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Abstract. A path-factor in a graph G is a spanning subgraph of G whose components are paths. Let d and k
be two nonnegative integers with d ≥ 2. A P≥d-factor of a graph G is its spanning subgraph each of whose
components is a path of order at least d. A graph G is called a P≥d-factor deleted graph if for any edge e of G, G
admits a P≥d-factor excluding e. A graph G is called a (P≥d ,k)-factor critical deleted graph if for any Q ⊆V (G)
with |Q|= k, the graph G−Q is a P≥d-factor deleted graph. In other words, a graph G is called a (P≥d ,k)-factor
critical deleted graph if for any Q ⊆ V (G) with |Q| = k and any e ∈ E(G−Q), the graph G−Q− e admits a
P≥d-factor. In this paper, we prove that a (k+2)-connected graph G is a (P≥3,k)-factor critical deleted graph if
G satisfies

δ (G)>
α(G)+2k+2

2
.

Furthermore, we show that the main result in this paper is best possible in some sense.
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1. INTRODUCTION

The ruggedness and vulnerability of the network are the core issues of network security research, and it
is also one of the key topics that researchers must consider during the network designing phase. Henceforth,
we apply the term “graph” instead of “network”. Vertices of the graph corresponds to nodes of the network
and edges of the graph stand for links between the nodes of the network. In data transmission networks, the
data transmission between two sites goes through a path between two corresponding vertices. Therefore, the
availability of data transmission in the network is equivalent to the existence of path factor in the corresponding
graph which is generated by the network. The existence of a path-factor critical deleted graph also plays an
important role in transmitting data of networks. If a channel and some nodes of the network are damaged
in the process of the data transmission at the moment, the possibility of data transmission between nodes is
characterized by whether the corresponding graph of the network is a path-factor critical deleted graph or not.
Hence, researches on the existence of path-factors and path-factor critical deleted graphs under specific network
structures can help scientists design and construct networks with high data transmission rates. The minimum
degree and independence number are often applied to measure the ruggedness and vulnerability of a network.
Furthermore, we find that there is strong essential connection between the above two graphic parameters and the
existence of path factors in graphs (or path-factor critical deleted graphs). Hence, investigations on minimum
degree and independence number, which plays an irreplaceable role in the vulnerability of the network and the
feasibility of data transmission, can yield theoretical guidance to meet data transmission and network security
requirements.
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In this work, the graphs discussed are finite, undirected and simple. We denote a graph by G=(V (G),E(G)),
where V (G) is the vertex set of G and E(G) is the edge set of G. Let dG(x) denote the degree of a vertex x in
G, and write δ (G) = min{dG(x) : x ∈ V (G)}. We denote by α(G), i(G) and ω(G) the independence number,
the number of isolated vertices and the number of connected components in G, respectively. Let xy denote
an edge joining vertices x and y. For a vertex subset X of G, we use G[X ] to denote the subgraph of G in-
duced by X , and G−X to denote the subgraph of G induced by V (G) \X . A vertex subset X of G is called
independent if G[X ] has no edges. For an edge subset E ′ of G, let G−E ′ denote the subgraph derived from
G by removing edges of E ′. For two given graphs G1 and G2, let G1 ∪G2 denote the graph with vertex set
V (G1)∪V (G2) and edge set E(G1)∪E(G2), and G1 ∨G2 denote the graph with vertex set V (G1)∪V (G2) and
edge set E(G1)∪E(G2)∪{e = xy : x ∈ V (G1),y ∈ V (G2)}. The complete graph and the path of order n are
denoted by Kn and Pn, respectively.

A path-factor in a graph G is a spanning subgraph of G whose components are paths. Let d be an integer
with d ≥ 2. A P≥d-factor of a graph G is its spanning subgraph each of whose components is a path of order at
least d. A graph G is called a P≥d-factor deleted graph if for any edge e of G, G admits a P≥d-factor excluding
e.

Egawa, Furuya and Ozeki [1], Johansson [2], Kelmans [3] studied the existence of path-factors in graphs.
Bazgan et al. [4] verified that a 1-tough graph G of order at least 3 admits a P≥3-factor. Kano, Lu and Yu [5]
claimed that a graph G has a P≥3-factor if G satisfies i(G−X)≤ 2

3 |X | for each X ⊆V (G). Zhou [6], Zhou, Wu
and Xu [7], Zhou, Sun and Yang [8], Zhou, Sun and Bian [9], Wang and Zhang [10], Gao, Chen and Wang [11],
Gao and Wang [12], Hua [13] derived several results on P≥3-factors of graphs with given properties. Kano,
Lee and Suzuki [14] proved that every connected cubic bipartite graph of order at least 8 has a P≥8-factor.
Zhou, Sun and Liu [15] showed toughness and isolated toughness conditions for P≥3-factor deleted graphs.
Zhou [16] presented a binding number condition for graphs to be P≥3-factor deleted graphs. Zhou, Liu and
Xu [17], Zhou [18], Zhou, Wu and Bian [19], Zhou and Liu [20], Wang and Zhang [21, 22] established some
relationships between minimum degree and graph factors. Zhou, Wu and Liu [23], Kouider and Lonc [24]
investigated the relationships between independence number and graph factors. Some other results on graph
factors see [25–27].

A graph H is factor-critical if for every x ∈V (H), there is a perfect matching in H −x. Assume that a graph
H with V (H) = {x1,x2, · · · ,xn} is a factor-critical graph. To characterize a graph with a P≥3-factor, the concept
of a sun was introduced by Kaneko [28]. A graph R is said to be a sun if R is derived from H by adding new
vertices y1,y2, · · · ,yn together with new edges x1y1,x2y2, · · · ,xnyn to H. By virtue of Kaneko, K1 and K2 are
also regard as two suns. Usually, the suns other that K1 and K2 are called big suns. A sun component of G is a
component isomorphic to a sun in G. The number of sun components in G is denoted by sun(G). Kaneko [28]
posed a characterization for a graph to admit a P≥3-factor.

THEOREM 1.1 ([28]). A graph G has a P≥3-factor if and only if

sun(G−X)≤ 2|X |

for every X ⊆V (G).

Theorem 1.1 will be applied in the proof of our main result.

2. MAIN RESULT AND ITS PROOF

Let d and k be two nonnegative integers with d ≥ 2. A graph G is called a (P≥d ,k)-factor critical deleted
graph if for any Q ⊆V (G) with |Q|= k, the graph G−Q is a P≥d-factor deleted graph.

Zhou, Bian and Pan [29] derived a binding number condition for (P≥3,k)-factor critical deleted graphs. In
this section, we proceed to study the (P≥3,k)-factor critical deleted graph, and get a new sufficient condition
for the existence of (P≥3,k)-factor critical deleted graphs.
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THEOREM 2.1. Let k be a nonnegative integer. Then a (k + 2)-connected graph G is (P≥3,k)-factor
critical deleted if G satisfies

δ (G)>
α(G)+2k+2

2
.

Proof. Let H = G−Q− e for any Q ⊆V (G) with |Q|= k and any e = xy ∈ E(G−Q). To justify Theorem
2.1, it suffices to verify that H has a P≥3-factor. By virtue of contrary, we assume that H has no P≥3-factor.
Then it follows from Theorem 1.1 that

sun(H −X)≥ 2|X |+1 (1)

for some subset X ⊆V (H).

CLAIM 1. |X | ≥ 2.
Proof. Assume that |X | ≤ 1. If |X | = 0, then by (1), sun(H) ≥ 1. Note that G is (k + 2)-connected.

Hence, H = G−Q− e is connected, which implies ω(H) = 1. Thus, we derive 1 ≤ sun(H) ≤ ω(H) = 1,
and so sun(H) = 1. Since G is (k + 2)-connected, we have |V (G)| ≥ k + 3. Thus, we infer |V (H)| ≥ 3.
Combining this with sun(H) = 1 and the definition of big sun, we know that H is a big sun. Then there
exist at least three vertices x1,x2,x3 with degree 1 in H. Without loss of generality, let x1 /∈ {x,y}. Then
dG(x1)≤ dG−Q(x1)+ |Q|= dG−Q(x1)+ k = dG−Q−e(x1)+ k = dH(x1)+ k = k+1, which contradicts that G is
(k+2)-connected.

If |X |= 1, then from (1), sun(H−X)≥ 2|X |+1 = 3. Since G is (k+2)-connected, G−Q−X is connected.
Hence, ω(G−Q−X) = 1. Thus, we deduce

3 ≤ sun(H −X)≤ ω(H −X) = ω(G−Q− e−X)

≤ ω(G−Q−X)+1 = 2,

which is a contradiction. Hence, |X | ≥ 2. This completes the proof of Claim 1. 2

Suppose that there exist a isolated vertices, b K2’s and c big sun components R1,R2, · · · ,Rc, where |V (Ri)| ≥
6 for 1 ≤ i ≤ c, in H −X . And so

sun(H −X) = a+b+ c. (2)

By means of (1), (2) and Claim 1,

a+b+ c = sun(H −X)≥ 2|X |+1 ≥ 5. (3)

From (3) and H = G−Q− e, we get

sun(G−Q−X)≥ sun(G−Q− e−X)−2 = sun(H −X)−2

≥ 5−2 = 3,

which implies that G−Q−X has a vertex v with dG−Q−X(v)≤ 1. Thus, we derive

δ (G)≤ dG(v)≤ dG−Q−X(v)+ |Q|+ |X | ≤ |X |+ k+1. (4)

Note that sun(H −X) = sun(G−Q−X − e)≤ sun(G−Q−X)+2. In what follows, we proceed to verify
Theorem 2.1 by considering the following two cases.

Case 1. sun(G−Q−X − e)≤ sun(G−Q−X)+1.
By virtue of (1) and H = G−Q− e, we admit

α(G)≥ α(G−Q−X)≥ sun(G−Q−X)

≥ sun(G−Q−X − e)−1

= sun(H −X)−1 ≥ 2|X |.
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Combining this with (4) and δ (G)> α(G)+2k+2
2 , we deduce

2|X | ≤ α(G)< 2δ (G)−2k−2 ≤ 2(|X |+ k+1)−2k−2 = 2|X |,

which is a contradiction.

Case 2. sun(G−Q−X − e) = sun(G−Q−X)+2.
In this case, we may assume that e = xy joins two sun components D1 and D2 of G−Q−X − e, where

x ∈ V (D1) and y ∈ V (D2). We easily see that D1 ̸= K1 or D2 ̸= K1 (otherwise, D1 = K1 and D2 = K1, then
D1∪D2∪{e}= K2 is a sun component of G−Q−X , and so sun(G−Q−X −e) = sun(G−Q−X)+1, which
contradicts that sun(G−Q−X − e) = sun(G−Q−X)+2). Thus, we infer

α(D1 ∪D2 ∪{e})≥ 2. (5)

Note that G−Q−X − e = H −X has (a+b+ c) sun components. Then G−Q−X admits (a+b+ c−2)
sun components and a component D1 ∪D2 ∪{e}, and so

α(G)≥ α(G−Q−X)≥ (a+b+ c−2)+α(D1 ∪D2 ∪{e}). (6)

It follows from (1), (2), (4), (5), (6) and δ (G)> α(G)+2k+2
2 that

α(G)≥ (a+b+ c−2)+α(D1 ∪D2 ∪{e})
≥ (a+b+ c−2)+2 = a+b+ c

= sun(H −X)≥ 2|X |+1

≥ 2(δ (G)− k−1)+1 = 2δ (G)−2k−1

> 2
(

α(G)+2k+2
2

)
−2k−1

= α(G)+1,

which is a contradiction. This completes the proof of Theorem 2.1. 2

If k = 0 in Theorem 2.1, then we obtain the following corollary.

COROLLARY 2.2. A 2-connected graph G is a P≥3-factor deleted graph if G satisfies

δ (G)>
α(G)+2

2
.

3. REMARK

Remark 3.1. In what follows, we claim that the condition

δ (G)>
α(G)+2k+2

2

in Theorem 2.1 is sharp, that is, it cannot be replaced by

δ (G)≥ α(G)+2k+2
2

.

In order to show this, we construct a graph G = Kk+r ∨ (2rK2), where k and r are two nonnegative integers with
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r ≥ 2. Obviously, G is a (k+ r)-connected graph with δ (G) = k+ r+1 and α(G) = 2r. Thus, we deduce

δ (G) =
α(G)+2k+2

2
.

For any Q ⊆V (Kk+r) with |Q|= k and any e ∈ E(2rK2)⊆ E(G−Q), let H = G−Q− e = Kr ∨ ((2r−1)K2 ∪
(2K1)). Choose X =V (Kr)⊆V (H). Then we admit |X |= r and sun(H −X) = 2r+1, and so

sun(H −X) = 2r+1 > 2r = 2|X |.

In terms of Theorem 1.1, H has no P≥3-factor. Combining this with the definition of (P≥3,k)-factor critical
deleted graph, G is not a (P≥3,k)-factor critical deleted graph.
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