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Abstract. In this paper, we study the initial boundary value problem for a class of viscoelastic parabolic
equations with logarithmic terms. By using contraction mapping principle, the existence of local solutions is
proved. Under the appropriate assumptions of memory function and initial energy, taking concavity analysis
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1. INTRODUCTION

Consider the following initial boundary value problems for a class of viscoelastic parabolic equations

ut −∆u−α∆ut +
∫ t

0
g(t − τ)∆u(τ)dτ = f (u), x ∈ Ω, t > 0, (1)

where g(·) is a nonnegative continuous function, f (u) is a given nonlinear function, Ω is a bounded region of
Rn(n ≥ 1) with a smooth boundary ∂Ω. Equation (1) can be used to describe some phenomena in population
dynamics, phase transition thermodynamics and nuclear reactor dynamics [1–4].

When α = 0, g(·) = 0, equation (1) is transformed into a semilinear parabolic equation

ut −∆u = f (u), x ∈ Ω, t > 0. (2)

By using potential well method [5], Xu and Chen [6] considered the initial boundary value problem of equation
(2), when f (u) = |u|p−2u, they proved the existence of globle solution and blow-up properties of the solution.
Chen and Luo [9, 17] taking logarithmic sobolev inequality discussed the existence and nonexistence of the
solution of the equation (2), and obtained the attenuation estimation of the solution, where f (u) = u logu. In
the case of f (u) = |u|p−2u log |u|, Peng and Zhou [19] use the energy method and the properties of logarithm
studyed the global existence and the finite time blow up of the solution of equation (2), and give the upper
bound of the blow up time.

When α = 1 and g(·) = 0, equation (1) is reduced to a semilinear pseudo parabolic equation

ut −∆u−∆ut = f (u), x ∈ Ω, t > 0. (3)

Later, Liu [7] and Xu [10] modified the research results of the equation (3) in [8] and obtained the blow up of the
solution and the attenuation estimation of the global solution when the initial value is J(u0)≤ d. Literature [16]
improved the research results of [7,10], established the exponential decay of the solution and energy functional
when the global solution exists, and give the specific decay rate. In addition, a new blasting condition is given
by using the characteristic function method, and the upper bound of blasting time is discussed.
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When α = 1, Di and Shang [13, 15] studied the initial boundary value problem of (1) with f (u) = |u|p−1u,
the existence of the global solution is obtained by Galerkin method and potential well theory. Moreover, the
finite time blow-up results under negative initial energy and nonnegative initial energy are acquired by the con-
cavity method, then, the life interval estimation of the solution is given by establishing differential inequalities.
By defining an energy functional different from [13], Sun and Liu [14] proved the global existence and finite
time blow-up for the problem (1) at low energy level by using Galerkin method, concave analysis method and
the improved potential well method, and gave the upper bound of the blow up time. When α = 0, under ap-
propriate assumptions about g(·) and p, Messaoudi [11, 12] discussed the initial boundary value problem of
equation (1), the blow up results under positive initial energy and negative initial energy are obtained.

Inspired by the above research, this paper considers the initial boundary value problem of a class of vis-
coelastic quasi parabolic equations with logarithmic terms

ut −∆u−∆ut +
∫ t

0
g(t − τ)∆u(τ)dτ = |u|p−2u ln |u|, x ∈ Ω, t > 0,

u(x,0) = u0, x ∈ Ω,

u(x, t)|∂Ω = 0, x ∈ ∂Ω, t > 0,

(4)

where u0 ∈ H1
0 (Ω), p > 2. According to the literature, there are many studies on the global solution, explosion

solution and solution attenuation of this kind of viscoelastic quasi parabolic equation, but there are few studies
on its local solution. In this paper, firstly, the existence of local solution of problem (4) is studied by using
the principle of contractive mapping. Secondly, under the assumption of appropriate g(·) and initial energy,
the blow up property of the solution of the problem is proved, and the life interval estimation of the solution is
given.

The structure of the article is as follows: the second part gives some preliminary knowledge. In the third
part, we prove the existence of local solutions of problem (4). The fourth part studies the blow up properties in
finite time and gives the life interval estimation of the solution.

2. PRELIMINARIES

Firstly, assume that p and g(·) meet the following conditions:

(A1) 2 ≤ p < ∞ if n = 1,2; 2 < p ≤ 2n
n−2

if n ≥ 3 .

(A2) g ∈C1 (R+,R+) satisfying g(τ)≥ 0, g′(τ)≤ 0, β = 1−
∫

∞

0
g(τ)dτ > 0.

Secondly, the following functional is defined:

J(u) =
1
2
(1−

∫ t

0
g(τ)dτ)∥∇u∥2

2 −
1
p

∫
Ω

|u|p ln |u|dx+
1
p2

∫
Ω

|u|pdx, (5)

I(u) = (1−
∫ t

0
g(τ)dτ)∥∇u∥2

2 −
∫

Ω

|u|p ln |u|dx, (6)

E(t) =
1
2
(g◦∇u)(t)+

∫ t

0
∥ut∥2

H1 dτ +
1
2
(1−

∫ t

0
g(τ)dτ)∥∇u∥2

2 −
1
p

∫
Ω

|u|p ln |u|dx+
1
p2

∫
Ω

|u|pdx, (7)

where (g◦∇u)(t) =
∫ t

0
g(t − τ) ∥ ∇u(τ)−∇u(t) ∥2

2 dτ , ∥ · ∥H1 =
√
∥ · ∥2

2 +∥∇ · ∥2
2.

From (5) and (6), we obtained

J(u) =
1
p

I(u)+
(p−2)

2p
(1−

∫ t

0
g(τ)dτ)∥∇u∥2

2 +
1
p2

∫
Ω

|u|pdx. (8)
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Let
N =

{
u ∈ H1

0 (Ω) : I(u) = 0, u ̸= 0
}
, (9)

then
d = inf

u∈H1
0 (Ω)\{0}

max
λ∈R+

J(λu) = inf
u∈N

J(u). (10)

Finally, define the set
V =

{
u ∈ H1

0 (Ω) | I(u)< 0, J(u)< d
}
.

Definition 2.1. If u ∈ L∞
(
[0,T );H1

0 (Ω)
)

with ut ∈ L2
(
[0,T );H1

0 (Ω)
)

satisfying the following conditions
(i) For any v ∈ L∞

(
[0,T );H1

0 (Ω)
)
, such that

(ut ,v)+(∇u,∇v)+(∇ut ,∇v)−
(∫ t

0
g(t − τ)∆u(τ)dτ,∇v

)
=
(
|u|p−2u ln |u|,v

)
.

ii) u(x,0) = u0(x) in H1
0 (Ω).

We say that u is a weak solution of the problem (4) on the interval Ω× [0,T ).
LEMMA 2.1. Suppose that (A1) holds, then there is a normal number s dependent on Ω, n and p, so that

||u||p ≤ s||∇u||2.

LEMMA 2.2. Assume that (A1) and (A2) hold, u ∈ H1
0 (Ω)\{0}. Then, for any u ∈ H1

0 (Ω) and t ∈ [0,T ),
where T is the maximum existence time of the solution of the problem (4), we have

(i) limλ→0 J(λu) = 0, limλ→∞ J(λu) =−∞.
(ii) In the interval [0,∞], there exists a unique λ ∗ = λ ∗(u) such that d

dλ
J(λu)

∣∣
λ=λ ∗ = 0, and J(λu) increases

on interval [0,λ ∗], decreases on interval [λ ∗,+∞].
(iii) I(λu)> 0 for 0 < λ < λ ∗, I(λu)< 0 for λ ∗ < λ <+∞ and I(λ ∗u) = 0.
LEMMA 2.3. Assume that (A1) and (A2) hold, then the constant d defined in (10) satisfies d > 0.
LEMMA 2.4. Suppose that (A1) and (A2) hold, let u(x, t) be a solution of (4), then, E(t) is non-increasing

function, that is
E ′(t)≤ 0.

Proof. Multiply the equation of problem (4) by ut and integral on Ω, which can be obtained by partial
integral

∥ut∥2
2 +∥∇ut∥2

2 +
1
2

d
dt
∥∇u(t)∥2

2 −
∫ t

0
g(t − τ)

∫
Ω

∇u(τ)∇ut(t)dxdτ =
∫

Ω

|u|p−1 ln |u|utdx. (11)

Through calculation, it can be seen that∫ t

0
g(t − τ)

∫
Ω

∇u(τ)∇ut(t)dxdτ

=
d
dt

(
−1

2
(g◦∇u)(t)+

1
2

∫ t

0
g(τ)dτ∥∇u(t)∥2

2

)
+

(
1
2
(
g′ ◦∇u

)
(t)− 1

2
g(t)∥∇u(t)∥2

2

)
,

(12)

∫
Ω

|u|p−1 ln |u|utdx =
1
p

d
dt

∫
Ω

|u|p ln |u|dx− 1
p2

d
dt

∫
Ω

|u|pdx. (13)

Inserting (12) and (13) into (11), we have

d
dt

(
1
2

(
1−

∫ t

0
g(τ)dτ

)
∥∇u(t)∥2

2 +
1
2
(g◦∇u)(t)− 1

p

∫
Ω

|u|p ln |u|dx+
1
p2

∫
Ω

|u|pdx+
∫ t

0
∥ut∥2

H1 dτ

)
=

1
2
(
g′ ◦∇u

)
(t)− 1

2
g(t)∥∇u(t)∥2

2 ≤ 0.

The proof of the Lemma 2.4 is completed.
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3. EXISTENCE OF LOCAL SOLUTIONS

The existence of local solutions of problem (4) is discussed below. For a given function v, consider linear
problems 

ut −∆u−∆ut +
∫ t

0
g(t − τ)∆u(τ)dτ = |v|p−2v ln |v|, (x, t) ∈ Ω× (0,T ),

u(x,0) = u0, x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω× (0,T ),

(14)

where T > 0.
LEMMA 3.1. Assume that (A1) and (A2) hold, if u0 ∈ H1

0 (Ω), then, the problem (14) admits a global weak
solution u satisfying u ∈ L∞

(
[0,T ];H1

0 (Ω)
)

with ut ∈ L2
(
[0,T ];H1

0 (Ω)
)
.

The detailed proof of this lemma see references [20–22].
THEOREM 3.1. Suppose that (A1) and (A2) hold, if u0 ∈ H1

0 (Ω), then there is T > 0, so that the problem
(4) has a unique local solution u(t) satisfying u ∈ L∞([0,T ];H1

0 (Ω)) with ut ∈ L2([0,T ];H1
0 (Ω)).

Proof. For T > 0, define a class of function XR0,T , this kind of function includes all the functions in Z that
meet the initial condition of problem (4), i.e.

XR0,T = {u ∈ Z : ||u(t)||z ≤ R2
0, t ∈ [0,T ]},

where Z =

{
u : u∈L∞([0,T ],H1

0 (Ω)), ut ∈L2([0,T ],L2(Ω))

}
endowed with the norm ||u(t)||z = sup0≤t≤T

(
1−

−
∫ t

0 g(τ)dτ

)
||∇u||22, then XR0,t is a complete metric space with the distance d(u1,u2) = ||u1 −u2||z.

By Lemma 3.1, we define a nonlinear mapping Ψ : v→ u,u=Ψv in the following way, for any v∈XR0,T , u=Ψv
is the unique solution of problem (14). Then we claim that Ψ is a contraction mapping from XR0,T into itself
for T > 0 and R0 > 0.

Let v ∈ XR0,T , for t ∈ [0,T ], multiply the equation in problem (14) by ut and integrate on [0, t] ,we obtained

2
∫ t

0
∥ut∥2

H1 dτ + ||∇u||22 +(g◦∇u)(t)−
∫ t

0
g(τ)dτ||∇u||22

= ||∇u0||22 +
∫ t

0
((g′ ◦∇u)(t)−g(t)||∇u||22)dτ +2

∫ t

0

∫
Ω

|v|p−1 ln |v|utdxdτ

≤ ||∇u0||22 +2
∫ t

0

∫
Ω

|v|p−1 ln |v|utdxdτ

≤ ||∇u0||22 +
∫ t

0
|||v|p−1 ln |v|||22dτ +

∫ t

0
∥ut∥2

H1 dτ,

(15)

then

(1−
∫ t

0
g(τ)dτ)||∇u(t)||22 ≤ ||∇u0||22 +

∫ t

0
|||v|p−1 ln |v|||22dτ. (16)

By Hölder inequality, Lemma 2.1 and lnα < α for α > 1, we get

|||v|p−1 ln |v|||22 =
∫

Ω

(
|v|p−1 ln |v|

)2
dx =

∫
{x∈Ω,v(x)≤1}

(
|v|p−1 ln |v|

)2
dx+

∫
{x∈Ω,v(x)>1}

(
|v|p−1 ln |v|

)2
dx

≤ 1
[e(p−1)]2

|Ω|+
∫

Ω

|v|2p dx

≤ 1
[e(p−1)]2

|Ω|+ s2p(1−
∫ t

0
g(τ)dτ)−pR2p

0 .

(17)
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Substitute (17) into (16), then we have

(1−
∫ t

0
g(τ)dτ)||∇u(t)||22 ≤ ||∇u0||22 +(

1
[e(p−1)]2

|Ω|+ s2p(1−
∫ t

0
g(τ)dτ)−pR2p

0 )T.

Let R0 > ||∇u0||2, T < (R2
0−||∇u0||22)/( 1

[e(p−1)]2 |Ω|+ s2p(1−
∫ t

0 g(τ)dτ)−pR2p
0 ), the above formula is less than

or equal to R2
0, i.e. u ∈ XR0,T , then Ψ is a self mapping.

The following will prove that Ψ is a compressed mapping, let v1,v2 ∈ XR0,T and u1 = Ψv1, u2 = Ψv2 be
the corresponding solution for problem (14). Setting U = u1 −u2, V = v1 − v2, then U satisfies the following
systemUt −∆U −∆Ut +

∫ t

0
g(t − τ)∆U(τ)dτ = |v1|p−2v1 ln |v1 −|v2|p−2v2 ln |v2|, (x, t) ∈ Ω× (0,T ),

U(x,0) = 0, x ∈ Ω.

(18)

Multiply the equation in (18) by Ut and integrate it over [0, t] to get

2
∫ t

0
∥Ut∥2

H1 dτ +(1−
∫ t

0
g(τ)dτ)||∇U(t)||22 +(g◦∇U)(t)−

∫ t

0
((g′ ◦∇U)(t)−g(t)||∇U(τ)||22)dτ

= 2
∫ t

0

∫
Ω

(|v1|p−1 ln |v1|− |v2|p−1 ln |v2|)Ut(τ)dxdτ.

(19)

By Lagrange mean value theorem, we have

|v1|p−1 ln |v1|− |v2|p−1 ln |v2|= ((p−1) ln |ε|+1)|ε|p−2(v1 − v2) =V |ε|p−2(1+(p−1) ln |ε|)
≤V (|v1|+ |v2|)p−2 +V (p−1)(|v1|+ |v2|)p−1,

(20)

where |ε| = v1 + ξ (v2 − v1) < v1 + v2, for 0 < ξ < 1, then applying Hölder inequality, Young inequality and
Lemma 2.1, we get∫ t

0

∫
Ω

(|v1|p−1 ln |v1|− |v2|p−1 ln |v2|)Ut(τ)dxdτ

≤
∫ t

0

∫
Ω

V (|v1|+ |v2|)p−2Ut(τ)dxdτ +
∫ t

0

∫
Ω

V (p−1)(|v1|+ |v2|)p−1Ut(τ)dxdτ

≤
∫ t

0
||V ||p|||v1 + |v2|||p−2

2p ||Ut ||2dτ +
∫ t

0
(p−1)||V ||2p|||v1 + |v2|||p−1

2p ||Ut ||2dτ

≤ sp−1
∫ t

0
||∇V ||2||Ut ||2(||∇v1||2 + ||∇v2||2)p−2dτ + sp

∫ t

0
(p−1)||∇V ||2||Ut ||2(||∇v1||2 + ||∇v2||2)p−1dτ

≤ 1
2
[sp−1(2R0(1−

∫ t

0
g(τ)dτ)−

1
2 )p−2 + sp(2R0(1−

∫ t

0
g(τ)dτ)−

1
2 )p−1]2

∫ t

0
||∇V ||22dτ +

1
2

∫ t

0
||ut ||22dτ.

(21)

From (19)− (21), we obtained

2
∫ t

0
||Ut ||2H1dτ +(1−

∫ t

0
g(τ)dτ)||∇U(t)||22 ≤C

∫ t

0
||∇V ||22dτ +

∫ t

0
||ut ||22dτ, (22)

where C :=
[

sp−1(2R0(1−
∫ t

0 g(τ)dτ)−
1
2 )p−2 + sp(2R0(1−

∫ t
0 g(τ)dτ)−

1
2 )p−1

]2

, thus

(
1−

∫ t

0
g(τ)dτ

)
||∇U(t)||22 ≤C

∫ t

0
||∇V ||22dτ ≤

(
1−

∫ t

0
g(τ)dτ

)−1

CT ||V ||z, (23)
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namely

||U ||z ≤ (1−
∫ t

0
g(τ)dτ)−1CT ||V ||z.

Let T < (1−
∫ t

0 g(τ)dτ)C−1, then Ψ is a compressed mapping. In summary, when we choose R0 > ||∇u0||2 and

T < min
[
(R2

0 − ||∇u0||22)/( 1
[e(p−1)]2 |Ω|+ s2p(1−

∫ t
0 g(τ)dτ)−pR2p

0 ),(1−
∫ t

0 g(τ)dτ)C−1
]

, Ψ is a compressed

self mapping. By Banach fixed point theorem, Theorem 3.1 proofed.

4. FINITE TIME BLOW-UP OF SOLUTIONS

LEMMA 4.1 ([18]). Let Q(t) ∈C2(R+,R+) and δ > 0 satisfying

Q′′(t)−4(δ +1)Q′(t)+4(δ +1)Q(t)≥ 0, t ≥ 0. (24)

If Q′(0) > r2b(0), then Q′(t) > 0 for t > 0, where r2 = 2(δ + 1)− 2[(δ + 1)δ ]
1
2 is the smallest root of the

quadratic equation r2 −4(δ +1)r+4(δ +1) = 0.
LEMMA 4.2. ([18]) If J(t) is a non-increasing function on [t0,∞) and satisfies the following differential

equation

J′(t)2 ≥ a+bJ(t)2+ 1
δ , t ≥ t0, (25)

where a > 0 and b ∈ R, then there exists a finite positive number T ∗ such that limt→T ∗ J(t) = 0 and an upper
bound of T ∗ can be estimated respectively in the following case:

(i) when b < 0 and J(t0)< min(1,( a
−b)

1
2 ), T ∗ ≤ t0 +

√
1
−b ln

√ a
−b√

a
−b−J(t0)

.

(ii) when b = 0, T ∗ ≤ t0 +
J(t0)√

a .

(iii) when b > 0, T ∗ ≤ t0 +2
3δ+1

2δ
δh√

a{1− [1+hJ(t0)]−
1

2δ }, where h = (a
b)

2+ 1
δ .

LEMMA 4.3. Suppose that (A1) and (A2) hold, and if u0 ∈ V and E(0) < d. Then we have u(t) ∈ V for
t ∈ [0,T ], and

(p−2)(1−
∫ t

0
g(τ)dτ)||∇u||22 +

2
p

∫
Ω

|u|pdx ≥ 2pd.

Proof. Suppose that there is a time t0 ∈ (0,T ) such that u(x, t) ∈V for any t ∈ [0, t0), but u(x, t0) /∈V , from
the definition of V and the continuity of J(u)and I(u), we have either

(i) J(u(x, t0)) = d or (ii) I(u(x, t0)) = 0.
By the Lemma 2.4, we have E(t0)≤ E(0), then

J(u(x, t0))≤ E(t0)≤ E(0)< d.

So case (i) is impossible.
Assume that (ii) holds, it can be obtained from (10) and Lemma 2.3 that

d ≤ J(u(x, t0))≤ E(u(t0))< E(u(0))< d.

So case (ii) is also impossible.
For u(t) ∈ V , it is known from Lemma 2.2 that there is λ ∗ ∈ (0,1), so that I(λ ∗u) = 0, it can be obtained

from the definition of d

d ≤ J(λ ∗u) =
1
p

I(λ ∗u)+
p−2
2p

(1−
∫ t

0
g(τ)dτ)||λ ∗

∇u||22 +
1
p2

∫
Ω

|λ ∗u|pdx.
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Then (p−2)(1−
∫ t

0
g(τ)dτ)||∇u||22 +

2
p

∫
Ω

|u|pdx ≥ 2pd.

Let

F(t) =
∫ t

0
∥u(τ)∥2

H1dτ +(T − t)∥u0∥2
H1 , (26)

then

F ′(t) = ∥u(t)∥2
H1 −∥u0∥2

H1 , (27)

F ′′(t) = 2(u,ut)+2(∇u,∇ut) =−2(∇u,∇u)+2(
∫ t

0
g(t − τ)∇u(τ)dτ,∇u)+2(|u|p−2u ln |u|,u)

=−2∥∇u∥2
2 +2

∫ t

0
g(t − τ)(∇u(τ),∇u)dτ +2

∫
Ω

|u|p ln |u|dx.
(28)

LEMMA 4.4. Assume that
∫

∞

0
g(τ)dτ ≤ p−3

p−2
, then

F ′′(t)−2p
∫ t

0
∥ut∥2

H1 dτ ≥−2pE(0)+α

[
(p−2)

(
1−

∫ t

0
g(τ)dτ

)
||∇u||22 +

2
p

∫
Ω

|u|pdx
]
, (29)

where α = 1− 1
(p−2)β

.

Proof. By applying Young inequality and Lemma 2.4, from (28), we obtained

F ′′(t)−2p
∫ t

0
∥ut∥2

H1 dτ

=−2∥∇u∥2
2 +2

∫ t

0
g(t − τ)(∇u(τ),∇u)dτ +2

∫
Ω

|u|p ln |u|dx+−2p
∫ t

0
∥ut∥2

H1 dτ

≥−2p
∫ t

0
∥ut∥2

H1 dτ −2
(

1−
∫ t

0
g(t − τ)dτ

)
∥∇u∥2

2 +2
∫

Ω

|u|p ln |u|dx−2
(

p
2
(g◦∇u)(t)+

1
2p

∫ t

0
g(t − τ)dτ∥∇u∥2

2

)
≥−2pE(0)+(p−2)

(
1−

∫ t

0
g(t − τ)dτ

)
∥∇u∥2

2 −
1
p

∫ t

0
g(t − τ)dτ)∥∇u∥2

2 +
2
p

∫
Ω

|u|pdx

≥−2pE(0)+
(

1− 1
(p−2)β

)[
(p−2)(1−

∫ t

0
g(τ)dτ)||∇u||22 +

2
p

∫
Ω

|u|pdx
]
.

(30)

The proof of Lemma 4.4 is completed.
LEMMA 4.5. Suppose that (A1) and (A2) holds, u is the solution of problem (4), if one of the following

conditions is true:
(1) E(0)< 0, (2) E(0) = 0 and F ′(0)≥ 0, (3) 0 < E(0)< αd and I(u0)< 0, (4) E(0)≥ αd.

Then F ′(t)> 0 for t > t3, where:

- in case (1), t3 = max{ F ′(0)
2pE(0)

,0}.

- in case (2), t3 = 0.

- in case (3), t3 = max{ −F ′(0)
2p(αd −E(0))

,0}.

Proof. (1) If E(0)< 0, then from (29), we have

F ′(t)≥ F ′(0)−2pE(0)t, t ≥ 0.
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Thus, F ′(t)> 0 for t > t3, where t3 = max{ F ′(0)
2pE(0)

,0}.

(2) If E(0) = 0, then from (29), we get F ′′(t)> 0 for t > 0, since F ′(0)≥ 0, we have F ′(t)> 0 for t > 0.
(3) If 0 < E(0)< αd and I(u0)< 0, then from Lemma 4.3, we get

F ′′(t)≥ 2p(αd −E(0))> 0.

Integrating both sides of the above equation from 0 to t gives

F ′(t)≥ F ′(0)+2p(αd −E(0))t, t ≥ 0.

Therefore, we get F ′(t)> 0 for t > t3, where t3 = max{ −F ′(0)
2p(αd −E(0))

,0}.

(4) If E(0)≥ αd, then

F ′′(t)−2p
∫ t

0
∥ut∥2

H1 dτ +2pE(0)≥ 0.

By using Hölder inequality and Young inequality, we obtained

2
∫ t

0
(u,ut)H1dτ ≤ 2

∫ t

0
||u||H1 ||ut ||H1dτ ≤

∫ t

0
||u||2H1dτ +

∫ t

0
||ut ||2H1dτ. (31)

2
∫ t

0
(u,ut)H1dτ = ||ut ||H1 −||u0||H1 .

Thus ∫ t

0
||ut ||2H1dτ ≥ ||ut ||H1 −||u0||H1 −

∫ t

0
||u||2H1dτ ≥ F ′(t)−F(t). (32)

Then

F ′′(t)−2pF ′(t)+2pF(t)+2pE(0)≥ 0. (33)

By applying Lemma 4.1 with δ = p−2
2 and Q(t) = F(t)+E(0), then we have F ′(t)> 0 for t > 0.

THEOREM 4.1. Assume that (A1) and (A2) hold and u is a solution of (4). If one of the following
statements is satisfied:

(1) E(0)< 0, (2) E(0) = 0 and F ′(0)≥ 0, (3) 0 < E(0)< αd and I(u0)< 0, (4) E(0)≥ αd,
then the solution u(t) blow-up at a finite time T ∗ in the sense of

lim
t→T ∗−

∥u(x, t)∥2
H1 =+∞.

- In case (1), T ∗ ≤ t∗− A(t∗)
A′(t∗)

and if A(t∗)< min(1,
√

a
−b), then T ∗ ≤ t∗+

√
1
−b ln

√ a
−b√ a

−b−A(t∗)
.

- In case (2), T ∗ ≤ t∗+
A(t∗)√

a .

- In case (3), T ∗ ≤ t∗− A(t∗)
A′(t∗)

and if A(t∗)< min(1,
√

a1
−b1

), then T ∗ ≤ t∗+ 1√
−b1

ln

√
a1
−b1√

a1
−b1

−A(t∗)
.

- In case (4), T ∗ ≤ t∗+2
3p−4

2(p−2) (p−2)h
2
√

a {1− [1+A(t∗)]
− 1

p−2 }, where h = (a
b)

2p−2
p−2 .

Proof. Let
A(t) = F(t)−

p−2
2 , t ≥ 0.

Then
A′(t) =− p−2

2
F(t)−

p−2
2 −1F ′(t),
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A′′(t) =− p−2
2

A(t)1+ 4
p−2 [F ′′(t)F(t)− p

2
(F ′(t))2]. (34)

By using Lemma 4.3 and Hölder inequality, from (26),(27) and (29), we obtained

F ′′(t)F(t)− p
2
(F ′(t))2

≥
{

2p
∫ t

0
∥ut∥2

H1 dτ −2pE(0)+α[(p−2)(1−
∫ t

0
g(τ)dτ)||∇u||22 +

2
p

∫
Ω

|u|pdx]
}

F(t)− p
2
(4F(t)

∫ t

0
||ut ||2H1)

≥
{
−2pE(0)+α[(p−2)(1−

∫ t

0
g(τ)dτ)||∇u||22 +

2
p

∫
Ω

|u|pdx]
}

F(t)

=

{
−2pE(0)+α[(p−2)(1−

∫ t

0
g(τ)dτ)||∇u||22 +

2
p

∫
Ω

|u|pdx]
}

A(t)−
2

p−2

≥
(

2pαd −2pE(0)
)

A(t)−
2

p−2 .

(35)

Substituting (35) into (34) yields

A′′(t)≤ p(p−2)(E(0)−αd)A(t)1+ 2
p−2 . (36)

If the case(1) or case(2) holds, by (36) we get

A′′(t)≤ p(p−2)E(0)A(t)1+ 2
p−2 . (37)

By Lemma 4.5, multiplying (37) by A′(t) and integrating on [t∗, t], we have

A′(t)≥ a+bA(t)2+ 2
p−2 , t ≥ t∗, (38)

where

a = A′(t∗)2 − p(p−2)2

p−1
E(0)A(t∗)

2+ 2
p−2 , b =

p(p−2)2

p−1
E(0). (39)

If the case(3) holds, then we obtained

A′′(t)≤−p(p−2)(αd −E(0))A(t)1+ 2
p−2 . (40)

By using the same arguments as in (37), we see that

A′(t)≥ a1 +b1A(t)2+ 2
p−2 , t ≥ t∗, (41)

where

a1 = A′(t∗)2 − p(p−2)2

p−1
(E(0)−αd)A(t∗)

2+ 2
p−2 , b1 =

p(p−2)2

p−1
(E(0)−αd). (42)

In case(4), we can get (39) if and only if E(0) < (p−1)A(t∗)2

p(p−2)2A(t∗)
2+ 2

p−2
. Therefore, when δ = p−2

2 and t0 = t∗, by

Lemma 4.2, there exists a finite time T ∗ such that limt→T ∗− A(t) = 0, i.e. limt→T ∗− ∥u(x, t)∥2
H1 = +∞. This

finished the proof of Theorem 4.1.
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