 =

N√
3π

e−iEt e−
αs
2


0√

ηK1/3
(2

3 η3/2
)

0

−i
(

α

4m0

)1/3
ηK2/3

(2
3 η3/2

)


being eigen-vectors of the spin operator, corresponding to the eigen-values λ =±1/2,

Σ3 =− i
4
(
γ

1
γ

2 − γ
2
γ

1)= 1
2

[
σ3 0
0 σ3

]
For e−αs ≈ 1, the normalization constant N coming from the condition

∫
∞

0 ψ†ψ ds = 1, is given by the
following relation

|N |2

3π

1(
2αm2

0

)1/3

{[
1+

p2
⊥

(2m0)2

]
I1 +

(
α

4m0

)2/3

I2

}
= 1

where the two integrals, namely

I1 =
∫

∞

0
η

[
K1/3

(
2
3

η
3/2

)]2

dη ≈ 2 , I2 =
∫

∞

0
η

2
[

K2/3

(
2
3

η
3/2

)]2

dη =
π√
3

have been computed using the relation [12]∫
∞

0
ta−1 [Kν(t)]

2 dt =
√

π

4Γ
(a+1

2

)Γ

(a
2

)
Γ

(a
2
−ν

)
Γ

(a
2
+ν

)



7 Currents of quantum origin in uniform accelerated frames 141

valid for a > 2ν . In explicit calculations, one may use the approximation

|N |2 ≈ 3π

2
(
2αm2

0
)1/3

[
1−

p2
⊥

(2m0)2 −
π

2
√

3

(
α

4m0

)2/3
]
≈ 3π

2
(
2αm2

0
)1/3

(31)

In the other case corresponding to η < 0, i.e.

αs <
ε∥

m0
+

α2

4m2
0

(32)

which is a natural condition for the weak-field situation, we can change the sign in the equation (24) and
η → |η |. The Bessel modified functions K1/3 and K2/3 will be replaced by the oscillating Hankel functions

H(1)
1/3 and H(1)

2/3 and expression (28) of the up spinor becomes

ψ
up(x) =

N√
3π

ei(pAxA−Et) e−
αs
2


√

ηH(1)
1/3

(2
3 η3/2

)
0

1
2(
√

3+ i)
(

α

4m0

)1/3
ηH(1)

2/3

(2
3 η3/2

)
px+ipy

2m0

√
ηH(1)

1/3

(2
3 η3/2

)

 (33)

and similarly for ψdown. Unlike the previous case, these are leading to a non-vanishing real positive current
component along Oz

jz = q|N |2 1√
3π

e−αs
(

α

4m0

)2/3

η
3/2

[
H(2)

1/3H(1)
2/3 +H(1)

1/3H(2)
2/3

]
(34)

which, close to the turning point corresponding to z → z∗ (η → 0), gets the value jz ∼ qα .

4. CONCLUDING REMARKS

The Rindler coordinates are of a major importance for describing how the Minkowski spacetime appears
to an uniformly accelerated observer. In this respect, they open the way for a generalization of the Larmor
formula in gravitational fields. Using a coordinate-independent method, based on Cartan’s formalism, the
theory developed in the present paper can be seen as a model example of solving the Dirac equation on a
curved spacetime. With the mode solutions to the Dirac equation, one can constract the Rindler quantum field
and the current and charge density operators.

An intriguing result is the fact that the acceleration alters the mass dimensionality of the field from 3/2 to
one. Also, by inspecting the expressions of the bi-spinor, one may notice that the signs of the components and
their phases are suggesting an Elko-type behavior [15]. Since the mismatch of the mass dimensionality of the
new fields forbids them to enter the SM doublets, these fermions have been seen as first-principle candidates for
dark matter. However, this Elko and mass dimension one fermion needs a new formalism to compute transition
probabilities and observables [13, 14].

Another important result is the direct connection between the critical value of the acceleration and the proper
phase of the Elko spinor αcr = 2E tanγ . The currents (13) and (14) get an asymptotic behavior to constant
positive values for large accelerations, i.e. α ≫ 2E tanγ . Putting it backwards, it turns out that the phase of the
Elko behavior is established by an effective acceleration, according to the relation γ = arctanαcr/(2E).

A special attention has been given to the semi-relativistic approximation. The equation (24) is similar to
the one derived by Fowler and Nordheim in their original work on field emission of electrons [16] and agrees
with the one obtained in an (1+1)-dimensional approach in [17].
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As long as the natural condition (32) is satisfied, i.e. z < z∗ ≈ 1/α , one deals with a propagating field with
the wave function (33) and a non-zero current along Oz given in (34). Once z > z∗, one ends up with spatially
decaying modes along Oz and the current jz is vanishing.
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