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1. INTRODUCTION

Let Ω be a bounded open set in RN (N ≥ 2) with Lipschitz boundary ∂Ω. Our aim is to prove the existence
at least one distributional solution to the anisotropic nonlinear weighted elliptic equations of the form

−
N

∑
i=1

Di
(
W (x)Θi(x,Diu)

)
+a(x)

N

∑
i=1

|u|pi(x)−2u = f , in Ω,

u = 0, on ∂Ω,

(1)

where:
•)Θi : Ω×R→R, i = 1, . . . ,N, are Carathéodory functions such that; a.e. x ∈ Ω and for all η ,η ′ ∈R (η ̸= η ′):

Θi(x,η)η ≥ c1|η |pi(x), (2)

|Θi(x,η)| ≤ c2

(
N

∑
j=1

|η |p j(x)+ |h|

)1− 1
pi(x)

, h ∈ L1(Ω) (3)

(
Θi(x,η)−Θi(x,η ′)

)(
η −η

′)≥{ c3|η −η ′|pi(x), if pi(x)≥ 2
c4

|η−η ′|2

(|η |+|η ′|)2−pi(x)
, if 1 < pi(x)< 2 (4)

where cl, l = 1, . . . ,4 are positive constants.
•) f and a(·) are in L1(Ω) , W (·) is in W̊ 1,−→p (·)(Ω), such that

∃α > 0 : | f (x)| ≤ αa(x), (5)

W (x)≥ β , for some β ∈ R∗
+. (6)



338 Mokhtar NACERI 2

As prototype example, we consider for f ,a ∈ L1(Ω), W (·) and pi(·) are restricted as in Theorem 1, the model:

−
N

∑
i=1

Di

(
W (x)|Diu|pi(x)−2Diu

)
+a(x)

N

∑
i=1

|u|pi(x)−2u = f , in Ω,

u = 0, on ∂Ω.

(7)

Anisotropic equations and systems with variable exponents has many applications in applied science, for
that see [15–17]. From the theoretical side it has been studied, for example, but not limited to, in the works
[5–11]. The finite Morse index solutions of weighted elliptic equations and the critical exponents were proved
in [1], also in [2] the further study of a weighted elliptic equation has been processed.

In this paper we prove existence results of distributional solutions for a class of anisotropic nonlinear
weighted elliptic equations with variable exponents (1), where the right-hand side f is in L1(Ω) under the con-
dition (5), and the weight function W (·) is in W̊ 1,−→p (·)(Ω) and strictly positive. The advantage of this method,
which depends on the fact that weight function belongs to the anisotropic Sobolev space with variable expo-
nents and zero boundary W̊ 1,−→p (·)(Ω), which can be reused in many other cases leading to solutions for other
different equations. The existence results for (1) are proven in the isotropic scalar case in [3], and in [4] the
linear case p = 2 it was studied.

The proof requires a priori estimates for a sequence of suitable approximate solutions (un), which in turn is
proving its existence by Leray-Schauder’s fixed point Theorem. So in Lemma 5 we’ve turned the approximate
problems into a new problems with no weight function at its left-hand side. After that we prove the strong
convergence, then we pass to the limit in the weak formulation.

We need a bounded Lipschitz domain in this work to arrive at the correct formulation of boundary condi-
tions, it must therefore impose on ∂Ω to have sufficient regularity (i.e. the domain Ω with Lipschitz boundary
∂Ω), and within this condition we can apply Green Riemann’s theorem.

Section 2 is dedicated to mathematical preliminaries, where we talked about p(x)−Lebesgue-Sobolev
spaces, then some embedding theorems. The main existence result and proof is in section 3.

2. MATHEMATICAL PRELIMINARIES

In this section we’re going to try to recall the p(x)−Lebesgue-Sobolev spaces (see [12–14]).

Let Ω be a bounded open subset of RN (N ≥ 2), we denote

C+(Ω) = {continuous function p(·) : Ω 7−→ R such that 1 < p− ≤ p+ < ∞},

where, p+ = maxx∈Ω
p(x) and p− = minx∈Ω

p(x). We define the Lebesgue space with variable exponent

Lp(·)(Ω) := {measurable functions u : Ω 7→ R;ρp(·)(u)< ∞} where, ρp(·)(u) :=
∫

Ω

|u(x)|p(x)dx.

The space Lp(·)(Ω) equipped with the norm; ∥ f∥p(·) := ∥ f∥Lp(·)(Ω) = inf
{

λ > 0 | ρp(·)( f/λ )≤ 1
}

becomes a Banach space. Moreover, is reflexive if p− > 1.
The Hölder type inequality: |

∫
Ω

uvdx| ≤
(

1
p− + 1

p′−

)
∥u∥p(·)∥v∥p′(·), holds true, where 1

p(x) +
1

p′(x) = 1.

We define also the Banach space W 1,p(·)
0 (Ω) :=

{
f ∈ Lp(·)(Ω) : |D f | ∈ Lp(·)(Ω) and f = 0 on ∂Ω

}
endowed with the norm ∥ f∥

W 1,p(·)
0 (Ω)

:= ∥D f∥p(·). Moreover, is reflexive and separable if p(·) ∈ C+(Ω).

For u ∈W 1,p(·)
0 (Ω) with p ∈C(Ω, [1,+∞)), the Poincaré inequality; ∥u∥p(·) ≤C∥Du∥p(·), holds (see [13])

for some constant C which depends on Ω and the function p(x). The following Lemma will be used later.
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LEMMA 1 ([13, 14]). If (un), u ∈ Lp(·)(Ω), then the following relations hold

(i) min
(

ρp(·)(u)
1

p+ ,ρp(·)(u)
1

p−
)
≤ ∥u∥p(·) ≤ max

(
ρp(·)(u)

1
p+ ,ρp(·)(u)

1
p−
)
,

(ii) min
(
∥u∥p−

p(·),∥u∥p+

p(·)

)
≤ ρp(·)(u)≤ max

(
∥u∥p−

p(·),∥u∥p+

p(·)

)
, (iii) ∥u∥p(·) ≤ ρp(·)(u)+1.

Now, we present the anisotropic Sobolev space with variable exponent.
First of all, let pi(·) : Ω → [1,+∞) for all i = 1, . . . ,N be a continuous functions, we set

−→p (·) = (p1(·), . . . , pN(·)) and p+(x) = max
1≤i≤N

pi(x), p−(x) = min
1≤i≤N

pi(x), ∀x ∈ Ω .

The anisotropic variable exponent Sobolev space W 1,−→p (·)(Ω) :=
{

u ∈ Lp+(·)(Ω),Diu ∈ Lpi(·)(Ω), i = 1, . . . ,N
}
,

which is Banach space with respect to the norm, ∥u∥W 1,−→p (·)(Ω) := ∥u∥p+(·)+
N
∑

i=1
∥Diu∥pi(·) .

We define: W 1,−→p (·)
0 (Ω) :=C∞

0 (Ω)
W 1,−→p (·)(Ω)

, W̊ 1,−→p (·)(Ω) :=W 1,−→p (·)(Ω)∩W 1,1
0 (Ω).

Remark 1 ([11]). If Ω has a Lipschitz boundary ∂Ω, then W̊ 1,−→p (·)(Ω) =
{

u ∈W 1,−→p (·)(Ω), u|∂Ω = 0
}
,

where, u|∂Ω denotes the trace on ∂Ω of u in W 1,1(Ω).

We set ∀x ∈ Ω : p(x) = N
N
∑

i=1

1
pi(x)

, p++ = max
x∈Ω

p+(x), p−− = min
x∈Ω

p−(x), p⋆(x) =

{
N p(x)

N−p(x) , for p(x)< N,

+∞, for p(x)≥ N.

We have the following embedding results.

LEMMA 2 ( [11]). Let Ω ⊂ RN be a bounded domain and −→p (·) ∈ (C+(Ω))N . If r ∈ C+(Ω) and ∀x ∈ Ω,
r(x)< max(p+(x), p⋆(x)). Then the embedding

W̊ 1,−→p (·)(Ω) ↪→ Lr(·)(Ω) is compact. (8)

LEMMA 3 ([11]). Let Ω ⊂ RN be a bounded domain and −→p (·) ∈ (C+(Ω))N . Suppose that

∀x ∈ Ω, p+(x)< p⋆(x). (9)

Then the following Poincaré-type inequality holds

∥u∥Lp+(·)(Ω) ≤C
N

∑
i=1

∥Diu∥Lpi(·)(Ω), ∀u ∈ W̊ 1,−→p (·)(Ω), (10)

where C is a positive constant independent of u. Thus
N

∑
i=1

∥Diu∥Lpi(·)(Ω) is an equivalent norm on W̊ 1,−→p (·)(Ω).

3. STATEMENT OF RESULTS

Definition 1. We say that u is a distributional solution for problem (1) if u∈W 1,1
0 (Ω), and for all ϕ ∈C∞

c (Ω),

∫
Ω

N

∑
i=1

W (x)Θi(x,Diu)Diϕ dx+
∫

Ω

N

∑
i=1

a(x)|u|pi(x)−2uϕ dx =
∫

Ω

f (x)ϕ dx.

Our main result is the following.

THEOREM 1. Let pi(·) > 1, i = 1, . . . ,N, are continuous functions on Ω where p < N, and let f and a(·)
are in L1(Ω) such that (5) and (9) holds; let W (·) be such that (6) holds. Then the problem (1) has at least one
solution u ∈ W̊ 1,−→p (·)(Ω) in the sense of distributions.
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3.1. APPROXIMATE SOLUTIONS

We are going to prove the existence of solution to problem (1). We define

fn(x) =
f (x)

1+ | f (x)|
n

, an(x) =
a(x)

1+ α

n a(x)
, Wn(x) = κn(W (x)), n ∈ N∗ (11)

where κn(x) = x/(1+ x
n). Since κn is increasing for the positive real variable x, we deduce by (5) that

| fn(x)| ≤
αa(x)

1+ α

n a(x)
= αan(x). (12)

Also, thanks to (6), we have for all x ∈ Ω

β

1+β
≤Wn(x)≤ n. (13)

LEMMA 4. Let pi(·)> 1, i = 1, . . . ,N, are continuous functions on Ω such that p < N, and (9) holds, and
let f , a(·) are in L1(Ω), such that (5) holds; let W (·) be a function in W̊ 1,−→p (·)(Ω) such that (6) holds.

Then, there exists at least one weak solution un ∈ W̊ 1,−→p (·)(Ω) to the approximated problems

−
N

∑
i=1

Di
(
Wn(x)Θi(x,Diun)

)
+an(x)un

N

∑
i=1

|un|pi(x)−2 = fn, in Ω,

un = 0, on ∂Ω,

(14)

in the sense that; for every ϕ ∈ W̊ 1,−→p (·)(Ω)∩L∞(Ω)

N

∑
i=1

∫
Ω

Wn(x)Θi(x,Diun)Diϕ dx+
∫

Ω

N

∑
i=1

an(x)|un|pi(x)−2unϕ dx =
∫

Ω

fnϕ dx, (15)

Moreover,
N

∑
i=1

|un|pi(x)−1 ≤ α. (16)

Proof. We consider for X = Lp+(·)(Ω) the operator

ψ : X × [0,1]−→ X

(vn,σ) 7−→ un = ψ(vn,σ),

where un is the only weak solution of the problem−
N
∑

i=1
Di (Wn(x)Θi(x,Diun)) = σ

(
fn − vn

N
∑

i=1
an(x)|vn|pi(x)−2

)
in Ω,

un = 0 on ∂Ω.
(17)

The existence of the weak solution u of the problem (17) in W̊ 1,−→p (·)(Ω) is directly produced by the main
Theorem on pseudo-monotone operators, and the uniqueness of this solution which is a clear consequence of
the uniqueness for the homogeneous problem (= 0).

It is clear that ψ(vn,0) = 0 for all vn ∈ X , because un = 0 ∈ Lp+(Ω) is the only weak solition of the problem−
N
∑

i=1
Di (Wn(x)Θi(x,Diun)) = 0 in Ω,

un = 0 on ∂Ω.
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As the solution to the problem (17) verify, for all ϕ ∈ W̊ 1,−→p (·)(Ω),

N

∑
i=1

∫
Ω

Wn(x)Θi(x,Diun)Diϕ dx = σ

∫
Ω

(
fn −

N

∑
i=1

an(x)|vn|pi(x)−2vn
)
ϕ dx. (18)

Taking ϕ = un as test function, and using (2), (12), (5), (13), (10), Lemma 1, and Hölder inequality, we have

c1β

1+β

N

∑
i=1

∫
Ω

|Diun|pi(x) dx ≤ σ

∫
Ω

|an(x)|
(
α +

N

∑
i=1

|vn|pi(x)−1)|un|dx

≤ n
∫

Ω

(
α +

N

∑
i=1

|vn|pi(x)−1

)
|un|dx

≤ cn
∥∥(1+ N

∑
i=1

|vn|pi(x)−1)∥∥
p′i(·)
∥∥un
∥∥

pi(·)

≤ c′n

(
1+

N

∑
i=1

∥∥|vn|pi(x)−1∥∥
p′i(·)

)∥∥un
∥∥

p+(·)

≤ c′n

(
1+N +

N

∑
i=1

ρpi(·)(vn)

)∥∥un
∥∥

p+(·)

≤ c′′n
(
1+N +N|Ω|+Nρp+(·)(vn)

)∥∥un
∥∥−→p (·). (19)

On the other hand, we have
N
∑

i=1

∫
Ω
|Diun|pi(x) dx ≥

N
∑

i=1
min{

∥∥Diun
∥∥p−i

pi(x)
,
∥∥Diun

∥∥p+i
pi(x)

}.

We define for all i = 1, . . . ,N; ξi =

{
p++, si

∥∥Diun
∥∥

pi(·) < 1

p−−, si
∥∥Diun

∥∥
pi(·) ≥ 1

, we obtain

N

∑
i=1

min{
∥∥Diun

∥∥p−i
pi(.)

,
∥∥Diun

∥∥p+i
pi(.)

} ≥
N

∑
i=1

∥∥Diun
∥∥ξi

pi(.)

≥
N

∑
i=1

∥∥Diun
∥∥p−−

pi(.)
− ∑

{i,ξi=p++}

(∥∥Diun
∥∥p−−

pi(.)
−
∥∥Diun

∥∥p++
pi(.)

)
≥

N

∑
i=1

∥∥Diun
∥∥p−−

pi(.)
− ∑

{i,ξi=p++}

∥∥Diun
∥∥p−−

pi(.)
≥
( 1

N

N

∑
i=1

∥∥Diun
∥∥

pi(.)

)p−− −N.

Then, we get
N

∑
i=1

∫
Ω

|Diun|pi(x) dx ≥
(

1
N

∥∥un
∥∥−→p (·)

)p−−
−N. (20)

From (19) and (20), we conclude

c1β

(1+β )N p−−

∥∥un
∥∥p−−−→p (·) ≤ c′′n

(
1+N +N|Ω|+Nρp+(·)(vn)

)∥∥un
∥∥−→p (·)+C′. (21)

Si
∥∥un
∥∥−→p (·) ≤ 1, we have;

∥∥un
∥∥−→p (·) ≤ 1, and si

∥∥un
∥∥−→p (·) > 1, from (21) we have;

∥∥un
∥∥p−−−1
−→p ≤C′′(n).

Then, there exists C(n)> 0 such that ∥∥un
∥∥−→p (·) ≤C(n). (22)

Compactness of ψ: Let B̃ be a bounded of Lp+(·)(Ω)× [0,1]. Thus B̃ is contained in a product of the type
B× [0,1] with B a bounded of Lp+(·)(Ω), which can be assumed to be a ball of center O and of radius r > 0.
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For u ∈ ψ(B̃), we have, thanks to (22):
∥∥u
∥∥−→p (·) ≤ ρ.

For u = ψ(v,σ) with (v,σ) ∈ B× [0,1] (
∥∥v
∥∥

p+(·) ≤ r ). This proves that ψ applies B̃ in the closed ball of

center O and radius ρ ( ρ depend on n and r due (19)) in W̊ 1,−→p (·)(Ω)(↪→ Lp+(·)(Ω)) compactly due (9) and (8).
Let un be a sequence of elements of ψ(B̃), therefore un = ψ(vn,σn) with (vn,σn) ∈ B̃. Since un remains in

a bounded of W̊ 1,−→p (·)(Ω), it is possible to extract a sub-sequence which converges strongly to an element u of

Lp+(·)(Ω). This proves that ψ(B̃)
Lp+(·)(Ω)

is compact. So ψ is compact. Now, let’s prove that; ∃M > 0,

∀(vn,σ) ∈ X × [0,1] : vn = ψ(vn,σ)⇒
∥∥vn
∥∥

X ≤ M.

For that, we give the estimate of elements of Lp+(·)(Ω) such that vn = ψ(vn,σ), then we have,

N

∑
i=1

∫
Ω

Wn(x)Θi(x,Divn)Diϕ dx = σ

∫
Ω

(
fn −

N

∑
i=1

an(x)|vn|pi(x)−2vn
)
ϕ dx, for all ϕ ∈ W̊ 1,−→p (·)(Ω). (23)

Choosing ϕ = vn in (23), we have

N

∑
i=1

∫
Ω

Wn(x)Θi(x,Divn)Divn dx+σ

∫
Ω

N

∑
i=1

an(x)|vn|pi(x) dx = σ

∫
Ω

fnvn dx. (24)

After dropping the nonnegative term in (24) due (12), and using (13), (2), Young’s inequality, and the fact that

1+ |Divn|pi(·) ≥ |Divn|p
−
− , i = 1, . . . ,N,

we have
c1β

1+β

N

∑
i=1

∫
Ω

|Divn|pi(x) dx ≤ n
∫

Ω

|vn|dx

≤ n
(

C(ε)+ ε

∫
Ω

|Divn|p
−
− dx

)
≤ n

(
C(ε)+ ε|Ω|+ ε

∫
Ω

|Divn|pi(·) dx
)

≤ n

(
C(ε)+ ε|Ω|+ ε

N

∑
i=1

∫
Ω

|Divn|pi(·) dx

)
.

(25)

Choosing ε = c1β

2n(1+β ) , then using the fact that (see (20)); ∑
N
i=1
∫

Ω
|Divn|pi(x) dx≥

(
1
N

∥∥vn
∥∥−→p (·)

)p−−−N, we obtain∥∥vn
∥∥−→p (·) ≤C(n). (26)

It then follows from the Leray-Schauder’s Theorem that the operator ψ1 : X −→ X defined by ψ1(u) = ψ(u,1)
has a fixed point, which shows the existence of a solution of (14) in the sense of (15).

In order to prove (16), we cosider the following function defined for t ∈ R by

Gk(t) =


0, if |t| ≤ k,
t − k, if t > k, k > 0
t + k, if t <−k.

The use of Gα(un) as a test function in (15) gives, thanks to (2), (6) and (12),

c1β

1+β

N

∑
i=1

∫
Ω

|Di(Gα(un))|pi(x) dx+
∫

Ω

|an(x)|

(
N

∑
i=1

|un|pi(x)−1 −α

)
|Gα(un)|dx ≤ 0, (27)

which implies (16).
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Remark 2. The fact that 1+ |un|pi(x)−1 ≥ |un|p
−
−−1 and (16), gives us |un| ≤

(
α

N +1
) 1

p−−−1 , so

(un) is bounded in L∞(Ω). (28)

3.2. A PRIORI ESTIMATES

LEMMA 5. Let f , a,W and pi, i = 1, . . . ,N be restricted as in Theorem 1. Then

un is bounded in W̊ 1,−→p (·)(Ω), (29)

where un the weak solution to the problem (14). And, we have

N

∑
i=1

∫
Ω

Θi(x,Diun)Diϕ dx =
∫

Ω

Gnϕ dx, (30)

for every ϕ ∈ W̊ 1,−→p (·)(Ω)∩L∞(Ω), where

{Gn} is bounded in Lp′i(Ω), i = 1, . . . ,N. (31)

Proof. After choosing ϕ = un in the weak formulation (15), and dropping the nonnegative term, and the
same technique as in the proof of (26) we can get∥∥un

∥∥−→p (·) ≤C(n). (32)

Since, for all x ∈ Ω

DiWn(x) =
DiW (x)(

1+ W (x)
n

)2 , i = 1, . . . ,N,

we have that |DiWn(x)| ≤ |DiW (x)|, and therefore Wn(·) ∈ W̊ 1,−→p (·)(Ω), due to 0 ≤Wn(x)≤W (x), we get

Wn is bounded in W̊ 1,−→p (·)(Ω), (33)

Wn strongly converges to W in W̊ 1,−→p (·)(Ω). (34)

Now, by the boundedness of 1
wn(x)

since (13), we find that; 1
wn(x)

ϕ ∈ W̊ 1,−→p (·)(Ω), for all ϕ ∈ W̊ 1,−→p (·)(Ω),
so we can chosen as test function in the weak formulation (15). We obtain

N

∑
i=1

∫
Ω

Θi(x,Diun)Diϕ dx =
∫

Ω

Gn(x)ϕ dx,

where Gn defined by

Gn(x) =
1

Wn(x)

(
fn(x)−an(x)un

N

∑
i=1

|un|pi(x)−2 +
N

∑
i=1

Θi(x,Diun)DiWn(x)

)
. (35)

Now, for all i = 1, . . . ,N we have ∫
Ω

|an|p
′
i(x) dx ≤ |Ω|np′++ , (36)

then (36) implies that
(an) is bounded in Lp′i(Ω). (37)
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And in the same way that we find that

( fn) is bounded in Lp′i(Ω). (38)

Also, thanks to (16), we have

an(x)
N

∑
i=1

|un|pi(x)−1 ≤ αan(x), (39)

so, from (39) and (37) we get

(
an(x)un

N

∑
i=1

|un|pi(x)−2) is bounded in Lp′i(Ω), i = 1, . . . ,N. (40)

Now, from (3) and (32), we obtain for all i = 1, . . . ,N

∫
Ω

|Θi(x,Diun)|p
′
i(·) dx ≤(1+ cp′++

2 )
∫

Ω

(
N

∑
j=1

|Diun|p j(x)+ |h|

)
dx

≤(1+ cp′++
2 )

∫
Ω

(
N

N

∑
j=1

|D jun|p j(x)+ |h|

)
dx ≤C

∥∥un
∥∥p++−→p (·)+C′ ≤C′′.

And therefore
Θi(x,Diun) is bounded in Lp′i(·)(Ω), i = 1, . . . ,N. (41)

Using (13), (33), (37), (38), (40), (41), and the boundedness of 1
wn(x)

, we obtain (31).

LEMMA 6. There exists a subsequence (still denoted (un)) such that, for all i = 1, . . . ,N

Diun −→ Diu strongly in Lpi(x) and a.e. in Ω, (42)

where u is the weak limit of the sequence (un) in W̊ 1,−→p (·)(Ω).

Proof. From (32) the sequence (un) is bounded in W̊ 1,−→p (·)(Ω). So, there exists a function u ∈ W̊ 1,−→p (·)(Ω)
and a subsequence (still denoted by (un)) such that

un ⇀ u weakly in W̊ 1,−→p (·)(Ω) and a.e in Ω, (43)

and Diun ⇀ Diu in Lpi(x), i = 1, . . . ,N. (44)

First, let’s prove that, for all i = 1, . . . ,N
lim

n−→+∞
Ii,n = 0, (45)

where, for all i = 1, . . . ,N, Ii,n =
∫

Ω
(Θi(x,Diun)−Θi(x,Diu))(Diun −Diu)dx.

Note that, for all i = 1, . . . ,N, Ii,n =
∫

Ω
Θi(x,Diun)(Diun −Diu)dx−

∫
Ω

Θi(x,Diu)(Diun −Diu)dx.
As, (44) and (41) we get , for all i = 1, . . . ,N,

lim
n−→+∞

∫
Ω

Θi(x,Diu)(Diun −Diu)dx = 0.

So, let’s prove that, for all i = 1, . . . ,N

lim
n−→+∞

∫
Ω

Θi(x,Diun)(Diun −Diu)dx = 0. (46)
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Choosing ϕ = (un −u) in (30) as a test function, we get

N

∑
i=1

∫
Ω

Θi(x,Diun)(Diun −Diu)dx =
∫

Ω

Gn(x)(un −u)dx.

By (8) in Lemma 2 we get un −→ u strongly in Lpi(x) since (9), then from this and (31) we obtain (46). So, (45)
has been proven.

Right now, we put : Ω1
i = {x ∈ Ω, pi(x)≥ 2}, and Ω2

i = {x ∈ Ω,1 < pi(x)< 2}, i = 1, . . . ,N
then, By (4) we have, for all i = 1, . . . ,N

Ii,n ≥ c3

∫
Ω1

i

|Di(un −u)|pi(x). (47)

On the other hand, by Hölder inequality, (4), and Lemma 1, we have

∫
Ω2

i

|Di(un −u)|pi(x) dx ≤ 2

∥∥∥∥∥∥ |Di(un −u)|pi(x)

(|Diun|+ |Diu|)
pi(x)(2−pi(x))

2

∥∥∥∥∥∥
L

2
pi(·) (Ω2

i )

×
∥∥∥∥(|Diun|+ |Diu|)

pi(x)(2−pi(x))
2

∥∥∥∥
L

2
2−pi(·) (Ω2

i )

≤ 2max
{(∫

Ω2
i

|Di(un −u)|2(
|Diun|+ |Diu|

)2−pi(x)
dx
) p−i

2
,
(∫

Ω2
i

|Di(un −u)|2

(|Diun|+ |Diu|)2−pi(x)
dx
) p+i

2
}

×max
{(∫

Ω

(
|Diun|+ |Diu|

)pi(x) dx
) 2−p+i

2
,
(∫

Ω

(
|Diun|+ |Diu|

)pi(x) dx
) 2−p−i

2
}

≤ 2cmax
{(

Ii,n

) p−i
2
,
(

Ii,n

) p+i
2
}(

(1+ρpi(|Diun|+ |Diu|))
2−p−−

2

)
.

(48)
From (32), (45), and after letting n −→+∞ in (47) and in (48), we obtain

lim
n−→+∞

∫
Ω

|Diun −Diu|pi(x) dx = 0, for all i = 1, . . . ,N.

Which implies (42).

3.3. PROOF OF THE THEOREM 1 :

By (42) we have, for all i = 1, . . . ,N

Θi(x,Diun)⇀ Θi(x,Diu) weakly in Lp′i(·)(Ω), p′i(·) =
pi(·)

pi(·)−1
. (49)

From (34) we conclude that, for all i = 1, . . . ,N

Wn(·)−→W (·) strongly in Lpi(·)(Ω). (50)

Furthermore, as we have an is in L1(Ω), and from (28), we obtain

an(x)un

N

∑
i=1

|un|pi(x)−2 −→ a(x)u
N

∑
i=1

|u|pi(x)−2 strongly in L1(Ω). (51)

Then, through this, we can pass to the limit in the weak formulation (15). This proves Theorem 1.
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