Volume 24, Number 2/2023, pp. 113-120

DOI: 10.59277/PRA-SER.A.24.2.02

TWO-DISTANCE VERTEX-DISTINGUISHING TOTAL COLORING OF SUBCUBIC GRAPHS

Zhengyue HE, Li LIANG, Wei GAO

Yunnan Normal University, School of Information Science and Technology
Kunming 650500, China
Corresponding author: Wei GAO, E-mail: gaowei@ynnu.edu.cn

Abstract. A 2-distance vertex-distinguishing total coloring of graph G is a proper total coloring of G such that any pair of vertices at distance of two have distinct sets of colors. The 2-distance vertex-distinguishing total chromatic number $\chi_{d2}^{"}(G)$ of G is the minimum number of colors needed for a 2-distance vertex-distinguishing total coloring of G. In this paper, it's proved that if G is a subcubic graph, then $\chi_{d2}^{"}(G) \leq 7$.

Key words: 2-distance vertex distinguishing total coloring, total coloring, subcubic graph. *Mathematics Subject Classification (MSC2020)*: 05C15.

1. INTRODUCTION

All graphs considered in this paper are finite, simple and undirected. We use V(G), E(G), $\delta(G)$ and $\Delta(G)$ to denote the vertex set, edge set, minimum degree and maximum degree of graph G, respectively. The *distance* between two vertices u and v, denoted by d(u,v), is the length of the shortest path connecting them. The graph G is denoted as *Cubic* if it is a 3-regular graph, and *subcubic* if $\Delta(G) \leq 3$. Let C_n be a cycle whose length is n.

A *total-k-coloring* of graph G is a mapping $\phi \colon V(G) \cup E(G) \to \{1, 2, \cdots, k\}$ so that $\phi(x) \neq \phi(y)$ for any pair of adjacent or incident elements $x, y \in V(G) \cup E(G)$. The *total chromatic index* $\chi''(G)$ of graph G is defined as the smallest integer k to make sure a proper total-k-coloring exist in G. The total coloring of graph G was introduced by Behzad [1] and independently by Vizing [2], and each raised the following conjecture:

CONJECTURE 1. Every simple graph G has $\chi''(G) \leq \Delta(G) + 2$.

So far Conjecture 1 remains open. A well-known upper bound of $\chi''(G)$ for simple graph G may be $\Delta(G) + 10^{26}$, by Molloy and Reed [3].

For a total-k-coloring ϕ of G, we use $C_{\phi}(v) = \{\phi(v)\} \cup \{\phi(xv) | xv \in E(G)\}$ to denote the set of colors assigned to a vertex v and those edges incident to v. The *neighbor-distinguishing total chromatic index* $\chi_a''(G)$ of G is defined as the smallest integer k for which G can be totally-k-colored by using k colors so that $C_{\phi}(u) \neq C_{\phi}(v)$ for any pair of adjacent vertices u and v.

Zhang et al. [4] studied neighbor-distinguishing total coloring of cycles, wheels, trees, complete graphs and complete bipartite graphs, and proposed the following conjecture:

CONJECTURE 2. Every graph G with $|V(G)| \ge 2$ has $\chi_a''(G) \le \Delta(G) + 3$.

Wang [5] and Chen [6], independently, proved this Conjecture holds for graphs with $\Delta(G) \leq 3$. Lu et al. [7] proved this Conjecture holds for graphs with $\Delta(G) = 4$, and Papaioannou et al. [8] verified this Conjecture for 4-regular graphs. Applying a probabilistic analysis, Coker et al. [9] verified that $\chi_a''(G) \leq \Delta(G) + C$, where C

is a constant. Huang et al. [10] proved that $\chi_a^{''}(G) \leq 2\Delta(G)$ for any graph G with $\Delta(G) \geq 3$. The conjecture is still open for planar graphs. Furthermore, Chang et al. [11] proved that $\chi_a^{''}(G) \leq \Delta(G) + 3$ for every planar graph G with $\Delta(G) \geq 8$.

The 2-distance vertex-distinguishing total coloring of graph G is a proper total coloring of G such that $C_{\phi}(u) \neq C_{\phi}(v)$ for any pair of vertices u and v with d(u,v) = 2. The 2-distance vertex-distinguishing total chromatic index $\chi_{d2}^{''}(G)$ of graph G is the smallest integer k such that G has a 2-distance vertex-distinguishing total coloring using k colors.

Hu et al. [12] studied 2-distance vertex-distinguishing total coloring of paths, cycles, wheels, trees, unicycle graphs, $P_m \times P_n$ and $C_m \times P_n$. Then they proposed the following conjecture:

CONJECTURE 3. Every simple graph G has $\chi_{d2}^{"}(G) \leq \Delta(G) + 3$.

In this paper, we will prove $\chi_{d2}^{"}(G) \leq 7$ for any subcubic graphs.

2. MAIN RESULTS

Before showing our main result, we introduce a few of concepts and notation. $N_G(v)$ denotes the set of neighbors of the vertex v and $d_G(v)$ denotes the degree of the vertex v in G. A vertex of degree k is called k-vertex. Similarly, a vertex of degree at least k(at most k) is called k-vertex(k-vertex). A 3-vertex v is called a 3i-vertex if v is adjacent to exactly i 2-vertices for $0 \le i \le 3$. Let $\chi(G)$ denote the chromatic index of G, which is the least integer k for which G has a vertex coloring using k colors such that any two adjacent vertices get distinct colors.

In what follows, a 2-distance vertex-distinguishing total k-coloring of G is shortly written as a 2DVDT-k-coloring. Two vertices $u, v \in V(G)$ with d(u, v) = 2 are called a conflict with respect to the coloring ϕ if $C_{\phi}(u) = C_{\phi}(v)$. Otherwise, they are called compatible. For a subgraph G' of G and a 2DVDT-coloring ϕ of G', we say that ϕ is a *legal coloring* of G' for short.

The proof of main result is based on the following facts:

LEMMA 1 ([12]). Let G be a simple graph with $\Delta(G) \leq 2$, then $\chi_{d2}^{''}(G) \leq 5$.

LEMMA 2 ([13]). If G is a connected graph and is neither an odd cycle nor a complete graph, then $\chi(G) \leq \Delta$.

LEMMA 3 ([14]). Every connected cubic graph G without cut edges can be edge-partitioned into a perfect matching and a class of cycles.

THEOREM 1. If G be a subcubic graph, then $\chi_{d2}^{''}(G) \leq 7$.

Proof. The proof is by contradiction. Let G be a minimum counterexample in the Theorem 1 to make its edges E(G) as small as possible. Obviously, G is a connected graph and $\chi_{d2}^{"}(G) > 7$. However, if |E(H)| < |E(G)| for any graph H, then $\chi_{d2}^{"}(H) \le 7$. Assume that $C = \{1, 2, \dots, 7\}$ is a color set and ϕ is a 2DVDT-7-coloring. For the sake of simplicity in the following proof, we write $C_{\phi}(v)$ as C(v) for a vertex $v \in V(G')$.

If $\Delta(G) \leq 2$, then graph G is a cycle or a path. From Lemma 1 it is follows that $\chi''_{d2}(G) \leq 5$. So, assume that $\Delta(G) = 3$. To complete the proof, we need to establish a series of auxiliary claims.

CLAIM 1. $\delta(G) > 2$.

Proof. Assume to the contrary that G contains a 1-vertex v. Let u be the neighbor of v. Consider the subgraph $G' = G - \{v\}$. Then G' has a 2DVDT-7-coloring ϕ using the color set C by the minimality of G. We have two possibilities:

Case 1. $d_G(u) = 2$.

Let u_1 be the neighbor of u other than v. It suffices to color uv with color $a \in C \setminus \{\phi(u), \phi(uu_1)\}$ so that u is compatible with the neighbors of u_1 , then color v with color in $C \setminus \{\phi(u), \phi(uu_1), a\}$.

Case 2. $d_G(u) = 3$.

Let u_1, u_2 be the neighbors of u other than v. If at least one of u_1 and u_2 is a 2^- -vertex, then it suffices to color uv with color $b \in C \setminus \{\phi(u), \phi(uu_1), \phi(uu_2)\}$ so that u is compatible with the neighbors of u_1 and u_2 , and color v with color in $C \setminus \{\phi(u), \phi(uu_1), \phi(uu_2), b\}$. Otherwise, $d_G(u_1) = d_G(u_2) = 3$. Let $N_G(u_1) = \{u, w_1, w_2\}$ and $N_G(u_2) = \{u, w_3, w_4\}$. Furthermore, assume that $\phi(uu_1) = 1, \phi(uu_2) = 2$ and $\phi(u) = 3$. If uv cannot not be legally colored, suppose without loss of generality that $C(w_i) = \{1, 2, 3, i + 3\}$ for i = 1, 2, 3, 4. It suffices to recolor u with color $u \in \{4, 5, 6, 7\} \setminus \{\phi(u_1), \phi(u_2)\}$, color uv with color in $\{4, 5, 6, 7\} \setminus \{a\}$, and color v with 1. Thus, u0 has a 2DVDT-7-coloring, a contradiction.

CLAIM 2. *G* does not contain a 3-cycle $v_1v_2v_3v_1$ satisfying one of the following:

- (1) $d_G(v_2) = d_G(v_3) = 2$ and $d_G(v_1) = 3$.
- (2) $d_G(v_2) = d_G(v_3) = 3$ and $d_G(v_1) = 2$.
- *Proof.* (1) Assume to the contrary that G contains a 3-cycle $v_1v_2v_3v_1$ satisfying $d_G(v_2) = d_G(v_3) = 2$ and $d_G(v_1) = 3$. Let u_1 be the neighbor of v_1 other than v_1 and v_3 . Consider the subgraph $G' = G \{v_2v_3\}$. Then G' has a 2DVDT-7-coloring ϕ using the color set G by the minimality of G. It suffices to color v_2v_3 with color in $G \setminus (C(v_2), C(v_3))$ such that v_2 and v_3 are compatible with u_1 . Thus, G has a 2DVDT-7-coloring, a contradiction.
- (2) Assume to the contrary that G contains a 3-cycle $v_1v_2v_3v_1$ satisfying $d_G(v_2) = d_G(v_3) = 3$ and $d_G(v_1) = 2$. Let u_i be the neighbor of v_i other than v_1 . Consider the subgraph $G' = G \{v_1v_3\}$. Then G' has a 2DVDT7-coloring ϕ using the color set G by the minimality of G. Assume without loss of generality that $\phi(v_1u_1) = 1$, $\phi(v_2v_2) = 2$, $\phi(v_2u_2) = 3$ and $\phi(v_2) = 4$. It is easy to notice that $\phi(v_3) \notin \{2,4\}$. Then we use color 2 firstly to recolor v_1 . We have to handle the following two situations:

Case 1. $d_G(u_2) = 2$.

Firstly, assume that $\phi(v_3) \in \{1,3\}$. It suffices to color v_1v_3 with color in $\{4,5,6,7\} \setminus \{\phi(v_3u_3)\}$ such that G can be legally colored. Next, assume that $\phi(v_3) \in \{5,6,7\}$. Say $\phi(v_3) = 5$ by symmetry. If $\phi(v_3u_3) \in \{1,3\}$, it suffices to color v_1v_3 with color in $\{4,6,7\}$. Otherwise, $\phi(v_3u_3) \in \{4,6,7\}$. Say $\phi(v_3u_3) = 4$ by symmetry. If v_1v_3 cannot be legally colored, assume without loss of generality that $C(u_3') = \{2,4,5,6\}$ and $C(u_3'') = \{2,4,5,7\}$ with $N_G(u_3) = \{v_3,u_3',u_3''\}$. It suffices to color v_1v_3 with 3 and recolor v_1 with color 6 or 7. Case 2. $d_G(u_2) = 3$.

Firstly, assume that $\phi(v_3) = 1$. It suffices to color v_1v_3 with color in $\{3,4,5,6,7\} \setminus \{\phi(v_3u_3)\}$ such that G can be legally colored. Next, assume that $\phi(v_3) \in \{3,5,6,7\}$. Say $\phi(v_3) = 3$ by symmetry. If $\phi(v_3u_3) = 1$, it suffices to color v_1v_3 with color in $\{4,5,6,7\}$. Otherwise, $\phi(v_3u_3) \in \{4,5,6,7\}$. Say $\phi(v_3u_3) = 4$ by symmetry. If v_1v_3 cannot be legally colored, assume without loss of generality that $C(u_3') = \{2,3,4,5\}$, $C(u_3'') = \{2,3,4,6\}$ and $C(u_2) = \{2,3,4,7\}$ with $N_G(u_3) = \{v_3,u_3',u_3''\}$. It suffices to recolor v_3 with color $a \in \{1,5,6,7\} \setminus \{\phi(u_3)\}$ and color v_1v_3 with color in $\{5,6,7\} \setminus \{a\}$.

CLAIM 3. G does not contain adjacent 2-vertices.

Proof. Assume to the contrary, G contains adjacent 2-vertices u, v. Let $N_G(u) = \{v, u_1\}$ and $N_G(v) = \{u, v_1\}$. If $d_G(v_1) = 3$, then let $N_G(v_1) = \{v, v_1', v_1''\}$. By Claim 2 and $\Delta(G) = 3$, $vu_1 \notin E(G)$. Let $G' = G - \{u\} + \{u_1v\}$. Then G' has a 2DVDT-7-coloring ϕ using the color set G by the minimality of G. We have to handle the following two situations:

Case 1. $d_G(u_1) = 2$.

Let $N_G(u_1) = \{u, u_1'\}$. Based on ϕ , in G, color uu_1 with $\phi(vu_1)$. It suffices to color uv with color $b \in C \setminus \{\phi(v), \phi(vv_1), \phi(uu_1), \phi(u_1u_1')\}$, and color u with color in $C \setminus (C(u_1) \cup \{b\})$. Case 2. $d_G(u_1) = 3$.

Let $N_G(u_1) = \{u, u_1', u_1''\}$. Assume without loss of generality that $\phi(u_1) = 4$, $\phi(u_1u_1') = 1$, $\phi(u_1u_1'') = 2$ and $\phi(vu_1) = 3$. It follows that $\phi(v) \notin \{3,4\}$ and $\phi(vv_1) \neq 3$. Based on ϕ , in G, color uu_1 with g. We have to

handle two possibilities:

- Assume that $\phi(v) \in \{1,2\}$. Say $\phi(v) = 1$ by symmetry. It suffices to color uv with color $b \in \{4,5,6,7\} \setminus \{\phi(vv_1)\}$ such that v is compatible with the neighbours of v_1 , and color u with color in $\{5,6,7\} \setminus \{b\}$.
- Assume that $\phi(v)$ ∈ {5,6,7}. Say $\phi(v)$ = 5 by symmetry. If $\phi(vv_1)$ ∉ {4,6,7}, then it is similar to the former case of $\phi(v)$ ∈ {1,2}. Otherwise, $\phi(vv_1)$ ∈ {4,6,7}. Say $\phi(vv_1)$ = 4 by symmetry. If $d_G(v_1)$ = 2 or $d_G(v_1)$ = 3 and $C(v_1')$ ≠ {4,5,i} for i = 6,7. Then it suffices to color uv with b ∈ {6,7}, and color u with color in {6,7} \ {b}. If $d_G(v_1)$ = 3 and $(C(v_1'), C(v_1''))$ = ({4,5,6}, {4,5,7}). It suffices to recolor v with color a ∈ {1,2} \ { $\phi(v_1)$ }, and color uv and u with 6 and 7, respectively.

CLAIM 4. G does not contain a 4-cycle $v_1v_2v_3v_4v_1$ such that $d_G(v_2) = d_G(v_4) = 2$.

Proof. Assume to the contrary, G contains a 4-cycle $v_1v_2v_3v_4v_1$ such that $d_G(v_2)=d_G(v_4)=2$. By Claim 2 and Claim 3, $d_G(v_1)=d_G(v_3)=3$ and $v_1v_3\notin E(G)$. Then let u_1,u_3 be the neighbors of v_1,v_3 other than v_2 and v_4 , respectively. If $d_G(u_1)=d_G(u_3)=3$, then let $N_G(u_1)=\{v_1,u_1^{'},u_1^{''}\}$ and $N_G(u_3)=\{v_3,u_3^{'},u_3^{''}\}$. There are three situations to be handled:

Case 1. $u_1 = u_3$.

Let $G' = G - \{v_2, v_4\}$. Then G' has a 2DVDT-7-coloring ϕ using the color set C by the minimality of G. Assume without loss of generality that $\phi(v_3u_3) = 1, \phi(v_1u_3) = 2, \phi(u_3u_3') = 4$ and $\phi(u_3) = 4(d_G(u_3) = 2)$ is similar). Remove firstly the colors of v_1 and v_3 , and use 4 to color v_2, v_4 . Next, use 1, 3, 2, 3 to color $v_1, v_1v_4, v_4v_3, v_3v_2$, respectively. Finally, use $b \in \{5,6\}$ to color v_3 to make v_3 compatible with u_3' , and color v_1v_2 with color in $\{5,6,7\} \setminus \{b\}$ such that v_1 is compatible with u_3' .

Case 2. $u_1u_3 \notin E(G)$ and $u_1 \neq u_3$.

Let $G' = G - \{v_1, v_2, v_3, v_4\} + \{u_1u_3\}$. Then G' has a 2DVDT-7-coloring ϕ using the color set C by the minimality of G. Assume without loss of generality that $\phi(u_1u_3) = 1, \phi(u_3u_3') = 2, \phi(u_3u_3'') = 3$ and $\phi(u_3) = 4(d_G(u_3) = 2)$ is similar). Based on ϕ , in G, use 1 to color u_1v_1, u_3v_3 . It is easy to notice that color sets of u_1 and u_3 don't change in G, and $\phi(u_1) \neq 4$. So it suffices to color $v_2, v_2v_3, v_3, v_3v_4, v_4, v_1v_4, v_1$ with 2, 4, 5, 6, 2, 3, 4, respectively. And color v_1v_2 with color in $\{5,6,7\}$ such that G can be legally colored.

Case 3. $u_1u_3 \in E(G)$ and $u_1 \neq u_3$.

Let $G' = G - \{v_2, v_4\}$. Then G' has a 2DVDT-7-coloring ϕ using the color set C by the minimality of G. Assume without loss of generality that $\phi(u_1u_3) = 2$, $\phi(u_3u_3') = 3$, $\phi(u_3v_3) = 1$ and $\phi(u_3) = 4(d_G(u_3) = 2)$ is similar). It is easy to notice that $\phi(u_1) \neq 2$ and $\phi(u_1v_1) \neq 2$. Remove the colors of v_1 and v_3 . It firstly suffices to color $v_1, v_4, v_3v_4, v_3, v_2$ with color 2, 4, 2, 3, 4, respectively. Nextly, we use $b \in \{5, 6, 7\}$ to color v_2v_3 such that v_3 is compatible with u_1 and u_3' . Finally, we use $a \in \{1, 3, 5, 6, 7\} \setminus \{b, \phi(u_1v_1)\}$ to color v_2v_2 , and color v_1v_4 with color in $\{3, 5, 6, 7\} \setminus \{a, \phi(v_1u_1)\}$. Obviously, v_1 has at least 4 distinctive color sets. Since v_1 has at most three vertices of conflict, G has a 2DVDT-7-coloring. Thus, a contradiction.

CLAIM 5. G does not contain 33-vertex.

Proof. Assume to the contrary, G contains a 33-vertex v. Let $N_G(v) = \{v_1, v_2, v_3\}$ and $d_G(v_1) = d_G(v_2) = d_G(v_3) = 2$. And let u_i be the neighbor of v_i other than v for i = 1, 2, 3. By Claim 3, $d_G(u_1) = d_G(u_2) = d_G(u_3) = 3$. Let $N_G(u_i) = \{v_i, u_i', u_i''\}$ for i = 1, 2, 3. By Claim 4, $u_1 \neq u_2$. Consider the subgraph $G = G - \{v_1\} - \{vv_2\} + \{u_1v_2\}$. Then G has a 2DVDT-7-coloring ϕ using the color set G by the minimality of G. Assume without loss of generality that $\phi(v_2u_1) = 1, \phi(u_1u_1') = 2, \phi(u_1u_1'') = 3$ and $\phi(u_1) = 4$. Based on ϕ , in G, we color u_1v_1 with 1. Remove the color of v. There are two possibilities to be handled:

Case 1. $\phi(vv_3) \neq 1$.

We color vv_2 with 1. It is easy to notice that the color set of v_2 doesn't change in G. We have to handle three situations:

- (1) $\phi(vv_3) \in \{2,3\}$. Say $\phi(vv_3) = 2$ by symmetry. Firstly, we use 5 to color v_1 and $v_2 \in \{4,6,7\}$ to color vv_1 such that v_1 is compatible with v_2 . It follows that vv_1 can be colored with at least two colors. Next, we have two possibilities need to be handled according to the color of v_3 :
 - $\phi(v_3) \in \{1,4,5,6,7\}$. It suffices to color v with color in $\{3,4,6,7\} \setminus \{\phi(v_2),\phi(v_3),b_1\}$. Obviously, v

has at least one color set that can be distinguished from u_i for i = 1, 2, 3.

- $\phi(v_3) = 3$. We color v with $b_2 \in \{4,6,7\} \setminus \{\phi(v_2),b_1\}$. If $C(v_2) = \{1,5,i\}, \phi(v_2) = i$, and $C(u_3) = \{1,2,m,p\}$ for $i \in \{4,6,7\}$ and $m,p \in \{4,6,7\} \setminus \{i\}$. Then G cannot be legally colored. Thus, it suffices to recolor v_1, vv_1, v with 6, 4, 7, respectively. Otherwise, we are done.
 - (2) $\phi(vv_3) = 4$. We have three possibilities need to be handled according to the color of v_3 :
- $\phi(v_3) \in \{5,6,7\}$. Let $\phi(v_3) = a$. It suffices to color v_1 with a, vv_1 with $b_1 \in \{5,6,7\} \setminus \{a\}$ such that v_1 is compatible with v_2 , and color v with $b_2 \in \{2,3,5,6,7\} \setminus \{\phi(v_2),a,b_1\}$.
- $\phi(v_3) = 1$. It suffices to color v_1 with 5, vv_1 with $b_1 \in \{6,7\}$ such that v_1 is compatible with v_2 , and color v with $b_2 \in \{2,3,6,7\} \setminus \{\phi(v_2),b_1\}$.
- $\phi(v_3) \in \{2,3\}$. Say $\phi(v_3) = 2$ by symmetry. It suffices to color v_1 with 2, vv_1 with $b_1 \in \{5,6,7\} \setminus \{a\}$ such that v_1 is compatible with v_2 and u_1' , and color v with $b_2 \in \{3,5,6,7\} \setminus \{\phi(v_2),b_1\}$.

Obviously, v has at least one color set that can be distinguished from u_i for i = 1, 2, 3.

- (3) $\phi(vv_3) \in \{5,6,7\}$. Say $\phi(vv_3) = 5$ by symmetry. We have four possibilities need to be handled according to the color of v_3 :
- $\phi(v_3) \in \{6,7\}$. Say $\phi(v_3) = 6$ by symmetry. It suffices to color v_1 with 5, vv_1 with $b_1 \in \{4,7\}$ such that v_1 is compatible with v_2 , and color v with $b_2 \in \{2,3,4,7\} \setminus \{\phi(v_2),b_1\}$.
- $\phi(v_3) = 1$. It suffices to color v_1 with $b_1 \in \{4,7\}$ such that v_1 is compatible with v_2 , and color v with $b_2 \in \{2,3,4,7\} \setminus \{\phi(v_2),b_1\}$.
- $\phi(v_3) \in \{2,3\}$. Say $\phi(v_3) = 2$ by symmetry. It suffices to color v_1 with 5, vv_1 with $b_1 \in \{4,6,7\}$ such that v_1 is compatible with v_2 , and color v with $b_2 \in \{3,4,6,7\} \setminus \{\phi(v_2),b_1\}$.
- $\phi(v_3) = 4$. It suffices to color v_1 with $b_1 \in \{4,7\}$ such that v_1 is compatible with v_2 , and color v with $b_2 \in \{2,3,7\} \setminus \{\phi(v_2),b_1\}$.

Obviously, v has at least one color set that can be distinguished from u_i for i = 1, 2, 3.

Case 2. $\phi(vv_3) = 1$.

It is easy to notice that $\phi(v_2) \notin \{1,4\}$ and $\phi(v_2u_2) \neq 1$. Remove the color of v_2 . We have three situations to handle according to the value of $\phi(v_3)$:

- (1) $\phi(v_3) = 4$. There are two possibilities to be handled:
- $\phi(v_2u_2) \neq 4$. Firstly, assume that $\phi(u_2) \neq 4$. It firstly suffices to color v_2, v_1 with 4, 5, respectively. Then use $b_1 \in \{2,3,5,6,7\} \setminus \{\phi(v_2u_2)\}$ to color vv_2 , $b_2 \in \{6,7\} \setminus \{b_1\}$ to color vv_1 , and $b_3 \in \{2,3,6,7\} \setminus \{b_1,b_2\}$ to color v. Next, assume that $\phi(u_2) = 4$. It firstly suffices to color v_2, v_1 with 5, respectively. Then use color $b_1 \in \{2,3,4,6,7\} \setminus \{\phi(v_2u_2)\}$ to color vv_2 such that v_2 is compatible with u_2' and u_2'' , $b_2 \in \{6,7\} \setminus \{b_1\}$ to color vv_1 , and $b_3 \in \{2,3,6,7\} \setminus \{b_1,b_2\}$ to color vv_2 .
- $\phi(v_2u_2) = 4$. Firstly, assume that $\phi(u_2) \neq 2$. It firstly suffices to color v_2, v_1 with 2, 5, respectively. Then use color $b_1 \in \{3,5,6,7\}$ to color vv_2 such that v_2 is compatible with u_2' and u_2'' , $b_2 \in \{6,7\} \setminus \{b_1\}$ to color vv_1 , and $b_3 \in \{3,6,7\} \setminus \{b_1,b_2\}$ to color v. Next, assume that $\phi(u_2) = 2$. It firstly suffices to color v_2, v_1 with 5, respectively. Then use color $b_1 \in \{2,3,6,7\}$ to color vv_2 such that v_2 is compatible with u_2' and u_2'' , $b_2 \in \{6,7\} \setminus \{b_1\}$ to color vv_1 , and $b_3 \in \{2,3,6,7\} \setminus \{b_1,b_2\}$ to color v.

Obviously, v has at least one color set that can be distinguished from u_i for i = 1, 2, 3.

- (2) $\phi(v_3) \in \{2,3\}$. Say $\phi(v_3) = 2$ by symmetry. There are two possibilities to be handled:
- $\phi(u_2) \neq 1$. By $\phi(v_2u_2) \neq 1$, it firstly suffices to color v_2, v_1 with 1, 5, respectively. Then use color $b_1 \in \{2,3,4,5,6,7\} \setminus \{\phi(v_2u_2)\}$ to color vv_2 such that v_2 is compatible with u_2', u_2'' and $v_3, b_2 \in \{4,6,7\} \setminus \{b_1\}$ to color vv_1 such that v_1 is compatible with v_2 , and $b_3 \in \{3,4,6,7\} \setminus \{b_1,b_2\}$ to color v.
- $\phi(u_2) = 1$. Firstly, assume that $\phi(v_2u_2) \neq 4$. It firstly suffices to color v_2, v_1 with 4, 5, respectively. Then use color $b_1 \in \{2,3,5,6,7\} \setminus \{\phi(v_2u_2)\}$ to color vv_2 such that v_2 is compatible with u_2' and u_2'' , $b_2 \in \{4,6,7\} \setminus \{b_1\}$ to color vv_1 , and $b_3 \in \{3,6,7\} \setminus \{b_1,b_2\}$ to color v. Next, assume that $\phi(v_2u_2) = 4$. It firstly suffices to color v_2, v_1 with 2, 5, respectively. Then use color $b_1 \in \{3,5,6,7\}$ to color vv_2 such that v_2 is compatible with u_2' and u_2'' , $b_2 \in \{4,6,7\} \setminus \{b_1\}$ to color vv_1 , and $b_3 \in \{3,4,6,7\} \setminus \{b_1,b_2\}$ to color v.

Obviously, v has at least one color set that can be distinguished from u_i for i = 1, 2, 3.

(3) $\phi(vv_3) \in \{5,6,7\}$. Say $\phi(vv_3) = 5$ by symmetry. There are two possibilities to be handled:

- $\phi(u_2) \neq 1$. By $\phi(v_2u_2) \neq 1$, it firstly suffices to color v_2, v_1 with 1, 6, respectively. Then use color $b_1 \in \{2,3,4,5,6,7\} \setminus \{\phi(v_2u_2)\}$ to color vv_2 such that v_2 is compatible with u_2', u_2'' and $v_3, b_2 \in \{4,7\} \setminus \{b_1\}$ to color vv_1 such that v_1 is compatible with v_2 , and $b_3 \in \{2,3,4,7\} \setminus \{b_1,b_2\}$ to color v. It is easy to notice that vv_2 can be colored with at least two colors, then vv_1 can be colored with at least one color. Obviously, v has at least one color set that can be distinguished from u_i for i = 1,2,3.
- $\phi(u_2) = 1$. Firstly, assume that $\phi(v_2u_2) \neq 4$. It firstly suffices to color v_2, v_1 with 4, 6, respectively. Then use color $b_1 \in \{2,3,5,6,7\} \setminus \{\phi(v_2u_2)\}$ to color vv_2 such that v_2 is compatible with u_2' and u_2'' , $b_2 \in \{4,7\} \setminus \{b_1\}$ to color vv_1 , and $b_3 \in \{2,3,7\} \setminus \{b_1,b_2\}$ to color v. It is easy to notice that v_1,v_2 and v_3 do not conflict with each other. Obviously, v has at least one color set that can be distinguished from u_i for i=1,2,3. Next, assume that $\phi(v_2u_2) = 4$. We firstly color v_2,v_1 with 2, 6, respectively. Then use color $b_1 \in \{3,5,6,7\}$ to color vv_2 such that v_2 is compatible with u_2' and u_2'' , $b_2 \in \{4,7\} \setminus \{b_1\}$ to color vv_1 , and $b_3 \in \{3,4,7\} \setminus \{b_1,b_2\}$ to color v. It is easy to notice that v_1,v_2 and v_3 do not conflict with each other. If vv_2 can only be colored by 3 and 7, and $C(u_3) = \{1,3,4,7\}$. Then $C(u_2) \neq \{1,3,4,7\}$ and C can not be legally colored. Thus, it suffices to recolor v_1,vv_1,v with 7, 6, 4, respectively. Otherwise, we are done.

CLAIM 6. *G does not contain* 3₂-vertex.

Proof. Assume to the contrary, G contains a 3_2 -vertex v. Let $N_G(v) = \{v_1, v_2, v_3\}$, $d_G(v_1) = d_G(v_2) = 2$ and let u_i be the neighbor of v_i other than v for i = 1, 2. By Claim 3 and Claim 5, $d_G(u_1) = d_G(u_2) = d_G(v_3) = 3$. Let $N_G(u_i) = \{v_i, u_i', u_i''\}$ for i = 1, 2, and $N_G(v_3) = \{v, u_3, u_4\}$. Assume without loss of generality that $2 \le d_G(u_1') \le d_G(u_2') \le 3$ and $d_G(u_1'') = d_G(u_2'') = 3$ by Claim 5. By Claim 4, $u_1 \ne u_2$. Then consider the subgraph $G' = G - \{v_1\} - \{vv_2\} + \{u_1v_2\}$. Then G' has a 2DVDT-7-coloring ϕ using the color set G' by the minimality of G. Assume without loss of generality that $\phi(v_2u_1) = 1$, $\phi(u_1u_1') = 2$, $\phi(u_1u_1'') = 3$ and $\phi(u_1) = 4$. It easy to notice that $\phi(v_2) \notin \{1,4\}$ and $\phi(v_2u_2) \ne 1$. Based on ϕ , in G, we color u_1v_1 with 1. Remove the color of v. There are two possibilities to be handled:

Case 1. $\phi(vv_3) \neq 1$.

We color vv_2 with 1. It is easy to notice that the color set of v_2 doesn't change in G. We have to handle three situations:

- (1) $\phi(vv_3) \in \{2,3\}$. Say $\phi(vv_3) = 2$ by symmetry. It suffice to use 3 to color $v_1, b_1 \in \{4,5,6,7\}$ to color vv_1 such that v_1 is compatible with v_2 , and $b_3 \in \{4,5,6,7\} \setminus \{\phi(v_2),\phi(v_3),b_1\}$ to color v. Obviously, v has at least one color set that can be distinguished from u_i for i = 1,2,3,4.
 - (2) $\phi(vv_3) = 4$. The following four possibilities are discussed:
- Assume that $\phi(v_2) = 2$ and $(C(u_2), C(u_3), C(u_4)) = (\{1,4,5,6\}, \{1,4,5,7\}, \{1,4,6,7\})$. Then it respectively suffices to color v_1, vv_1 with 5, 3, and color v with $\{5,6,7\} \setminus \{\phi(v_3)\}$.
- Assume that $\phi(v_2) \in \{5,6,7\}$ and $\phi(v_3) = 2$. Say $\phi(v_2) = 5$ by symmetry. If $\phi(v_2u_2) = 3$ and $(C(u_2), C(u_3), C(u_4)) = (\{1,4,3,5\}, \{1,4,3,7\}, \{1,4,6,7\})$. We recolor vv_2 with 2 or 6 such that v_2 is compatible with u_2 , and color v_1, vv_1, v with 6, 7, 3, respectively. If $\phi(v_2u_2) = 3, C(u_2) \neq \{1,3,4,i\}$ for i = 5,7, and $\{1,4,6,7\} \in (C(u_3), C(u_4))$. We respectively color v_1, v with 6, 3, and color vv_1 with 5 or 7. If $\phi(v_2u_2) = 3$ and $\{1,4,6,7\} \notin (C(u_3), C(u_4))$. We color v_1, vv_1, v with 5, 6, 7. If $\phi(v_2u_2) \neq 3$ and $(C(u_2), C(u_3), C(u_4)) = (\{1,4,5,6\}, \{1,4,5,7\}, \{1,4,6,7\})$. We color v_1, vv_1, v with 5, 3, 6. Otherwise, it suffices to color v_1 with 3, vv_1 with $v_1 \in \{5,6,7\}$ and v with color in $\{6,7\} \setminus \{b_1\}$.
- Assume that $\phi(v_2)$, $\phi(v_3) \in \{5,6,7\}$. Say $\phi(v_2) = 5$, $\phi(v_3) = 6$ by symmetry. It suffices to color v_1 with 3, vv_1 with $b_1 \in \{5,6,7\}$ such that v_1 is compatible with v_2 , and color v with color in $\{2,7\} \setminus \{b_1\}$.
- Otherwise, we color v_1 with 3, vv_1 with $b_1 \in \{5,6,7\}$ such that v_1 is compatible with v_2 , and color v with color in $\{2,5,6,7\} \setminus \{\phi(v_2),\phi(v_3),b_1\}$. Obviously, v has at least one color set that can be distinguished from u_i for i = 1,2,3,4.
- (3) $\phi(vv_3) \in \{5,6,7\}$. Say $\phi(vv_3) = 5$ by symmetry. It suffices to color v_1 with $5, vv_1$ with $b_1 \in \{3,4,6,7\}$ such that v_1 is compatible with v_2 , and color v with color in $\{2,3,4,6,7\} \setminus \{\phi(v_2),\phi(v_3),b_1\}$. Obviously, v has at least one color set that can be distinguished from u_i for i = 1,2,3,4.

Case 2 $\phi(vv_3) = 1$.

Remove the color of v_2 . There are three situations to be handled depending on the value of $\phi(v_3)$:

- (1) $\phi(v_3) \in \{2,3,4\}$. Say $\phi(v_3) = 2$ by symmetry. Firstly, we color v_1 with 3. Next, there are two possibilities to be discussed:
- $\phi(u_2) \neq 1$. It suffices to color v_2 with 1, vv_2 with $b_1 \in \{2,3,4,5,6,7\} \setminus \{\phi(v_2u_2)\}$ such that v_2 is compatible with u_2' , vv_1 with $b_2 \in \{4,5,6,7\} \setminus \{b_1\}$ such that v_1 is compatible with v_2 , and v with color in $\{4,5,6,7\} \setminus \{b_1,b_2\}$.
- $\phi(u_2) = 1$. Firstly, assume that $\phi(v_2u_2) = 4$. It suffices to color v_2 with 2, v_2 with $b_1 \in \{3,5,6,7\}$ such that v_2 is compatible with u_2 , v_2 with $b_2 \in \{4,5,6,7\} \setminus \{b_1\}$, and v with color in $\{4,5,6,7\} \setminus \{b_1,b_2\}$. Next, assume that $\phi(v_2u_2) \neq 4$. It suffices to color v_2 with 4, v_2 with $b_1 \in \{2,3,5,6,7\} \setminus \{\phi(v_2u_2)\}$ such that v_2 is compatible with u_2 , v_2 with v_3 with v_4 with color in $\{5,6,7\} \setminus \{b_1,b_2\}$.

Obviously, v has at least one color set that can be distinguished from u_i for i = 1, 2, 3, 4.

- (2) $\phi(v_3) \in \{5,6,7\}$. Say $\phi(v_3) = 5$ by symmetry. Firstly, we color v_1 with 5. Next, we have two possibilities to be discussed:
- $\phi(u_2) \neq 1$. It suffices to color v_2 with 1, vv_2 with $b_1 \in \{2,3,4,5,6,7\} \setminus \{\phi(v_2u_2)\}$ such that v_2 is compatible with u_2' , vv_1 with $b_2 \in \{3,4,6,7\} \setminus \{b_1\}$ such that v_1 is compatible with v_2 , and v with color in $\{2,3,4,6,7\} \setminus \{b_1,b_2\}$.
- $\phi(u_2) = 1$. Firstly, assume that $\phi(v_2u_2) = 4$. It suffices to color v_2 with 5, vv_2 with $b_1 \in \{2,3,6,7\}$ such that v_2 is compatible with u_2' , vv_1 with $b_2 \in \{3,4,6,7\} \setminus \{b_1\}$, and v with color in $\{2,3,4,6,7\} \setminus \{b_1,b_2\}$. Next, assume that $\phi(v_2u_2) \neq 4$. It suffices to color v_2 with 4, vv_2 with $b_1 \in \{2,3,5,6,7\} \setminus \{\phi(v_2u_2)\}$ such that v_2 is compatible with u_2' , vv_1 with $b_2 \in \{3,4,6,7\} \setminus \{b_1\}$, and v with color in $\{2,3,6,7\} \setminus \{b_1,b_2\}$.

Obviously, v has at least one color set that can be distinguished from u_i for i = 1, 2, 3, 4.

CLAIM 7. *G does not contain* 3₁-vertex.

Proof. Assume to the contrary, *G* contains a 3₁-vertex *v*. Let $N_G(v) = \{v_1, v_2, v_3\}$, $d_G(v_1) = 2$, and let u_1 be the neighbor of v_1 other than *v*. By Claim 3 and Claim 6, $d_G(u_1) = d_G(v_2) = d_G(v_3) = 3$. Let $N_G(u_1) = \{v_1, u_1', u_1''\}$, and $N_G(v_i) = \{v, v_i', v_i''\}$ for i = 2, 3. By Claim 6, $d_G(u_1') = d_G(u_1') = 3$. By Claim 2, $u_1 \neq v_2$. Then consider the subgraph $G' = G - \{v_1\} + \{vu_1\}$. Then G' has a 2DVDT-7-coloring ϕ using the color set G' by the minimality of G. Assume without loss of generality that $\phi(vu_1) = 1, \phi(vv_2) = 2, \phi(vv_3) = 3$ and $\phi(v) = 4$. Based on ϕ , in G, we color u_1v_1 with 1. It is easy notice that the color set of u_1 doesn't change in G. If $\{2,3,4,i\} \in (C(v_2'),C(v_2''),C(v_3'),C(v_3''))$ for i=5,6,7. We color v_1 with color $\{2,3\} \setminus \{\phi(u_1)\}$, recolor v with $b \in \{5,6,7\} \setminus \{\phi(v_2),v_3\}$, and color vv_1 with color in $\{5,6,7\} \setminus \{b\}$. Otherwise, it suffices to color v_1 with color $\{2,3\} \setminus \{\phi(u_1)\}$ and vv_1 with color in $\{5,6,7\}$. Obviously, v has at least one color set that can be distinguished from u_1, v_i', v_i'' for i=2,3.

CLAIM 8. G does not contain a cut edge.

Proof. Assume to the contrary that G contains a cut edge uv. It follows that $G' = G - \{uv\}$ consists of two components G'_1 and G'_2 for $u \in V(G'_1)$ and $v \in V(G'_2)$. Let $G_1 = G[V(G'_1) \cup \{v\}]$ and $G_2 = G[V(G'_2) \cup \{u\}]$. It follows that G_1 and G_2 are proper subgraphs of G. By the minimalization of G, G_1 and G_2 have 2DVDT-7-coloring ϕ_1 such that $C_{\phi_1}(u) = \{1, 2, 3, 4\}$ with $\phi_1(uv) = 1$ and ϕ_2 such that $C_{\phi_2}(v) = \{1, 5, 6, 7\}$ with $\phi_2(uv) = 1$ use the color set G, respectively. (This can be accomplished by exchanging reasonably the colors of G_2 under G and G and G and G and G are properties of G and G are properties o

So far it follows that G is a 3-regular simple graph without cut edges. Since K_4 can be 2DVDT-7-colorable with color set G by [12], we assume that $G \neq K_4$. By Lemma 2, G is 3-colorable. Thus, first we use 1, 2, 3 to color all vertices of G such that adjacent vertices receive distinct colors.

Next, we color all edges of G with colors in $\{3,4,5,6,7\}$. By Lemma 3, G can be edge-partitioned into a perfect matching M and a class \mathscr{A} of cycles. Color all edges of M with the same color 7. For each cycle $A = v_1v_2v_3\cdots v_kv_1$ in \mathscr{A} , we use colors of $\{3,4,5,6\}$ to color its edges. For convenience, we define each edge v_iv_{i+1} as e_i for $v_{k+1} = v_1$. There are two situations to be handled as follows:

Case 1. Only two colors appear on the vertices of A.

Assume without loss of generality that $\phi(v_1) = 1$ and $\phi(v_2) = 2$.

If
$$k \equiv 0 \pmod{3}$$
, then $\{e_1, e_4, \dots, e_{k-5}, e_{k-2}\} \rightarrow \{4\}, \{e_2, e_5, \dots, e_{k-4}, e_{k-1}\} \rightarrow \{5\}, \{e_3, e_6, \dots, e_{k-3}, e_k\} \rightarrow \{6\}$.

If
$$k \equiv 1 \pmod{3}$$
, then $\{e_1, e_4, \dots, e_{k-6}, e_{k-3}\} \rightarrow \{4\}, \{e_2, e_5, \dots, e_{k-5}, e_{k-2}\} \rightarrow \{5\}, \{e_3, e_6, \dots, e_{k-4}, e_{k-1}\} \rightarrow \{6\}, \{e_k\} \rightarrow \{5\}.$

If
$$k \equiv 2 \pmod{3}$$
, then $\{e_1, e_4, \dots, e_{k-7}, e_{k-4}\} \rightarrow \{4\}, \{e_2, e_5, \dots, e_{k-6}, e_{k-3}\} \rightarrow \{5\}, \{e_3, e_6, \dots, e_{k-5}, e_{k-2}\} \rightarrow \{6\}, \{e_{k-1}, e_k\} \rightarrow \{4, 3\}.$

Case 2. There are three consecutive vertices of A that receive distinct colors.

Assume without loss of generality that $\phi(v_1) = 1$, $\phi(v_2) = 2$ and $\phi(v_3) = 3$.

If
$$k \equiv 0 \pmod{3}$$
, then $\{e_1, e_4, \dots, e_{k-5}, e_{k-2}\} \rightarrow \{4\}, \{e_2, e_5, \dots, e_{k-4}, e_{k-1}\} \rightarrow \{5\}, \{e_3, e_6, \dots, e_{k-3}, e_k\} \rightarrow \{6\}$.

If
$$k \equiv 1 \pmod{3}$$
, then $\{e_1, e_4, \dots, e_{k-6}, e_{k-3}\} \to \{4\}, \{e_2, e_5, \dots, e_{k-5}, e_{k-2}\} \to \{5\}, \{e_3, e_6, \dots, e_{k-4}, e_{k-1}\} \to \{6\}, \{e_k\} \to \{5\}.$

If
$$k \equiv 2 \pmod{3}$$
, then $\{e_1, e_4, \dots, e_{k-7}, e_{k-4}\} \rightarrow \{4\}, \{e_2, e_5, \dots, e_{k-6}, e_{k-3}\} \rightarrow \{5\}, \{e_3, e_6, \dots, e_{k-5}, e_{k-2}\} \rightarrow \{6\}, \{e_{k-1}\} \rightarrow \{4\}$. If $\phi(v_k) = 2$, then color e_k with 3. If $\phi(v_k) = 3$, then color e_k with 5.

This makes G 2DVDT-7-colorable. Thus, it is a contradiction. The whole proof of Theorem 1 is completed.

ACKNOWLEDGEMENTS

We thank the reviewers for their constructive comments in improving the quality of this paper. This work has been partially supported by National Science Foundation of China (No. 12161094).

REFERENCES

- 1. M. BEHZAD, Graphs and their chromatic numbers, PhD Thesis, Michigan State University, 2004.
- 2. G. VIZING, Some unsolved problems in graph theory, Uspekhi Mathematical Nauk, 23, pp. 117-134, 1968.
- 3. M. MOLLOY, B. REED, A bound on the total chromatic number, Combinatorics, 18, pp. 214–280, 1998.
- 4. Z. ZHANG, X. CHEN, J. LI, B. YAO, X. LU, J. WANG, On adjacent-vertex distinguishing total coloring of graphs, Science in China. Series A, A 48, pp. 289–299, 2005.
- 5. H. WANG, On the adjacent vertex distinguishing total chromatic number of the graphs with $\Delta(G) = 3$, Journal of Combinatorial Optimization, **14**, pp. 87–109, 2007.
- 6. X. CHEN, On the adjacent vertex distinguishing total coloring numbers of graphs with $\Delta(G) = 3$, Discrete Mathematics, 308, pp. 4003–4007, 2008.
- 7. Y. LU, J. LI, R. LUO, Z. MIAO, *Adjacent vertex distinguishing total coloring of graphs with maximum degree 4*, Discrete Mathematics, **340**, pp. 119–123, 2017.
- 8. A. PAPAIOANNOU, C. RAFTOPOULOU, On the AVDTC of 4-regular graphs, Discrete Mathematics, 330, pp. 20-40, 2014.
- 9. T. COKER, K. JOHANNSON, *The adjacent vertex distinguishing total chromatic number*, Discrete Mathematics, **312**, pp. 2741–2750, 2012.
- 10. D. HUANG, W. WANG, C. YAN, A note on the adjacent vertex distinguishing total chromatic number of graphs, Discrete Mathematics, 312, pp. 3544–3546, 2012.
- 11. Y. CHANG, J. HU, G. WANG, X. YU, Adjacent vertex distinguishing total coloring of planar graphs with maximum degree 8, Discrete Mathematics, 343, 10, art. 112014, 2020.
- 12. Y. HU, W. WANG, 2-distance vertex-distinguishing total coloring of graphs, Discrete Mathematics, Algorithms Applications, 10, 02, art. 1850018, 2018.
- 13. L. BROOKS, *On colouring the nodes of a network*, Mathematical Proceedings of the Cambridge Philosophical Society, **37**, 2, pp. 194–197, 1941.
- 14. J. PETERSEN, Die Theorie ser regulären Graphsn, Acta Mathematica, 15, pp. 193–220, 1981.

Received October 17, 2022