EXISTENCE RESULTS FOR ANISOTROPIC NONLINEAR WEIGHTED ELLIPTIC EQUATIONS WITH VARIABLE EXPONENTS AND L^1 DATA

Mokhtar NACERI

ENS of Laghouat, BP 4033 Station post avenue of Martyrs, Laghouat, Algeria and ENS-Kouba, Laboratory EDPNL-HM, Algiers, Algeria Corresponding author: Mokhtar NACERI, E-mail: nasrimokhtar@gmail.com

Abstract. In this paper we prove existence of distributional solutions for a class of anisotropic nonlinear weighted elliptic equations with variable exponents, where the right-hand side f is in $L^1(\Omega)$ and the weight function $W(\cdot) \in \mathring{W}^{1,\overrightarrow{p}(\cdot)}(\Omega)$ with $W(\cdot) > 0$.

Key words: weighted elliptic equation, anisotropic Sobolev space, variable exponent, distributional solution, L^1 data.

Mathematics Subject Classification (MSC2020): 35J60, 35J66.

1. INTRODUCTION

Let Ω be a bounded open set in \mathbb{R}^N ($N \ge 2$) with Lipschitz boundary $\partial \Omega$. Our aim is to prove the existence at least one distributional solution to the anisotropic nonlinear weighted elliptic equations of the form

$$-\sum_{i=1}^{N} D_i \left(W(x) \Theta_i(x, D_i u) \right) + a(x) \sum_{i=1}^{N} |u|^{p_i(x) - 2} u = f, \quad \text{in } \Omega,$$

$$u = 0, \quad \text{on } \partial\Omega,$$
(1)

where:

•) $\Theta_i : \Omega \times \mathbb{R} \to \mathbb{R}, i = 1, ..., N$, are Carathéodory functions such that; a.e. $x \in \Omega$ and for all $\eta, \eta' \in \mathbb{R}$ $(\eta \neq \eta')$:

$$\Theta_i(x,\eta)\eta \ge c_1 |\eta|^{p_i(x)},\tag{2}$$

$$|\Theta_{i}(x,\eta)| \le c_{2} \left(\sum_{j=1}^{N} |\eta|^{p_{j}(x)} + |h| \right)^{1 - \frac{1}{p_{i}(x)}}, \quad h \in L^{1}(\Omega)$$
(3)

$$\left(\Theta_{i}(x,\eta) - \Theta_{i}(x,\eta')\right)\left(\eta - \eta'\right) \ge \begin{cases} c_{3}|\eta - \eta'|^{p_{i}(x)}, & \text{if } p_{i}(x) \ge 2\\ c_{4}\frac{|\eta - \eta'|^{2}}{(|\eta| + |\eta'|)^{2 - p_{i}(x)}}, & \text{if } 1 < p_{i}(x) < 2 \end{cases}$$
(4)

where c_l , l = 1, ..., 4 are positive constants.

•) f and $a(\cdot)$ are in $L^1(\Omega)$, $W(\cdot)$ is in $\mathring{W}^{1,\overrightarrow{p}(\cdot)}(\Omega)$, such that

$$\exists \alpha > 0 : |f(x)| \le \alpha a(x), \tag{5}$$

$$W(x) \ge \beta$$
, for some $\beta \in \mathbb{R}^*_+$. (6)

As prototype example, we consider for $f, a \in L^1(\Omega)$, $W(\cdot)$ and $p_i(\cdot)$ are restricted as in Theorem 1, the model:

$$-\sum_{i=1}^{N} D_{i} \left(W(x) |D_{i}u|^{p_{i}(x)-2} D_{i}u \right) + a(x) \sum_{i=1}^{N} |u|^{p_{i}(x)-2} u = f, \quad \text{in } \Omega,$$

$$u = 0, \quad \text{on } \partial\Omega.$$
(7)

Anisotropic equations and systems with variable exponents has many applications in applied science, for that see [15-17]. From the theoretical side it has been studied, for example, but not limited to, in the works [5-11]. The finite Morse index solutions of weighted elliptic equations and the critical exponents were proved in [1], also in [2] the further study of a weighted elliptic equation has been processed.

In this paper we prove existence results of distributional solutions for a class of anisotropic nonlinear weighted elliptic equations with variable exponents (1), where the right-hand side f is in $L^1(\Omega)$ under the condition (5), and the weight function $W(\cdot)$ is in $\mathring{W}^{1,\overrightarrow{p}(\cdot)}(\Omega)$ and strictly positive. The advantage of this method, which depends on the fact that weight function belongs to the anisotropic Sobolev space with variable exponents and zero boundary $\mathring{W}^{1,\overrightarrow{p}(\cdot)}(\Omega)$, which can be reused in many other cases leading to solutions for other different equations. The existence results for (1) are proven in the isotropic scalar case in [3], and in [4] the linear case p = 2 it was studied.

The proof requires a priori estimates for a sequence of suitable approximate solutions (u_n) , which in turn is proving its existence by Leray-Schauder's fixed point Theorem. So in Lemma 5 we've turned the approximate problems into a new problems with no weight function at its left-hand side. After that we prove the strong convergence, then we pass to the limit in the weak formulation.

We need a bounded Lipschitz domain in this work to arrive at the correct formulation of boundary conditions, it must therefore impose on $\partial \Omega$ to have sufficient regularity (i.e. the domain Ω with Lipschitz boundary $\partial \Omega$), and within this condition we can apply Green Riemann's theorem.

Section 2 is dedicated to mathematical preliminaries, where we talked about p(x)-Lebesgue-Sobolev spaces, then some embedding theorems. The main existence result and proof is in section 3.

2. MATHEMATICAL PRELIMINARIES

In this section we're going to try to recall the p(x)-Lebesgue-Sobolev spaces (see [12–14]).

Let Ω be a bounded open subset of $\mathbb{R}^N (N \ge 2)$, we denote

$$\mathscr{C}_+(\overline{\Omega}) = \{ \text{continuous function} \quad p(\cdot) : \overline{\Omega} \longmapsto \mathbb{R} \quad \text{such that} \quad 1 < p^- \le p^+ < \infty \},$$

where, $p^+ = \max_{x \in \overline{\Omega}} p(x)$ and $p^- = \min_{x \in \overline{\Omega}} p(x)$. We define the Lebesgue space with variable exponent

$$L^{p(\cdot)}(\Omega) := \{ \text{measurable functions } u : \Omega \mapsto \mathbb{R}; \rho_{p(\cdot)}(u) < \infty \} \text{ where, } \rho_{p(\cdot)}(u) := \int_{\Omega} |u(x)|^{p(x)} dx$$

The space $L^{p(\cdot)}(\Omega)$ equipped with the norm; $||f||_{p(\cdot)} := ||f||_{L^{p(\cdot)}(\Omega)} = \inf \{\lambda > 0 \mid \rho_{p(\cdot)}(f/\lambda) \le 1\}$ becomes a Banach space. Moreover, is reflexive if $p^- > 1$.

The Hölder type inequality: $\left|\int_{\Omega} uv \, dx\right| \le \left(\frac{1}{p^-} + \frac{1}{p'^-}\right) \|u\|_{p(\cdot)} \|v\|_{p'(\cdot)}$, holds true, where $\frac{1}{p(x)} + \frac{1}{p'(x)} = 1$.

We define also the Banach space $W_0^{1,p(\cdot)}(\Omega) := \{f \in L^{p(\cdot)}(\Omega) : |Df| \in L^{p(\cdot)}(\Omega) \text{ and } f = 0 \text{ on } \partial\Omega \}$ endowed with the norm $\|f\|_{W_0^{1,p(\cdot)}(\Omega)} := \|Df\|_{p(\cdot)}$. Moreover, is reflexive and separable if $p(\cdot) \in \mathscr{C}_+(\overline{\Omega})$.

For $u \in W_0^{1,p(\cdot)}(\Omega)$ with $p \in C(\overline{\Omega}, [1, +\infty))$, the Poincaré inequality; $||u||_{p(\cdot)} \leq C||Du||_{p(\cdot)}$, holds (see [13]) for some constant *C* which depends on Ω and the function p(x). The following Lemma will be used later.

LEMMA 1 ([13, 14]). If $(u_n), u \in L^{p(\cdot)}(\Omega)$, then the following relations hold

(i)
$$\min\left(\rho_{p(\cdot)}(u)^{\frac{1}{p^+}}, \rho_{p(\cdot)}(u)^{\frac{1}{p^-}}\right) \le \|u\|_{p(\cdot)} \le \max\left(\rho_{p(\cdot)}(u)^{\frac{1}{p^+}}, \rho_{p(\cdot)}(u)^{\frac{1}{p^-}}\right)$$

(*ii*)
$$\min\left(\|u\|_{p(\cdot)}^{p^-}, \|u\|_{p(\cdot)}^{p^+}\right) \le \rho_{p(\cdot)}(u) \le \max\left(\|u\|_{p(\cdot)}^{p^-}, \|u\|_{p(\cdot)}^{p^+}\right), \quad (iii) \quad \|u\|_{p(\cdot)} \le \rho_{p(\cdot)}(u) + 1.$$

Now, we present the anisotropic Sobolev space with variable exponent.

First of all, let $p_i(\cdot): \overline{\Omega} \to [1, +\infty)$ for all i = 1, ..., N be a continuous functions, we set

$$\overrightarrow{p}(\cdot) = (p_1(\cdot), \dots, p_N(\cdot)) \text{ and } p_+(x) = \max_{1 \le i \le N} p_i(x), \ p_-(x) = \min_{1 \le i \le N} p_i(x), \ \forall x \in \overline{\Omega}.$$

The anisotropic variable exponent Sobolev space $W^{1,\overrightarrow{p}(\cdot)}(\Omega) := \left\{ u \in L^{p_+(\cdot)}(\Omega), D_i u \in L^{p_i(\cdot)}(\Omega), i = 1, \dots, N \right\}$, which is Banach space with respect to the norm, $\|u\|_{W^{1,\overrightarrow{p}(\cdot)}(\Omega)} := \|u\|_{p_+(\cdot)} + \sum_{i=1}^N \|D_i u\|_{p_i(\cdot)}$.

We define:
$$W_0^{1,\overrightarrow{p}(\cdot)}(\Omega) := \overline{C_0^{\infty}(\Omega)}^{W^{1,\overrightarrow{p}(\cdot)}(\Omega)}, \quad \mathring{W}^{1,\overrightarrow{p}(\cdot)}(\Omega) := W^{1,\overrightarrow{p}(\cdot)}(\Omega) \cap W_0^{1,1}(\Omega).$$

Remark 1 ([11]). If Ω has a Lipschitz boundary $\partial \Omega$, then $\mathring{W}^{1,\overrightarrow{p}(\cdot)}(\Omega) = \left\{ u \in W^{1,\overrightarrow{p}(\cdot)}(\Omega), u_{|\partial\Omega} = 0 \right\}$, where, $u_{|\partial\Omega}$ denotes the trace on $\partial\Omega$ of u in $W^{1,1}(\Omega)$.

We set
$$\forall x \in \overline{\Omega} : \overline{p}(x) = \frac{N}{\sum\limits_{i=1}^{N} \frac{1}{p_i(x)}}, \ p_+^+ = \max_{x \in \overline{\Omega}} p_+(x), \ p_-^- = \min_{x \in \overline{\Omega}} p_-(x), \ \overline{p}^{\star}(x) = \begin{cases} \frac{N\overline{p}(x)}{N - \overline{p}(x)}, & \text{for } \overline{p}(x) < N, \\ +\infty, & \text{for } \overline{p}(x) \ge N. \end{cases}$$

We have the following results

We have the following embedding results.

LEMMA 2 ([11]). Let $\Omega \subset \mathbb{R}^N$ be a bounded domain and $\overrightarrow{p}(\cdot) \in (\mathscr{C}_+(\overline{\Omega}))^N$. If $r \in \mathscr{C}_+(\overline{\Omega})$ and $\forall x \in \overline{\Omega}$, $r(x) < \max(p_+(x), \ \overline{p}^*(x))$. Then the embedding

$$\mathring{W}^{1,\overrightarrow{p}(\cdot)}(\Omega) \hookrightarrow L^{r(\cdot)}(\Omega) \text{ is compact.}$$
(8)

LEMMA 3 ([11]). Let $\Omega \subset \mathbb{R}^N$ be a bounded domain and $\overrightarrow{p}(\cdot) \in (\mathscr{C}_+(\overline{\Omega}))^N$. Suppose that

$$\forall x \in \overline{\Omega}, \ p_+(x) < \overline{p}^*(x). \tag{9}$$

Then the following Poincaré-type inequality holds

$$\|u\|_{L^{p_+(\cdot)}(\Omega)} \le C \sum_{i=1}^N \|D_i u\|_{L^{p_i(\cdot)}(\Omega)}, \, \forall u \in \mathring{W}^{1,\overrightarrow{p}(\cdot)}(\Omega), \tag{10}$$

where *C* is a positive constant independent of *u*. Thus $\sum_{i=1}^{N} \|D_{i}u\|_{L^{p_{i}(\cdot)}(\Omega)}$ is an equivalent norm on $\mathring{W}^{1,\overrightarrow{p}(\cdot)}(\Omega)$.

3. STATEMENT OF RESULTS

Definition 1. We say that *u* is a distributional solution for problem (1) if $u \in W_0^{1,1}(\Omega)$, and for all $\varphi \in C_c^{\infty}(\Omega)$,

$$\int_{\Omega} \sum_{i=1}^{N} W(x) \Theta_i(x, D_i u) D_i \varphi \, dx + \int_{\Omega} \sum_{i=1}^{N} a(x) |u|^{p_i(x)-2} u \varphi \, dx = \int_{\Omega} f(x) \varphi \, dx.$$

Our main result is the following.

THEOREM 1. Let $p_i(\cdot) > 1$, i = 1, ..., N, are continuous functions on Ω where $\overline{p} < N$, and let f and $a(\cdot)$ are in $L^1(\Omega)$ such that (5) and (9) holds; let $W(\cdot)$ be such that (6) holds. Then the problem (1) has at least one solution $u \in W^{1, \overrightarrow{p}(\cdot)}(\Omega)$ in the sense of distributions.

3.1. APPROXIMATE SOLUTIONS

We are going to prove the existence of solution to problem (1). We define

$$f_n(x) = \frac{f(x)}{1 + \frac{|f(x)|}{n}}, \quad a_n(x) = \frac{a(x)}{1 + \frac{\alpha}{n}a(x)}, \quad W_n(x) = \kappa_n(W(x)), \quad n \in \mathbb{N}^*$$
(11)

where $\kappa_n(x) = x/(1+\frac{x}{n})$. Since κ_n is increasing for the positive real variable *x*, we deduce by (5) that

$$|f_n(x)| \le \frac{\alpha a(x)}{1 + \frac{\alpha}{n} a(x)} = \alpha a_n(x).$$
(12)

Also, thanks to (6), we have for all $x \in \overline{\Omega}$

$$\frac{\beta}{1+\beta} \le W_n(x) \le n. \tag{13}$$

LEMMA 4. Let $p_i(\cdot) > 1$, i = 1, ..., N, are continuous functions on Ω such that $\overline{p} < N$, and (9) holds, and let $f, a(\cdot)$ are in $L^1(\Omega)$, such that (5) holds; let $W(\cdot)$ be a function in $\overset{\circ}{W}^{1,\overrightarrow{p}(\cdot)}(\Omega)$ such that (6) holds.

Then, there exists at least one weak solution $u_n \in \mathring{W}^{1, \overrightarrow{p}(\cdot)}(\Omega)$ to the approximated problems

$$-\sum_{i=1}^{N} D_i (W_n(x)\Theta_i(x, D_i u_n)) + a_n(x)u_n \sum_{i=1}^{N} |u_n|^{p_i(x)-2} = f_n, \quad in \ \Omega,$$

$$u_n = 0, \quad on \ \partial\Omega,$$
(14)

in the sense that; for every $\varphi \in \mathring{W}^{1,\overrightarrow{p}(\cdot)}(\Omega) \cap L^{\infty}(\Omega)$

$$\sum_{i=1}^{N} \int_{\Omega} W_n(x) \Theta_i(x, D_i u_n) D_i \varphi \, dx + \int_{\Omega} \sum_{i=1}^{N} a_n(x) |u_n|^{p_i(x) - 2} u_n \varphi \, dx = \int_{\Omega} f_n \varphi \, dx, \tag{15}$$

Moreover,
$$\sum_{i=1}^{N} |u_n|^{p_i(x)-1} \leq \alpha.$$
 (16)

Proof. We consider for $X = L^{p_+(\cdot)}(\Omega)$ the operator

$$\psi: X \times [0,1] \longrightarrow X$$
$$(v_n, \sigma) \longmapsto u_n = \psi(v_n, \sigma),$$

where u_n is the only weak solution of the problem

$$\begin{cases} -\sum_{i=1}^{N} D_i \left(W_n(x) \Theta_i(x, D_i u_n) \right) = \sigma \left(f_n - v_n \sum_{i=1}^{N} a_n(x) |v_n|^{p_i(x) - 2} \right) & \text{in } \Omega, \\ u_n = 0 & \text{on } \partial \Omega. \end{cases}$$
(17)

The existence of the weak solution u of the problem (17) in $\mathring{W}^{1,\overrightarrow{p}(\cdot)}(\Omega)$ is directly produced by the main Theorem on pseudo-monotone operators, and the uniqueness of this solution which is a clear consequence of the uniqueness for the homogeneous problem (= 0).

It is clear that $\psi(v_n, 0) = 0$ for all $v_n \in X$, because $u_n = 0 \in L^{p_+}(\Omega)$ is the only weak solition of the problem

$$\begin{cases} -\sum_{i=1}^{N} D_i \left(W_n(x) \Theta_i(x, D_i u_n) \right) = 0 & \text{in } \Omega, \\ u_n = 0 & \text{on } \partial \Omega. \end{cases}$$

As the solution to the problem (17) verify, for all $\varphi \in \mathring{W}^{1,\overrightarrow{p}(\cdot)}(\Omega)$,

$$\sum_{i=1}^{N} \int_{\Omega} W_n(x) \Theta_i(x, D_i u_n) D_i \varphi \, dx = \sigma \int_{\Omega} \left(f_n - \sum_{i=1}^{N} a_n(x) |v_n|^{p_i(x) - 2} v_n \right) \varphi \, dx.$$
(18)

Taking $\varphi = u_n$ as test function, and using (2), (12), (5), (13), (10), Lemma 1, and Hölder inequality, we have

$$\frac{c_{1}\beta}{1+\beta}\sum_{i=1}^{N}\int_{\Omega}|D_{i}u_{n}|^{p_{i}(x)}dx \leq \sigma \int_{\Omega}|a_{n}(x)|\left(\alpha+\sum_{i=1}^{N}|v_{n}|^{p_{i}(x)-1}\right)|u_{n}|dx \\
\leq n\int_{\Omega}\left(\alpha+\sum_{i=1}^{N}|v_{n}|^{p_{i}(x)-1}\right)|u_{n}|dx \\
\leq cn\|\left(1+\sum_{i=1}^{N}|v_{n}|^{p_{i}(x)-1}\right)\|_{p_{i}'(\cdot)}\|u_{n}\|_{p_{i}(\cdot)} \\
\leq c'n\left(1+\sum_{i=1}^{N}\||v_{n}|^{p_{i}(x)-1}\|_{p_{i}'(\cdot)}\right)\|u_{n}\|_{p_{+}(\cdot)} \\
\leq c'n\left(1+N+\sum_{i=1}^{N}\rho_{p_{i}(\cdot)}(v_{n})\right)\|u_{n}\|_{p_{+}(\cdot)} \\
\leq c''n\left(1+N+N|\Omega|+N\rho_{p_{+}(\cdot)}(v_{n})\right)\|u_{n}\|_{\overrightarrow{p}(\cdot)}.$$
(19)

On the other hand, we have $\sum_{i=1}^{N} \int_{\Omega} |D_{i}u_{n}|^{p_{i}(x)} dx \geq \sum_{i=1}^{N} \min\{\|D_{i}u_{n}\|_{p_{i}(x)}^{p_{i}^{-}}, \|D_{i}u_{n}\|_{p_{i}(x)}^{p_{i}^{+}}\}.$ We define for all i = 1, ..., N; $\xi_{i} = \begin{cases} p_{+}^{+}, & \text{si } \|D_{i}u_{n}\|_{p_{i}(\cdot)} < 1\\ p_{-}^{-}, & \text{si } \|D_{i}u_{n}\|_{p_{i}(\cdot)} \geq 1 \end{cases}$, we obtain

$$\begin{split} \sum_{i=1}^{N} \min\{\|D_{i}u_{n}\|_{p_{i}(.)}^{p_{i}^{-}}, \|D_{i}u_{n}\|_{p_{i}(.)}^{p_{i}^{+}}\} &\geq \sum_{i=1}^{N} \|D_{i}u_{n}\|_{p_{i}(.)}^{\xi_{i}} \\ &\geq \sum_{i=1}^{N} \|D_{i}u_{n}\|_{p_{i}(.)}^{p_{-}^{-}} - \sum_{\{i,\xi_{i}=p_{+}^{+}\}} \left(\|D_{i}u_{n}\|_{p_{i}(.)}^{p_{-}^{-}} - \|D_{i}u_{n}\|_{p_{i}(.)}^{p_{+}^{+}}\right) \\ &\geq \sum_{i=1}^{N} \|D_{i}u_{n}\|_{p_{i}(.)}^{p_{-}^{-}} - \sum_{\{i,\xi_{i}=p_{+}^{+}\}} \|D_{i}u_{n}\|_{p_{i}(.)}^{p_{-}^{-}} \geq \left(\frac{1}{N}\sum_{i=1}^{N} \|D_{i}u_{n}\|_{p_{i}(.)}\right)^{p_{-}^{-}} - N. \end{split}$$

Then, we get

$$\sum_{i=1}^{N} \int_{\Omega} |D_{i}u_{n}|^{p_{i}(x)} dx \ge \left(\frac{1}{N} \|u_{n}\|_{\overrightarrow{p}(\cdot)}\right)^{p_{-}^{-}} - N.$$
(20)

From (19) and (20), we conclude

$$\frac{c_1\beta}{(1+\beta)N^{p_-^-}} \|u_n\|_{\overrightarrow{p}(\cdot)}^{p_-^-} \le c''n\left(1+N+N|\Omega|+N\rho_{p_+(\cdot)}(v_n)\right)\|u_n\|_{\overrightarrow{p}(\cdot)} + C'.$$
(21)

Si $||u_n||_{\overrightarrow{p}(\cdot)} \le 1$, we have; $||u_n||_{\overrightarrow{p}(\cdot)} \le 1$, and si $||u_n||_{\overrightarrow{p}(\cdot)} > 1$, from (21) we have; $||u_n||_{\overrightarrow{p}}^{p^--1} \le C''(n)$. Then, there exists C(n) > 0 such that

$$\left\|u_n\right\|_{\overrightarrow{p}(\cdot)} \le C(n). \tag{22}$$

Compactness of ψ : Let \tilde{B} be a bounded of $L^{p_+(\cdot)}(\Omega) \times [0,1]$. Thus \tilde{B} is contained in a product of the type $B \times [0,1]$ with B a bounded of $L^{p_+(\cdot)}(\Omega)$, which can be assumed to be a ball of center O and of radius r > 0.

5

For $u \in \psi(\tilde{B})$, we have, thanks to (22): $||u||_{\overrightarrow{p}(\cdot)} \leq \rho$.

For $u = \psi(v, \sigma)$ with $(v, \sigma) \in B \times [0, 1]$ ($\|v\|_{p_+(\cdot)} \leq r$). This proves that ψ applies \tilde{B} in the closed ball of center O and radius ρ (ρ depend on n and r due (19)) in $\mathring{W}^{1, \overrightarrow{p}(\cdot)}(\Omega)(\hookrightarrow L^{p_+(\cdot)}(\Omega))$ compactly due (9) and (8).

Let u_n be a sequence of elements of $\psi(\tilde{B})$, therefore $u_n = \psi(v_n, \sigma_n)$ with $(v_n, \sigma_n) \in \tilde{B}$. Since u_n remains in a bounded of $\mathring{W}^{1, \overrightarrow{p}(\cdot)}(\Omega)$, it is possible to extract a sub-sequence which converges strongly to an element u of $L^{p_+(\cdot)}(\Omega)$. This proves that $\overline{\psi(\tilde{B})}^{L^{p_+(\cdot)}(\Omega)}$ is compact. So ψ is compact. Now, let's prove that; $\exists M > 0$,

$$\forall (v_n, \sigma) \in X \times [0, 1] : v_n = \psi(v_n, \sigma) \Rightarrow ||v_n||_X \leq M.$$

For that, we give the estimate of elements of $L^{p_+(\cdot)}(\Omega)$ such that $v_n = \psi(v_n, \sigma)$, then we have,

$$\sum_{i=1}^{N} \int_{\Omega} W_n(x) \Theta_i(x, D_i v_n) D_i \varphi \, dx = \sigma \int_{\Omega} \left(f_n - \sum_{i=1}^{N} a_n(x) |v_n|^{p_i(x) - 2} v_n \right) \varphi \, dx, \text{ for all } \varphi \in \mathring{W}^{1, \overrightarrow{p}(\cdot)}(\Omega).$$
(23)

Choosing $\varphi = v_n$ in (23), we have

$$\sum_{i=1}^{N} \int_{\Omega} W_n(x) \Theta_i(x, D_i v_n) D_i v_n dx + \sigma \int_{\Omega} \sum_{i=1}^{N} a_n(x) |v_n|^{p_i(x)} dx = \sigma \int_{\Omega} f_n v_n dx.$$
(24)

After dropping the nonnegative term in (24) due (12), and using (13), (2), Young's inequality, and the fact that

$$1 + |D_i v_n|^{p_i(\cdot)} \ge |D_i v_n|^{p_-^-}, i = 1, \dots, N,$$

we have

$$\frac{c_{1}\beta}{1+\beta}\sum_{i=1}^{N}\int_{\Omega}|D_{i}v_{n}|^{p_{i}(x)}dx \leq n\int_{\Omega}|v_{n}|dx$$

$$\leq n\left(C(\varepsilon)+\varepsilon\int_{\Omega}|D_{i}v_{n}|^{p_{-}^{-}}dx\right)$$

$$\leq n\left(C(\varepsilon)+\varepsilon|\Omega|+\varepsilon\int_{\Omega}|D_{i}v_{n}|^{p_{i}(\cdot)}dx\right)$$

$$\leq n\left(C(\varepsilon)+\varepsilon|\Omega|+\varepsilon\sum_{i=1}^{N}\int_{\Omega}|D_{i}v_{n}|^{p_{i}(\cdot)}dx\right).$$
(25)

Choosing $\varepsilon = \frac{c_1\beta}{2n(1+\beta)}$, then using the fact that (see (20)); $\sum_{i=1}^N \int_{\Omega} |D_i v_n|^{p_i(x)} dx \ge \left(\frac{1}{N} \|v_n\|_{\overrightarrow{p}(\cdot)}\right)^{p_-^-} - N$, we obtain

$$\left\| v_n \right\|_{\overrightarrow{p}(\cdot)} \le C(n). \tag{26}$$

It then follows from the Leray-Schauder's Theorem that the operator $\psi_1 : X \longrightarrow X$ defined by $\psi_1(u) = \psi(u, 1)$ has a fixed point, which shows the existence of a solution of (14) in the sense of (15).

In order to prove (16), we cosider the following function defined for $t \in \mathbb{R}$ by

$$G_k(t) = \begin{cases} 0, & \text{if } |t| \le k, \\ t - k, & \text{if } t > k, \\ t + k, & \text{if } t < -k. \end{cases}$$

The use of $G_{\alpha}(u_n)$ as a test function in (15) gives, thanks to (2), (6) and (12),

$$\frac{c_1\beta}{1+\beta}\sum_{i=1}^N \int_{\Omega} |D_i(G_{\alpha}(u_n))|^{p_i(x)} dx + \int_{\Omega} |a_n(x)| \left(\sum_{i=1}^N |u_n|^{p_i(x)-1} - \alpha\right) |G_{\alpha}(u_n)| dx \le 0,$$
(27)

which implies (16).

Remark 2. The fact that $1 + |u_n|^{p_i(x)-1} \ge |u_n|^{p_-^--1}$ and (16), gives us $|u_n| \le \left(\frac{\alpha}{N} + 1\right)^{\frac{1}{p_-^--1}}$, so (u_n) is bounded in $L^{\infty}(\Omega)$. (28)

3.2. A PRIORI ESTIMATES

LEMMA 5. Let f, a, W and $p_i, i = 1, ..., N$ be restricted as in Theorem 1. Then

$$u_n$$
 is bounded in $\mathring{W}^{1,\overrightarrow{p}(\cdot)}(\Omega)$, (29)

where u_n the weak solution to the problem (14). And, we have

$$\sum_{i=1}^{N} \int_{\Omega} \Theta_i(x, D_i u_n) D_i \varphi \, dx = \int_{\Omega} G_n \varphi \, dx, \tag{30}$$

for every $\varphi \in \mathring{W}^{1,\overrightarrow{p}(\cdot)}(\Omega) \cap L^{\infty}(\Omega)$, where

$$\{G_n\}$$
 is bounded in $L^{p'_i}(\Omega), i = 1, \dots, N.$ (31)

Proof. After choosing $\varphi = u_n$ in the weak formulation (15), and dropping the nonnegative term, and the same technique as in the proof of (26) we can get

$$\left\| u_n \right\|_{\overrightarrow{p}(\cdot)} \le C(n). \tag{32}$$

Since, for all $x \in \overline{\Omega}$

$$D_i W_n(x) = rac{D_i W(x)}{\left(1 + rac{W(x)}{n}
ight)^2}, \ i = 1, \dots, N,$$

we have that $|D_iW_n(x)| \le |D_iW(x)|$, and therefore $W_n(\cdot) \in \mathring{W}^{1,\overrightarrow{p}(\cdot)}(\Omega)$, due to $0 \le W_n(x) \le W(x)$, we get

$$W_n$$
 is bounded in $\mathring{W}^{1, \overrightarrow{p}(\cdot)}(\Omega)$, (33)

 W_n strongly converges to W in $\mathring{W}^{1,\overrightarrow{p}(\cdot)}(\Omega)$. (34)

Now, by the boundedness of $\frac{1}{w_n(x)}$ since (13), we find that; $\frac{1}{w_n(x)}\varphi \in \mathring{W}^{1,\overrightarrow{p}(\cdot)}(\Omega)$, for all $\varphi \in \mathring{W}^{1,\overrightarrow{p}(\cdot)}(\Omega)$, so we can chosen as test function in the weak formulation (15). We obtain

$$\sum_{i=1}^{N} \int_{\Omega} \Theta_i(x, D_i u_n) D_i \varphi \, dx = \int_{\Omega} G_n(x) \varphi \, dx$$

where G_n defined by

$$G_n(x) = \frac{1}{W_n(x)} \left(f_n(x) - a_n(x)u_n \sum_{i=1}^N |u_n|^{p_i(x)-2} + \sum_{i=1}^N \Theta_i(x, D_i u_n) D_i W_n(x) \right).$$
(35)

Now, for all i = 1, ..., N we have

$$\int_{\Omega} |a_n|^{p'_i(x)} dx \le |\Omega| n^{p'_+}, \tag{36}$$

then (36) implies that

$$(a_n)$$
 is bounded in $L^{p'_i}(\Omega)$. (37)

And in the same way that we find that

$$(f_n)$$
 is bounded in $L^{p'_i}(\Omega)$. (38)

Also, thanks to (16), we have

$$a_n(x)\sum_{i=1}^N |u_n|^{p_i(x)-1} \le \alpha a_n(x),$$
(39)

so, from (39) and (37) we get

$$(a_n(x)u_n\sum_{i=1}^N |u_n|^{p_i(x)-2})$$
 is bounded in $L^{p'_i}(\Omega), i = 1, \dots, N.$ (40)

Now, from (3) and (32), we obtain for all i = 1, ..., N

$$\begin{split} \int_{\Omega} |\Theta_i(x, D_i u_n)|^{p'_i(\cdot)} \, dx &\leq (1 + c_2^{p'_+}) \int_{\Omega} \left(\sum_{j=1}^N |D_i u_n|^{p_j(x)} + |h| \right) \, dx \\ &\leq (1 + c_2^{p'_+}) \int_{\Omega} \left(N \sum_{j=1}^N |D_j u_n|^{p_j(x)} + |h| \right) \, dx \leq C \big\| u_n \big\|_{\overrightarrow{p'}(\cdot)}^{p_+^+} + C' \leq C''. \end{split}$$

And therefore

$$\Theta_i(x, D_i u_n)$$
 is bounded in $L^{p'_i(\cdot)}(\Omega)$, $i = 1, \dots, N$. (41)

Using (13), (33), (37), (38), (40), (41), and the boundedness of $\frac{1}{w_n(x)}$, we obtain (31).

LEMMA 6. There exists a subsequence (still denoted (u_n)) such that, for all i = 1, ..., N

$$D_i u_n \longrightarrow D_i u$$
 strongly in $L^{p_i(x)}$ and a.e. in $\overline{\Omega}$, (42)

where u is the weak limit of the sequence (u_n) in $\mathring{W}^{1,\overrightarrow{p}(\cdot)}(\Omega)$.

Proof. From (32) the sequence (u_n) is bounded in $\mathring{W}^{1,\overrightarrow{p}(\cdot)}(\Omega)$. So, there exists a function $u \in \mathring{W}^{1,\overrightarrow{p}(\cdot)}(\Omega)$ and a subsequence (still denoted by (u_n)) such that

> $u_n \rightharpoonup u$ weakly in $\mathring{W}^{1,\overrightarrow{p}(\cdot)}(\Omega)$ and a.e in Ω , (43)

and
$$D_i u_n \rightharpoonup D_i u$$
 in $L^{p_i(x)}$, $i = 1, \dots, N$. (44)

First, let's prove that, for all i = 1, ..., N

$$\lim_{n \to +\infty} I_{i,n} = 0, \tag{45}$$

where, for all i = 1, ..., N, $I_{i,n} = \int_{\Omega} (\Theta_i(x, D_i u_n) - \Theta_i(x, D_i u)) (D_i u_n - D_i u) dx$. Note that, for all i = 1, ..., N, $I_{i,n} = \int_{\Omega} \Theta_i(x, D_i u_n) (D_i u_n - D_i u) dx - \int_{\Omega} \Theta_i(x, D_i u) (D_i u_n - D_i u) dx$. As, (44) and (41) we get , for all i = 1, ..., N,

$$\lim_{n \to +\infty} \int_{\Omega} \Theta_i(x, D_i u) (D_i u_n - D_i u) \, dx = 0$$

So, let's prove that, for all i = 1, ..., N

$$\lim_{n \to +\infty} \int_{\Omega} \Theta_i(x, D_i u_n) (D_i u_n - D_i u) \, dx = 0.$$
⁽⁴⁶⁾

Choosing $\varphi = (u_n - u)$ in (30) as a test function, we get

$$\sum_{i=1}^{N} \int_{\Omega} \Theta_i(x, D_i u_n) (D_i u_n - D_i u) \, dx = \int_{\Omega} G_n(x) (u_n - u) \, dx.$$

By (8) in Lemma 2 we get $u_n \longrightarrow u$ strongly in $L^{p_i(x)}$ since (9), then from this and (31) we obtain (46). So, (45) has been proven.

Right now, we put : $\Omega_i^1 = \{x \in \Omega, p_i(x) \ge 2\}$, and $\Omega_i^2 = \{x \in \Omega, 1 < p_i(x) < 2\}$, $i = 1, \dots, N$ then, By (4) we have, for all $i = 1, \dots, N$

$$I_{i,n} \ge c_3 \int_{\Omega_i^1} |D_i(u_n - u)|^{p_i(x)}.$$
(47)

On the other hand, by Hölder inequality, (4), and Lemma 1, we have

$$\begin{split} \int_{\Omega_{i}^{2}} |D_{i}(u_{n}-u)|^{p_{i}(x)} dx &\leq 2 \left\| \frac{|D_{i}(u_{n}-u)|^{p_{i}(x)}}{(|D_{i}u_{n}|+|D_{i}u|)^{\frac{p_{i}(x)(2-p_{i}(x))}{2}}} \right\|_{L^{\frac{2}{p_{i}(\cdot)}}(\Omega_{i}^{2})} \times \left\| (|D_{i}u_{n}|+|D_{i}u|)^{\frac{p_{i}(x)(2-p_{i}(x))}{2}} \right\|_{L^{\frac{2}{2-p_{i}(\cdot)}}(\Omega_{i}^{2})} \\ &\leq 2 \max \left\{ \left(\int_{\Omega_{i}^{2}} \frac{|D_{i}(u_{n}-u)|^{2}}{(|D_{i}u_{n}|+|D_{i}u|)^{2-p_{i}(x)}} dx \right)^{\frac{p_{i}^{-}}{2}}, \left(\int_{\Omega_{i}^{2}} \frac{|D_{i}(u_{n}-u)|^{2}}{(|D_{i}u_{n}|+|D_{i}u|)^{2-p_{i}(x)}} dx \right)^{\frac{p_{i}^{+}}{2}} \right\} \\ &\quad \times \max \left\{ \left(\int_{\Omega} \left(|D_{i}u_{n}|+|D_{i}u| \right)^{p_{i}(x)} dx \right)^{\frac{2-p_{i}^{+}}{2}}, \left(\int_{\Omega} \left(|D_{i}u_{n}|+|D_{i}u| \right)^{p_{i}(x)} dx \right)^{\frac{2-p_{i}^{-}}{2}} \right\} \\ &\leq 2c \max \left\{ \left(I_{i,n} \right)^{\frac{p_{i}^{-}}{2}}, \left(I_{i,n} \right)^{\frac{p_{i}^{+}}{2}} \right\} \left((1+\rho_{p_{i}}(|D_{i}u_{n}|+|D_{i}u|))^{\frac{2-p_{i}^{-}}{2}} \right). \end{split}$$

$$\tag{48}$$

From (32), (45), and after letting $n \longrightarrow +\infty$ in (47) and in (48), we obtain

$$\lim_{n \to +\infty} \int_{\Omega} |D_i u_n - D_i u|^{p_i(x)} dx = 0, \text{ for all } i = 1, \dots, N.$$

Which implies (42).

3.3. PROOF OF THE THEOREM 1 :

By (42) we have, for all $i = 1, \ldots, N$

$$\Theta_i(x, D_i u_n) \rightharpoonup \Theta_i(x, D_i u) \quad \text{weakly in } L^{p'_i(\cdot)}(\Omega), \ p'_i(\cdot) = \frac{p_i(\cdot)}{p_i(\cdot) - 1}.$$
(49)

From (34) we conclude that, for all i = 1, ..., N

$$W_n(\cdot) \longrightarrow W(\cdot)$$
 strongly in $L^{p_i(\cdot)}(\Omega)$. (50)

Furthermore, as we have a_n is in $L^1(\Omega)$, and from (28), we obtain

$$a_n(x)u_n\sum_{i=1}^N |u_n|^{p_i(x)-2} \longrightarrow a(x)u\sum_{i=1}^N |u|^{p_i(x)-2} \text{ strongly in } L^1(\Omega).$$
(51)

Then, through this, we can pass to the limit in the weak formulation (15). This proves Theorem 1.

ACKNOWLEDGEMENTS

The author would like to thank the referees for their comments and suggestions.

REFERENCES

- 1. Y.H. DU, Z.M. GUO, Finite Morse index solutions of weighted elliptic equations and the critical exponents, Calc. Var. PDEs, 54, pp. 3161–3181, 2015.
- 2. Z.M. GUO, F.S. WAN, Further study of a weighted elliptic equation, Sci. China Math., 60, pp. 2391–2406, 2017.
- L. BOCCARDO, P. IMPARATO, L. ORSINA, Nonlinear weighted elliptic equations with Sobolev weights, Boll Unione Mat Ital, 15, pp. 503–514, 2022.
- D. ARCOYA, L. BOCCARDO, Regularizing effect of the interplay between coefficients in some elliptic equations, J. Funct. Anal., 268, pp. 1153–1166, 2015.
- 5. M. NACERI, F. MOKHTARI, Anisotropic nonlinear elliptic systems with variable exponents and degenerate coercivity, Appl. Anal., 100, 11, pp. 2347–2367, 2021.
- 6. M. NACERI, M.B. BENBOUBKER, Distributional solutions of anisotropic nonlinear elliptic systems with variable exponents: existence and regularity, Advances in Operator Theory, 7, 2, pp. 1–34, 2022.
- 7. M. NACERI, *Singular anisotropic elliptic problems with variable exponents*, Memoirs on Differential Equations and Mathematical Physics, **85**, pp. 119–132, 2022.
- M. NACERI, Anisotropic nonlinear elliptic systems with variable exponents, degenerate coercivity and L^q(·) data, Ann. Acad. Rom. Sci. Ser. Math. Appl., 14, 1–2, pp. 107–140, 2022.
- 9. F. MOKHTARI, Nonlinear anisotropic elliptic equations in ℝ^N with variable exponents and locally integrable data, Math. Meth. Appl. Sci., **40**, pp. 2265–2276, 2017.
- 10. F. MOKHTARI, *Regularity of the solution to nonlinear anisotropic elliptic equations with variable exponents and irregular data*, Mediterr. J. Math., **14**, *141*, pp. 140–207, 2017.
- 11. X. FAN, Anisotropic variable exponent Sobolev spaces and $\overrightarrow{p(x)}$ -Laplacian equations, Complex Var. Elliptic Equ., 56, pp. 623–642, 2011.
- 12. X. FAN, D. ZHAO, On the spaces $L^{p(x)}(\Omega)$ and $W^{1,p(x)}(\Omega)$, J. Math. Anal. Appl., **263**, pp. 424–446, 2001.
- 13. D. CRUZ-URIBE, A. FIORENZA, M. RUZHANSKY, J. WIRTH, *Variable Lebesgue spaces and hyperbolic systems*, Advanced Courses in Mathematics CRM Barcelona, Birkhäuser, Basel, 2014.
- 14. L. DIENING, P. HARJULEHTO, P. HÄSTÖ, M. RUZICKA, *Lebesgue and Sobolev spaces with variable exponents*, Lecture Notes in Mathematics, Vol. 2017, Springer, New York, 2011.
- 15. M. MIHAILESCU, V. RADULESCU, A multiplicity result for a nonlinear degenrate problem arising in the theory of eletrorheological fluids, Proc. R. Soc. A, **462**, pp. 2625–2641, 2006.
- 16. M. RUŽIČKA, *Electrorheological fluids: modeling and mathematical theory*, Lecture Notes in Mathematics, Vol. 1748, Springer, Berlin, 2000.
- 17. Y. CHEN, S. LEVINE, M. RAO, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66, pp. 1383–1406, 2006.

Received July 30, 2022