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Abstract. The paper deals with semilinear operator equations involving iterates of a strongly monotone symmetric
linear operator. In particular there are consider semilinear polyharmonic equations subject to the Navier boundary
conditions. A careful analysis is made on the energetic spaces associated to such problems and a number of existence
results are obtained by using a fixed point approach.
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1. INTRODUCTION

There is known the bi-Laplace equation ∆2u= 0 whose solutions are called biharmonic functions. The equation
arises as a model for the elastic equilibrium in the theory of elasticity. Also there are known its generalizations,
the poly-Laplace equations ∆pu = 0, p > 2, whose solutions are said to be polyharmonic of order p (see, [9]
and [10]). The operator ∆2 = ∆∆ is referred as the bi-Laplacian and ∆p = ∆

(
∆p−1

)
is said to be the Laplacian

of order p. The non-homogeneous versions of these equations are

∆
pu = h,

and when considered in a domain Ω, in case p = 2, there has been added the boundary condition

u =
du
dν

= 0 on ∂Ω, (1)

where ν is the unit normal vector to the boundary, or the boundary condition

u = ∆u = 0 on ∂Ω (2)

(see [8]). For p > 2, condition (1) can be generalized following Lauricella [7] as follows

u =
du
dν

= ... =
dp−1u
dν p−1 = 0 on ∂Ω,

and (2), as suggested by Riquier [13], by

u = ∆u = ∆
2u = ... = ∆

p−1u = 0 on ∂Ω.

For the classical theory of polyharmonic functions we refer the reader to the volume [9] which brings
together the entire contribution of Miron Nicolescu to this field and which allows obtaining information on
contributions originating from old, less accessible publications.
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Modern theory has introduced the concept of weak solution and Sobolev spaces as natural framework for
the study of these operators and of the associated semilinear problems. Thus the problem{

∆2u = f (x,u,∇u,∆u) in Ω

u = ∂u
∂ν

= 0 on ∂Ω
(3)

involving the natural boundary condition ∂u
∂ν

= 0 can be naturally addressed in H2
0 (Ω) endowed with the equiv-

alent norm |∆u|L2(Ω) . Other studies (see, e.g., [1], [2], [4] and [11]) have aimed to treat problems of type (3)
under the boundary conditions u = ∆u = 0 on ∂Ω (called Navier boundary conditions [5]) by looking for solu-
tions in the space H2 (Ω)∩H1

0 (Ω) with norm |∆u|L2(Ω) . The problem is that the condition ”∆u = 0 on ∂Ω” not
being a natural boundary condition it does not follow from the variational formulation of the problem. This is
the reason to restrict the study to a subspace of functions in order to give a meaning to the equality ∆u = 0 on
the boundary. This will be one of our main goals in this work. Roughly speaking we suggest that the iterative
nature of the differential operator to reflect on its energetic space and consequently on some basic inequalities.
We lead this discussion more generally considering instead of Laplacian a strongly monotone symmetric linear
operator A. Thus our results will concern semilinear operator equations of the form

Apu = h+F
(
u,Au, ..., Ap−1u

)
,

where Ap is the p-th iterate of A, defined recursively by Ap = AAp−1. The whole approach is based on the theory
of the energetic space XA associated to A. There are thus obtained existence results for the problem{

Apu = h+F
(
u,Au, ..., Ap−1u

)
u, Au, ..., Ap−1u ∈ XA

(4)

where h ∈ X ′A is given and F is on the position of a perturbation of h. In particular, we obtain results for
semilinear poly-Laplace equations.

2. PRELIMINARIES

In this section we recall the notion of energetic space (see [14]) and some related results.
2.1. The energetic space. Let X be a real Hilbert space with the inner product (·, ·)X and the norm |·|X .

Let Y be a linear subspace of X and A : Y → X be a strongly monotone symmetric linear operator, that is, a
linear operator satisfying

(Au,v)X = (u,Av)X for all u,v ∈ Y,

(Au,u)X ≥ c2 |u|2X for all u ∈ Y (5)

and some constant c > 0. Then, endowed with the energetic inner product

(u,v)A := (Au,v)X (u,v ∈ Y )

and the energetic norm
|u|A = (Au,u)1/2

X (u ∈ Y ) ,

Y becomes a pre-Hilbert space. Its completion (see, e.g., [6, Section I 4.3]) denoted by XA is called the energetic
space of A. In virtue of (5), any Cauchy sequence in the energetic norm is also a Cauchy sequence in the norm
|·|X . This allows us to see XA as a subset of the original complete space X , and the elements of XA as limits in X
of Cauchy sequences from (Y, |·|A) . Furthemore, the energetic inner product and norm can be extended from
Y to XA by

(u,v)XA
:= lim

k→∞

(uk,vk)A , |u|XA
:= lim |uk|A ,

where (uk) and (vk) are Cauchy sequences in (Y, |·|A) that converge in X to u and v, respectively.
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2.2. Abstract Poincaré’s inequality. Inequality (5) can be extended by density from Y to XA showing that

|u|XA
≥ c |u|X for all u ∈ XA. (6)

Thus c is an embedding constant for the continuous inclusion XA ⊂ X . We call this inequality Poincaré’s
inequality.

If the embedding XA ⊂ X is compact, then there is a largest embedding constant c and the inequality is
reached. Indeed, if we denote

λ := inf
{
|u|2XA

: u ∈ XA, |u|X = 1
}
,

then λ ≥ c2 and if we take any minimizing sequence (uk), that is

uk ∈ XA, |uk|X = 1, |uk|2XA
→ λ ,

then using the compactness of the embedding XA ⊂ X and passing eventually to a subsequence we can assume
that uk→ u in X , for some u ∈ X . Furthermore, from the identity

|uk−um|2XA
+ |uk +um|2XA

= 2
(
|uk|2XA

+ |um|2XA

)
,

since |uk +um|2XA
≥ λ |uk +um|2X , we deduce

|uk−um|2XA
≤ 2

(
|uk|2XA

+ |um|2XA

)
−λ |uk +um|2X → 0

as k,m→ ∞. Hence (uk) is a Cauchy sequence in XA. Let v ∈ XA be such that uk→ v in XA. Then uk→ v in X
too, and the uniqueness of the limit implies that v = u. Consequently, |uk|XA

→ |u|XA
, that is λ = |u|2XA

. Thus
the infimum λ is reached and

√
λ is the best constant c in (6). Thus, in case that the embedding XA ⊂ X is

compact, Poincaré’s inequality reads as follows:

|u|X ≤
1√
λ
|u|XA

for all u ∈ XA.

2.3. The dual of the energetic space. Having XA ⊂ X , for the dual spaces we have X ′ ⊂ X ′A and if, based
on Riesz’ theorem, we assume the identification X ′ = X , then one has

XA ⊂ X ⊂ X ′A.

In addition, from (6) we also have
|u|X ≥ c |u|X ′A for all u ∈ X . (7)

Indeed, if u ∈ X , then for any v ∈ X , one has 〈u,v〉 = (u,v)X , where by 〈·, ·〉 we mean the value of a linear
functional at a given element. Then

|u|X ′A = sup
v∈XA\{0}

|〈u,v〉|
|v|XA

= sup
v∈XA\{0}

|(u,v)X |
|v|XA

≤ sup
v∈XA\{0}

|u|X |v|X
|v|XA

≤ 1
c
|u|X .

Notice in case that the embedding XA ⊂ X is compact, so is the embedding X ⊂ X ′A and in (7) we may take as
in (6) the best constant c =

√
λ .

2.4. Extension of operator A. Clearly we can define the linear operator Ã : XA→ X ′A by〈
Ãu, v

〉
= (u,v)XA

for all u,v ∈ XA.
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In particular, if u,v ∈ Y, then since (u,v)XA
= (Au,v)X , one has

〈
Ãu, v

〉
= (Au,v)X , which by the density of Y

into XA can be extended to all v ∈ XA. Thus the functionals Ãu and (Au, ·)X act identically in XA. The last one is
a continuous linear functional on X which in virtue of Riesz’s representation theorem is identified with Au. In
this sense, as continuous linear functionals on XA, one has Ãu = Au, and therefore Ã can be seen as an extension
of A from Y to XA. It is common to use the same symbol A for the extension Ã. Thus A : XA→ X ′A.

2.5. The inverse of operator A. In the previous subsection we have that for every u ∈ XA there is a unique
element denoted Au ∈ X ′A with

〈Au,v〉= (u,v)XA
for all v ∈ XA. (8)

Conversely, for every h ∈ X ′A by Riesz’s theorem, there is a unique element u ∈ XA with

〈h,v〉= (u,v)XA
for all v ∈ XA.

Clearly Au = h and thus u = A−1h. Hence the inverse of A is the operator A−1 : X ′A→ XA defined by(
A−1h,v

)
XA

= 〈h,v〉 for all v ∈ XA.

The two linear operators A and A−1 are isometries between XA and X ′A. Indeed, letting v = u in (8) gives

|u|2XA
= 〈Au,u〉 ≤ |Au|X ′A |u|XA

,

whence |u|XA
≤ |Au|X ′A . The converse inequality comes from

|Au|X ′A = sup
v∈XA\{0}

|〈Au,v〉|
|v|XA

= sup
v∈XA\{0}

∣∣(u,v)XA

∣∣
|v|XA

≤ |u|XA
.

Hence
|Au|X ′A = |u|XA

(u ∈ XA) ,
∣∣A−1h

∣∣
XA

= |h|X ′A
(
h ∈ X ′A

)
.

2.6. Weak solutions to linear operator equations. Consider the operator equation associated to A,

Au = h.

By a (strong) solution we mean an element u ∈ Y such that Au = h. Obviously this is possible if h ∈ X . By a
weak solution we mean an element u ∈ XA satisfying the identity

(u,v)XA
= 〈h,v〉 for all v ∈ XA.

When speaking about weak solutions we may assume more generally that h ∈ X ′A. In view of the previous
subsection, for each h ∈ X ′A, the equation has a unique weak solution, namely u = A−1h.

Note that looking for weak solutions to a semilinear equation

Au = Φ(u) ,

where Φ : XA→ X ′A is any mapping, reduces to solving the fixed point equation

u = A−1
Φ(u) , u ∈ XA.

3. SEMILINEAR EQUATIONS INVOLVING ITERATES OF A SYMMETRIC LINEAR OPERATOR

We now come back to problem (4), where A is a linear operator as in Introduction.
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3.1. Functional framework. Looking at the required conditions on the elements u, Au, ..., Ap−1u to
belong to the energetic space XA of the operator A, we may seek solutions in the space

H := A−(p−1) (XA) .

Here A−k = A−1
(
A−(k−1)

)
for k = 2, ..., p−1. Since A−1 : X ′A→ XA and XA ⊂ X ′A one has

H = A−(p−1) (XA)⊂ A−(p−2) (XA)⊂ ... ⊂ A−1 (XA)⊂ XA. (9)

We endow H with the inner product and norm

(u,v)H :=
(
Ap−1u,Ap−1v

)
XA
, |u|H :=

∣∣Ap−1u
∣∣
XA
.

Note that the functional |·|H is indeed a norm on H since if for some u ∈ H, one has |u|H = 0, then Ap−1u = 0,
whence Ap−2u = 0 and so on until we obtain u = 0.

LEMMA 1. The space H endowed with the inner product (·, ·)H is a Hilbert space which continuously
embeds in XA.

Proof. Let (uk) be any Cauchy sequence in H. Then
(
Ap−1uk

)
is Cauchy in XA, so convergent in XA to

some v∈ XA. Since the embedding XA ⊂ X ′A is continuous, we then have Ap−1uk→ v in X ′A. Next, the continuity
of A−1 from X ′A to XA implies Ap−2uk→ A−1v in XA. Repeating the above reasoning we arrive to the conclusion
that uk→ A−(p−1)v in XA, that is uk→ u := A−(p−1)v in H. This proves that (H, |·|H) is complete.

Knowing the operator A−1 from X ′A to XA and the inclusions (9) we immediately can see that for every
h ∈ X ′A there is a unique u ∈ H, namely u = A−ph, which solves the non-homogeneous equation

Apu = h.

Consequently, solving a semi-linear equation of the form

Apu = Φ(u) ,

where Φ : H→ X ′A is any mapping, is equivalent to the fixed point equation

u = A−p
Φ(u) , u ∈ H

for the operator A−pΦ : H→ H.

3.2. Existence and uniqueness under a Lipschitz condition. Using Banach contraction principle we
obtain the following result on problem (4).

THEOREM 1. Let F : X p→ X satisfy

|F (u)−F (v)|X ≤
p

∑
i=1

ai |ui− vi|X (10)

for all u = (u1, ..., up) , v = (v1, ..., vp) ∈ X p and some nonnegative constants ai, i = 1, ..., p. If

θ :=
p

∑
i=1

ai

c2(p+1−i)
< 1, (11)

then problem (4) has a unique solution u ∈ H.
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Proof. Problem (4) is equivalent to the fixed point equation

u = A−p (h+F
(
u,Au, ..., Ap−1u

))
, u ∈ H.

Using (10) and Poincaré’s inequality (6), for any u,v ∈ H, we have∣∣A−pF
(
u,Au, ..., Ap−1u

)
−A−pF

(
v,Av, ..., Ap−1v

)∣∣
H (12)

=
∣∣A−1 (F (u,Au, ..., Ap−1u

)
−F

(
v,Av, ..., Ap−1v

))∣∣
XA

=
∣∣F (u,Au, ..., Ap−1u

)
−F

(
v,Av, ..., Ap−1v

)∣∣
X ′A

≤ 1
c

∣∣F (u,Au, ..., Ap−1u
)
−F

(
v,Av, ..., Ap−1v

)∣∣
X

≤ 1
c

p

∑
i=1

ai
∣∣Ai−1 (u− v)

∣∣
X .

Furthermore, for ant w ∈ H, one has∣∣Ap−1w
∣∣
X ≤ 1

c

∣∣Ap−1w
∣∣
XA

=
1
c
|w|H ,∣∣Ap−2w

∣∣
X ≤ 1

c

∣∣Ap−2w
∣∣
XA

=
1
c

∣∣Ap−1w
∣∣
X ′A
≤ 1

c2

∣∣Ap−1w
∣∣
X ≤

1
c3 |w|H ,∣∣Ap−3w

∣∣
X ≤ 1

c

∣∣Ap−3w
∣∣
XA

=
1
c

∣∣Ap−2w
∣∣
X ′A
≤ 1

c2

∣∣Ap−2w
∣∣
X ≤

1
c5 |w|H .

Repeating the above estimations for p−4, ..., 0, we obtain∣∣Ai−1w
∣∣
X ≤

1
c2(p−i)+1

|w|H , i = 1, ..., p. (13)

Then ∣∣A−pF
(
u,Au, ..., Ap−1u

)
−A−pF

(
v,Av, ..., Ap−1v

)∣∣
H (14)

≤

(
p

∑
i=1

ai

c2(p+1−i)

)
|u− v|H

= θ |u− v|H ,

which in view of (11) shows that the operator

N := A−p (h+F
(
u,Au, ..., Ap−1u

))
is a contraction on H. The conclusion now follows from Banach contraction principle.

3.3. Existence under a linear growth condition. If instead of the Lipschitz condition (10) we only have
a linear growth condition on F and we assume that the embedding XA ⊂ X is compact, then we can still prove
the existence of at least one solution by using Schauder’s fixed point theorem.

THEOREM 2. Assume that the embedding XA ⊂ X is compact and that F : X p → X is continuous and
satisfies

|F (u)|X ≤C+
p

∑
i=1

ai |ui|X

for all u = (u1, ..., up) ∈ X p and some C > 0 and nonnegative constants ai, i = 1, ..., p. If condition (11)
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holds, then problem (4) has at least one solution u ∈ H with

|u|H ≤
Cc−1 + |h|X ′A

1−θ
.

Proof. As above we now have∣∣A−pF
(
u,Au, ..., Ap−1u

)∣∣
H ≤

1
c

∣∣F (u,Au, ..., Ap−1u
)∣∣

X ≤Cc−1 +θ |u|H .

Since θ < 1, R =
(

Cc−1 + |h|X ′A
)
/(1−θ)> 0 and N is a self mapping of the closed ball BR of H centered at

the origin and of radius R. On the other hand N0 (u) := A−pF
(
u,Au, ..., Ap−1u

)
can be decomposed as

N = A−(p−1)A−1JFJ0P, where

P : H→ X p
A , Pu =

(
u,Au, ..., Ap−1u

)
; J0 : X p

A → X p, Ju = u;

F : X p→ X ; J : X → X ′A, Ju = u; A−1 : X ′A→ XA; A−(p−1) : XA→ H.

All these operators are continuous and bounded (send bounded sets to bounded sets) and J0 is compact. As a
result their composition N0 is completely continuous. Now the conclusion follows from Schauder’s fixed point
theorem applied to N in the ball BR.

3.4. Existence via a priori bounds. We may replace the growth condition on F by a sign type condition
as shows the following theorem.

THEOREM 3. Assume that F : X p
A → X ′A is completely continuous and satisfies

〈F (v) , vp〉 ≤ α |vp|2X (15)

for all v = (v1, ..., vp) ∈ X p
A and some α ∈ [0,c2). Then problem (4) has at least one solution u ∈H. Moreover,

any solution u ∈ H of the problem satisfies

|u|H ≤ |h|X ′A /
(
1−αc−2) . (16)

Proof. Using a similar reasoning as in the previous proof we can show that the operator A−pF : H→ H is
completely continuous. We now prove that the set of all possible solutions of the equations

u = µA−p (h+F
(
u,Au, ...,Ap−1u

))
for µ ∈ [0,1] is bounded as (16) shows. Indeed, if u is such a solution, then

|u|2H = µ
(
A−ph, u

)
H +µ

(
A−pF

(
u,Au, ...,Ap−1u

)
, u
)

H

= µ
(
A−1h, Ap−1u

)
XA
+µ

(
A−1F, Ap−1u

)
XA

≤ |h|X ′A |u|H +µ
(
A−1F, Ap−1u

)
XA
.

Next since v :=
(
u,Au, ..., Ap−1u

)
∈ X p

A , based on (15), one has(
A−1F, Ap−1u

)
XA

=
〈
F, Ap−1u

〉
≤ α

∣∣Ap−1u
∣∣2
X ≤

α

c2 |u|
2
H .

It follows that
|u|2H ≤ αc−2 |u|2H + |h|X ′A |u|H ,
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whence (16). The existence of a solution is guaranteed by the Leray-Schauder principle.

4. SEMILINEAR PROBLEMS WITH POLY-LAPLACE OPERATORS

The results established in Section 3 can be easily applied to problems involving poly-Laplace operators, more
exactly to the problem {

∆pu = h+ f
(
x,u,∆u, ..., ∆p−1u

)
in Ω

u = ∆u = ... = ∆p−1u = 0 on ∂Ω.
(17)

Here Ω ⊂ Rn is bounded open, X = L2 (Ω) , A = −∆, XA = H1
0 (Ω) , X ′A = H−1 (Ω) , h ∈ H−1 (Ω) and f :

Ω×Rp→ R. Hence

H = (−∆)−(p−1) H1
0 (Ω) , (u,v)H =

∫
Ω

∇∆
p−1u ·∇∆

p−1v, |u|H =
∣∣∆p−1u

∣∣
H1

0 (Ω)
.

Also the compactness of the imbedding XA ⊂ X holds and the imbedding constant in Poincaré’s inequality
is c =

√
λ1, where λ1 is the first eigenvalue of the Dirichlet problem for Laplacian (for the theory of elliptic

problems, see, e.g., [3] or [12]).
In this case, F is the superposition operator

F
(

u,(−∆)u, ..., (−∆)p−1 u
)
(x) = f

(
x,u(x) ,∆u(x) , ..., ∆

p−1u(x)
)

(x ∈Ω, u ∈ H) .
Theorem 1 yields the following result.

COROLLARY 1. Let f satisfy the Carathéodory conditions, f (·,0) ∈ L2 (Ω) and

| f (x,u)− f (x,v)| ≤
p

∑
i=1

ai |ui− vi| (18)

for all u = (u1, ..., up) , v = (v1, ..., vp) ∈ Rp and some nonnegative constants ai, i = 1, ..., p. If θ < 1 (θ
being given by (11) with c =

√
λ1), then problem (17) has a unique solution u ∈ (−∆)−(p−1) H1

0 (Ω) .

Proof. According to the main theorem abut Nemytskii’s superposition operator, F maps L2 (Ω;Rp) to
L2 (Ω) . In addition, for any u,v ∈ L2 (Ω;Rp) , from (18) we find

|F (u)−F (v)|L2(Ω) ≤
p

∑
i=1

ai |ui− vi|L2(Ω) .

Thus Theorem 1 is applicable and gives the result.

Theorem 2 yields the following result.

COROLLARY 2. Let f satisfy the Carathéodory conditions and

| f (x,u)| ≤ ψ (x)+
p

∑
i=1

ai |ui|

for all u = (u1, ..., up) ∈ Rp, a.e. x ∈ Ω, some nonnegative constants ai, i = 1, ..., p and a function ψ ∈
L2 (Ω) . If θ < 1 (θ being given by (11) with c =

√
λ1), then problem (17) has at least one solution u ∈

(−∆)−(p−1) H1
0 (Ω) with ∣∣∆p−1u

∣∣
H1

0 (Ω)
≤
|ψ|L2(Ω) /

√
λ1 + |h|H−1(Ω)

1−θ
.
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Using Theorem 3 we obtain the following result.

COROLLARY 3. Let f satisfy the Carathéodory conditions and

| f (x,u)| ≤ ψ (x)+
p

∑
i=1

ai |ui|q (19)

for all u=(u1, ..., up)∈Rp, a.e. x∈Ω, some nonnegative constants ai, i= 1, ..., p, a number 1≤ q< 2∗−1=
2∗/(2∗)′ = (n+2)/(n−2) (n≥ 3)) and a function ψ ∈ Lq0 (Ω) , where q0 ∈ ((2∗)′ ,2∗/q]. In addition assume
that

vp f (x,v)≤ αv2
p

for every v ∈ Rp and some α ∈ [0,λ1). Then problem (17) has at least one solution u ∈ (−∆)−(p−1) H1
0 (Ω) .

Moreover, any solution u ∈ (−∆)−(p−1) H1
0 (Ω) satisfies

∣∣∆p−1u
∣∣
H1

0 (Ω)
≤ |h|H−1(Ω) /

(
1− α

λ1

)
.

Proof. Let q1 = q0q. Clearly q1 ∈ [1,2∗]. Hence the embedding H1
0 (Ω) ⊂ Lq1 (Ω) is continuous, while

since q0 > (2∗)′ , the embedding Lq0 (Ω) ⊂ H−1 (Ω) is compact. In addition since q = q1/q0, from (19) we
have that Nemytskii’s superposition operator N f is well-defined, continuous and bounded from Lq1 (Ω)p to
Lq0 (Ω) . Then our operator F (u) = f (·,u(·)) can be decomposed as F = JN f P, where

P : H1
0 (Ω)p→ Lq1 (Ω)p , Pu = u;

N f : Lq1 (Ω)p→ Lq0 (Ω) , N f (v)(x) = f (x,v(x)) ;

J : Lq0 (Ω)→ H−1 (Ω) , J1u = u.

Since J is compact one deduces that F : H1
0 (Ω)p→ H−1 (Ω) is completely continuous.

We now check condition (15). For v ∈ H1
0 (Ω)p , one has

〈F (v) , vp〉 =
〈
JN f P(v) , vp

〉
=
∫

Ω

vp (x) f (x,v(x))≤ α

∫
Ω

vp (x)
2 = α |vp|2L2(Ω) .

Hence the assumptions of Theorem 3 are fulfilled and the conclusion follows.

In contrast with the general case of equations involving iterates of a linear operator A, the case of the Laplace
operator is a special one due to the representation of the Laplacian ∆=∇ ·∇ as a composition of two differential
operators, the gradient and the divergence. This particularity allows nonlinear terms of semilinear equations
also to depend on gradient. Thus, instead of problem (17) we can consider more generally the problem{

∆pu = h+ f
(
x,u,∆u, ..., ∆p−1u, ∇u, ∇∆u, ..., ∇∆p−1u

)
in Ω

u = ∆u = ... = ∆p−1u = 0 on ∂Ω.
(20)

Then looking to extend to this problem the results in Corollaries 1 and 2, the expression of constant θ in (11)
should be completed by terms involving odd powers of 1/c (1/

√
λ1). For example, if f : Ω×Rp×Rnp→ R is

such that

| f (x,u,u)− f (x,v,v)| ≤
p

∑
i=1

(ai |ui− vi|+bi |ui−vi|)

for all u,v ∈Rp and u,v ∈(Rn)p (where applied to vectors from Rn, notation |·| stands for the Euclidian norm),
then trying to follow the estimation made for (12) we arrive to the final sum

1
c

p

∑
i=1

(
ai
∣∣∆i−1 (u− v)

∣∣
L2(Ω)

+bi
∣∣∇∆

i−1 (u− v)
∣∣
L2(Ω;Rn)

)
.
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According to (13) we have ∣∣∆i−1w
∣∣
L2(Ω)

≤ 1
c2(p−i)+1

|w|H , i = 1, ..., p,

which help in the estimation∣∣∇∆
i−1w

∣∣
L2(Ω;Rn)

=
∣∣∆i−1w

∣∣
H1

0 (Ω)
=
∣∣∆iw

∣∣
H−1(Ω)

≤ 1
c

∣∣∆iw
∣∣
L2(Ω)

≤ 1
c2(p−i)

|w|H .

Then the analogue of (14) for the new operator

N0 (u) := ∆
−p f

(
·,u,∆u, ...,∆p−1u,∇u,∇∆u, ...,∇∆

p−1u
)
,

is the estimate

|N0 (u)−N0 (v)|H ≤
p

∑
i=1

(
ai

c2(p−i)+2 +
bi

c2(p−i)+1

)
|u− v|H .

Thus the contraction condition guaranteeing the existence and uniqueness of the solution of (20) is now

θ̃ :=
p

∑
i=1

(
ai

c2(p−i)+2 +
bi

c2(p−i)+1

)
< 1.

An analogue result to Corollary 2 can be established under the growth condition on f ,

| f (x,u,u)| ≤C+
p

∑
i=1

(ai |ui|+bi |ui|)

and the same condition θ̃ < 1 on the constants ai and bi.
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