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divisors.
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1. INTRODUCTION

A preliminary version of this paper was initiated in 2011 by the second author, inspired by the articles of
Marcus [7], Ilie, Marcus, Petre [6] and Marcus and Monteil [8] and a fruitful discussion with Professor Solomon
Marcus, in 2010, at the Faculty of Mathematics of University of Bucharest.

With just two letters a and b one can construct infinite words of a super-large variety. They are classified
by their complexity. The simplest of them are the periodic words, and next to them are the words that display
some patterns. At the other end are the pseudo-random words that are generated by a certain rule or are in the
‘grey area’ lacking any sort of regularity in display, generation or description.

The complexity cw(n) of an infinite binary word w is defined to be the number of distinct subwords of
length n in w. The simplest are the ultimately periodic words, for which cw(n) is bounded. At the next
upper level are binary words of complexity cw(n) = n+ 1 for n ≥ 0 which are also called Sturmian words
(see the monograph [1, Ch. 10]). From the long and diverse list of recent works dedicated to the subject we
mention [2, 5, 9–11].

Our object is to show that there is a nice common property of the number of divisors of the ‘signed ranks’
of these words.

For any infinite binary word w = w0w1w2 . . . with leters w j ∈ {a,b} for j ≥ 0, define the parity divisor
functions:

ew(n) := |{ j ∈ N : j divides n,w j = b,n/ j even }|,
ow(n) := |{ j ∈ N : j divides n,w j = b,n/ j odd }| .

To measure the distance between them we consider the difference function and its average:

Dw(n) = ow(n)− ew(n), Aw(x) =
x

∑
n=1

Dw(n).
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The distributions of eu(n) and ou(n) are very irregular as can be seen in Figure 2 for u= bbb . . . , the monoletter
infinite word whose letters are all equal to b. The same happens for more complex binary words, as observed
in [3]. Except that it takes negative values also, there is no much difference in the distribution of Du(n) (see the
graphs on the left of Figures 3, 4 and those in [3]). However, the average Aw(x) is very different, its estimate
having a linear main term. This is proved in the following theorem for the monoletter infinite word u.

THEOREM 1. We have

∑
1≤n≤x

Du(n) = (log2) · x+O
(√

x
)
.

From the definition of ew and ow one sees that for more complex words w, the frequency of letters a,b in w
should influence the main term of an analogue result. This is quantified by

βw := lim
n→∞

1
n
·
∣∣{1 ≤ j ≤ n : w( j) = b}

∣∣ .
Note that βu = 1 and βf = (3−

√
5)/2, where f= abaabaababaababaaba, . . . is the Fibonacci Sturmian word,

which is constructed recursively, by concatenation, with the Fibonacci rule (see [1, Chapter 9]). The next result
gives the estimate for the average of the difference of the divisor functions for Sturmian words.

THEOREM 2. For Sturmian word w and any δ > 0, we have

x

∑
n=1

Dw(n) = (βw log2) · x+Oδ

(
x2/3+δ

)
. (1)

Theorems 1 and 2 show that the bias average towards the odd divisors increases linearly with the slope
βw log2. Except the frequency βw, which is a particularity of the word w, the size of the odds-tilt is log2 ≈
0.69314, which is larger than 1/2.

It is likely that divisor parity slope exists for other classes of words w for which βw exists. Numerical
experiments, of which one we show in Fig. 1, suggests that this is true for random binary words.
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Fig. 1 – The slopes of the average Aw(x) = ∑
x
n=1 Dw(n) and the weighted average Mw(x) = ∑

x
n=1 Dw(n)

(
1− n

x
)

for x = 1000 (see
the estimate in relation (8) below). Here it is compared the case where w is the Fibonacci word f and βf = (3−

√
5)/2 (left) with the

case of a binary world r and βr = 1/2 whose letters are uniformly generated at random, and which is not Sturmian (right).

2. PARITY TILT IN THE DIVISORS OF NATURAL NUMBERS–PROOF OF THEOREM 1

Let u = bbb . . . be the monoletter infinite word whose letters are all equal to b. The values of the parity
functions eu(n) and ou(n), shown for small n in Fig. 2, are very irregular and the involvement of the primes is
part of the motive. We decompose n in prime factors to express eu(n) and ou(n) as follows.
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Fig. 2 – The values of eu(n) (left) and ou(n) (right) for n ∈ [2,300].

Let n = 2αr, with α > 0, r odd and r = pα1
1 · · · pαk

k . The divisors of n are the terms of the sum obtained after
all the multiplications of the following formal product are made:

(1+2+ · · ·+2α)(1+ p1 + · · ·+ pα1
1 ) · · ·(1+ pk + · · ·+ pαk

k ) .

In particular, we see that the total number of divisors of n is

(α +1)(α1 +1) · · ·(αk +1) = (α +1)d(r),

where d(r) is the number of divisors of r. If α = 0, then n is odd, so it has no even divisors. Thus eu(n) = 0
and ou(n) = ou(r) = (α1 + 1) · · ·(αr + 1) = d(r). If α ≥ 1, the number of odd divisors is also equal to d(r).
Further, to each odd divisor of n corresponds α even divisors, those that are obtained by multiplication with
2,22, . . . ,2α . In summary:

ou(n) = d(r) and eu(n) = α ·d(r) for n = 2αr, with α ≥ 0 and r odd. (2)

Two special cases, in which eu(n) attains its minimum and its maximum, occur. Since any odd n has no
even divisors, the minimum of eu(n) is attained half of the time. Thus eu(n) = 0 and ou(n) = d(n) for n odd.
In this case ou(n) has a local maximum, ou(n) = 2k for n = 1 ·3 ·5 · · ·(2k+1). At the other end, if n is a power
of 2, then 1 is the only odd divisor of n, so eu(n) = α and ou(n) = 1 for n = 2α .
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Fig. 3 – The values of Du(n) and its partial average ∑
1≤n≤x

Du(n) for x ∈ [2,1000].

Experimental results show that the partial average of Du(n), that is, the sum ∑
x
n=1 Du(n), has a tendency

to grow linearly with x (see Fig. 3) and the same behavior is apparent for the averages calculated on shorter
intervals. Although, in rare situations, the growth may be ‘bumpy’ in shorter intervals that contain ‘special’ n’s.
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Fig. 4 – The difference function Du(n) = ou(n)− eu(n) (left) and its partial average ∑n∈I ,n≤x Du(n) (right) for n,x ∈ I and
I = [107,107 +299]. Here, the largest value of |Du(n)| is attained for n = 10 000 080 = 24 ·32 ·5 ·17 ·19 ·43, in which case

Du(n) =−144.

For example, the largest jump in Figure 4 is caused by the wealth of divisors of n = 10000080 = 24 · 32 · 5 ·
17 ·19 ·43, for which ou(n) = 48, eu(n) = 192 and Du(n) = 48−192 =−144.

Next, by (2) the formula for the difference function is

Du(n) = ou(n)− eu(n) = (1−α)d(r), for n = 2αr, α ≥ 0, r odd. (3)

Let us note the particular case where n is even but not divisible by four, in which case eu(n) = ou(n) = d(n), so
that Du(n) = 0.

In the following, we assume x is large enough and calculate the average of Du(n) over the positive integers
n ≤ x. Using formula (3), we have:

x

∑
n=1

Du(n) =
x

∑
r=1
r odd

[ logx
log2 ]

∑
α=0

2α r≤x

(1−α)d(r) . (4)

Let us denote the divisor sum over the odd integers by I(t) :=
t
∑

r=1
r odd

d(r). Then, (4) becomes

x

∑
n=1

Du(n) = I(x)− I(x/4)−2I(x/8)−·· ·− (1− τ)I(x/2τ)+R(x) , (5)

where τ =
[

logx
log2

]
and R(x) = τI(y), for some y ≤ x/2τ+1, collects the remaining terms.

The sum of odd divisors can be calculated by the well-known inclusion-exclusion Dirichlet method and this
is the object of the next lemma.

LEMMA 1. We have

I(x) :=
x

∑
n=1

n odd

d(n) =
1
4

x logx+ x
(

log2
2

+
γ

2
− 1

4

)
+O

(√
x
)
.

Proof. We need an estimate for the odd harmonic sum, which is Ho(x) :=
x
∑

1≤n≤x
n odd

1
n = H(x)−H(x/2)/2,

where H(x) = ∑1≤n≤x 1/n = logx+ γ +O(1/x) and γ is Euler’s constant. Then

Ho(x) = logx+ γ − 1
2

log
x
2
− γ

2
+O(1/x) =

1
2

logx+
log2

2
+

γ

2
+O(1/x). (6)
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Next, we write I(x) as a double sum that counts lattice points under a hyperbola:

I(x) =
x

∑
n=1

n odd

d(n) =
x

∑
1≤ab≤x
a,b odd

1 .

The contribution of the numerous smaller terms can be controlled efficiently counting them twice, in different
order. Thus, we have:

I(x) = ∑
1≤a≤

√
x

a odd

∑
1≤b≤ x

a
b odd

1+ ∑
1≤b≤

√
x

b odd

∑
1≤a≤ x

b
a odd

1− ∑
1≤a≤

√
x

a odd

∑
1≤b≤

√
x

b odd

1

= 2 ∑
1≤a≤

√
x

a odd

( x
2a

+O(1)
)
−
(√

x
2

+O(1)
)2

= xHo(
√

x)− x
4
+O

(√
x
)
.

Then, on using the estimate (6), we find that

I(x) = x
(

1
2

log
√

x+
log2

2
+

γ

2
+O

( 1√
x

))
− x

4
+O

(√
x
)
=

1
2

x log
√

x+ x
(

log2
2

+
γ

2
− 1

4

)
+O

(√
x
)
,

which concludes the proof of the lemma.

Replacing the terms in relation (5) by their corresponding estimates from Lemma 1, we have:

Au(x) = I(x)− I(x/4)−2I(x/8)−·· ·− (1− τ)I(x/2τ)+R(x)

=
1
4

x logxS1(τ)+
log2

4
xS2(τ)+

2log2+2γ −1
4

xS1(τ)+O
(√

xS3(τ)
)
+R(x) ,

(7)

where we denoted

S1(τ) = 1− 1
22 −

2
23 −·· ·− τ −1

2τ
, S2(τ) =

1 ·2
22 +

2 ·3
23 + · · ·+ (τ −1)τ

2τ
, and

S3(τ) = 1− 1
22/2 −

2
23/2 −·· ·− τ −1

2τ/2

and τ =
[

logx
log2

]
. The sums S1(τ),S2(τ),S3(τ) can be added and expressed in closed-form and then their sizes

are easily evaluated. Thus we find that all terms except the second from the right hand side of (7) are no
larger than O(

√
x). Then, since S2(τ) = 4 + O

(
(logx)/x

)
, the main term on the right hand side of (7) is

log2
4 xS2(τ) = (log2)x+O(logx), and the theorem follows. Note that the slope from the experiment presented

in the image on the right of Figure 3 is consistent with the one given by the estimation from Theorem 1 because
log2 ≈ 0.69314.

3. THE DIVISOR PARITY SLOPE FOR STURMIAN WORDS – PROOF OF THEOREM 2

For any Sturmian word w, the following average of Dw(n), for 1≤ n≤ x, tempered with the weight function
1− x/n, is estimated in [3, Theorem 1] (see the Fig. 1):

Mw(x) :=
x

∑
n=1

Dw(n)
(

1− n
x

)
=

βw log2
2

x+Oδ

(
x1/3+δ

)
for any δ > 0. (8)
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To measure the influence of the weight function in Mw(x) and compare the result when the weight function
is missing, we introduce the function

fy(t) :=

y− t if 0 ≤ t < y,

0 if y ≤ t.

For now, let L be a fixed number 0 < L < x whose precise value will be chosen towards the end of the proof.
Define

SL(x) := ∑
n≥1

Dw(n)
(

fx+L(n)− fx(n)
)
. (9)

Notice that the series that defines SL(x) is actually finite, the multipliers of Dw(n) vary continuously and for
small n they are constant, because

fx+L(n)− fx(n) =

L if 0 ≤ t < x,
x+L−n if x ≤ t < x+L,
0 if x+L ≤ t.

Then (9) becomes

SL(x) = L ∑
1≤n≤x

Dw(n)− ∑
x≤n≤x+L

Dw(n)(x+L−n) = LAw(x)+O
(

L ∑
x≤n≤x+L

|Dw(n)|
)
. (10)

Using Ramanujan’s bound d(n) = Oδ (nδ ), for all δ > 0 [4, Section 18.1, Theorem 315], it follows that

|Dw(n)| ≤ |ow(n)|+ |ew(n)| ≤ d(n) = Oδ

(
nδ
)
, (11)

for all δ > 0. On combining (11) and (9) we find that

Aw(x) =
1
L

SL(x)+Oδ

(
Lxδ ), for all δ > 0. (12)

On the other hand, by the definition (9) of SL(x), we have

SL(x) = ∑
n≥1

Dw(n) fx+L(n)− ∑
n≥1

Dw(n) fx(n)
)

= ∑
1≤n≤x+L

Dw(n)(x+L−n)− ∑
1≤n≤x

Dw(n)(x−n)

= (x+L) ∑
1≤n≤x+L

Dw(n)
(

1− n
x+L

)
− x ∑

1≤n≤x
Dw(n)

(
1− n

x

)
= (x+L)Mw(x+L)− xMw(x).

(13)

Then, by (8), it follows:

SL(x) = (x+L)
(

βw log2
2

(x+L)+Oδ

(
x1/3+δ

))
− x

(
βw log2

2
x+Oδ

(
x1/3+δ

))
=

βw log2
2

(2Lx+L2)+Oδ

(
x4/3+δ

)
,

(14)

because we have assumed that 0 < L < x. On inserting this estimate in (12), we obtain

Aw(x) =
βw log2

2
(2x+L)+Oδ

(
x4/3+δ/L

)
+Oδ

(
Lxδ )

= (βw log2) · x+O(L)+Oδ

(
x4/3+δ/L

)
+Oδ

(
Lxδ

)
.
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Here, the second error term is absorbed by the third and to balance the remaining ones, choose L = x2/3.
Therefore, Aw(x) = (βw log2) · x+Oδ

(
x2/3+δ

)
, for all δ > 0, which concludes the proof of Theorem 2.

4. THE FRACTAL FACES mod 3 OF A STURMIAN WORD

For readers interested to continue the investigation of the subject we end this paper by including several
images which show the fractalic character gained by the Sturmian words. This is due to just one unit added
to their complexity compared to that of the ultimately periodic words. We have generated the Sturmian words
by a rotation process as follows. Let θ > 0 be an irrational number and let ϕ ∈ [0,1) be an offset angle.
Define xn := ϕ + nθ (mod 1) for n ≥ 0. Then, let wn = a if xn ∈ [0,θ) and wn = b otherwise. Denote
by R(ϕ,θ ,N) the finite word consisting of the first N letters that were generated in this way. For example,
R(0.2,4log2,10) = abaaaabaaa.

The rules for drawing the paths in Figures 5-8 are as follows. Let w = w0w1w2 . . . be a Sturmian word
with letters w j ∈ {a,b}, for j ≥ 0. All steps have length equal to 1. Start from the origin looking up. For each
n ≥ 0 go forward one step. Afterwards, turn right 120◦ if wn = b and n ≡ 0 (mod 3) or turn left 120◦ if wn = b
and n ≡ 2 (mod 3). Otherwise, keep the same direction for the next step. The end-point is marked by a dot.
This rule extends the similar one modulo 2 used to draw Fibonacci words (see [9]).

We remark that quite often it happens that the path self-intersects and overlaps even several times. A
classification of the particularly large variety of these paths as well as their interesting properties requires
further investigation.
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Fig. 5 – R(ϕ,θ ,N) for ϕ = 0.2,θ = 4log2, N = 1000 (left) and N = 40 000 (right).
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Fig. 6 – R(ϕ,θ ,N) for ϕ = 0.26,θ = π/18, N = 1000 (left) and N = 10 000 (right).
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Fig. 7 – R(ϕ,θ ,N) for ϕ = 0.16,θ = π/20, N = 1000 (left) and N = 10 000 (right).
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Fig. 8 – R(ϕ,θ ,N) for ϕ = 0.2,θ =
√

7, N = 1000 (left) and N = 20 000 (right).
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