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Abstract. Melvyn Knight’s problem asks for positive integers n that can be represented as n = (x+ y+ z)(
1
x
+

1
y
+

1
z
) with integers x,y,z. In this paper, we investigate integers n that can be represented as

n =
x+ y+ z
a2b2c2 (

a2

x
+

b2

y
+

c2

z
) (1)

with integers x, y, z, a, b, c. For integers n,a,b,c satisfying 4|n or 8|n−5, a+b+ c = −1, and abc is a square
number, we show that the representation (1) is essentially unique if na2b2c2 = (|a|+ |b|+ |c|)2 and is impossible
if na2b2c2 ̸= (|a|+ |b|+ |c|)2.
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1. INTRODUCTION

In [2], Bremner, Guy and Nowakowski investigated Melvyn Knight’s problem which asks for integers n
representable as

n = (x+ y+ z)(
1
x
+

1
y
+

1
z
) (2)

with integers x,y,z. They also briefly discussed the representation (2) in the set of positive integers. Integer
solutions to equation (2) depend on the rank of the elliptic curve defined by (2). When asking for positive integer
solutions to (2), the situation becomes more subtle. It can happen that equation (2) has integer solutions without
having positive integer solutions. The following example is taken from Bremner, Guy and Nowakowski [2].

Let n = 564. Then equation (2) has an integer solution (x,y,z), where

x = 122442005010002877811635117117995213613513491867,

y =−3460695868425504865645892262188752089713065424460,

z = 74807191015302527837945836017146464948205905528060,

but does not have positive integer solutions. The later follows from Tho [5, Theorem 1.1] which says that the
representation (2) is impossible in positive integers if 4|n. In this paper, we will investigate a more general form
of (2). We will prove the following theorem.

1E-mail: tan.nguyenduy@hust.edu.vn
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THEOREM 1. Let n,a,b,c be nonzero integers such that 4|n or 8|n−5, a+b+c=−1, and abc is a square.
Consider the representation

n =
x+ y+ z
a2b2c2 (

a2

x
+

b2

y
+

c2

z
) (3)

with positive integers x,y,z.
(i) If na2b2c2 = (|a|+ |b|+ |c|)2, then the representation (3) is essentially unique with

x : y : z = |a| : |b| : |c|.

(ii) If na2b2c2 ̸= (|a|+ |b|+ |c|)2, then the representation (3) is impossible.

When 4|n and |a| = |b| = |c| = 1, we recover Theorem 1.1 in Tho [5]. Note that there are infinitely many
integers a,b,c satisfying the condition in Theorem 1. For example, (a,b,c) = (m,−m,−1) with m ∈ Z+.

2. SOME PRELIMINARIES

Let p be a prime number. Let Qp be the p-adic completion of Q with respect to p-adic topology. Let Zp be
the ring of p-adic integers in Qp. Let Q3

p = {(x,y,z) : x,y,z ∈Qp}, Q2
p = {x2 : x ∈Qp}, and Z2

p = {x2 : x ∈Zp}.
For a ∈ Q∗

p, denote vp(a) the highest power of p dividing a. For a and b in Qp, the Hilbert symbol (a,b)p is
defined by

(a,b)p =

{
1 if ax2 +by2 = z2 has a solution (x, y, z) ̸= (0, 0, 0) in Q3

p,
−1 otherwise.

For a,b ∈ R, the symbol (a,b)∞ is +1 if a > 0 or b > 0, and −1 otherwise. The following properties of the
Hilbert symbol are true, see Serre [9, pp. 19-26]:

(i) For all a, b, c ∈Qp, then

(a, b2)p = 1,

(a,bc)p = (a,b)p(a,c)p.

(ii) For all a, b ∈Q, then
(a,b)∞ ∏

p prime
(a,b)p = 1.

(iii) Let a, b ∈Q. Write a = pαu, b = pβ v, where α = vp(a) and β = vp(b). Then

(a,b)p = (−1)αβ (p−1)/2
(

u
p

)β ( v
p

)α

if p ̸= 2,

(a,b)p = (−1)(u−1)(v−1)/4+α(v2−1)/8+β (u2−1)/8 if p = 2,

where
(

u
p

)
denotes the Legendre symbol.

3. THE PROVING IDEA

The following is the main idea of our method which has been applied to many different problems, see [3–8].
Assume we want to show that a rational number u is positive. The trick is to find a rational number D < 0

such that (D,u)p = 1 for all prime numbers p, where (D,u)p denotes the Hilbert symbol. Then the product
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formula for the Hilbert symbol (Serre [9, Theorem 3, p. 23]) forces (D,u)∞ = 1. Since D < 0, we must have
u > 0. Our experience shows that when u is the x-coordinate of a rational point on an elliptic curve

y2 = f (x),

where f is a cubic polynomial with rational coefficients, quantity D is usually a factor of the discriminant of
f (x).

4. THE PROOF OF THEOREM 1

Assume that there exist positive integers x,y,z satisfying (3). Using the Cauchy-Schwarz inequality, we
have

n =
(x+ y+ z)

a2b2c2 (
a2

x
+

b2

y
+

c2

z
)≥ (|a|+ |b|+ |c|)2

a2b2c2 . (4)

The equality holds if and only if
x
|a|

=
y
|b|

=
z
|c|

.

(i) When na2b2c2 = (|a|+ |b|+ |c|)2, the equality in (4) holds. Therefore, x : y : z = |a| : |b| : |c|.

(ii) From (4) we have
na2b2c2 ≥ (|a|+ |b|+ |c|)2 > a2 +b2 + c2.

Therefore,
na2b2c2(x+ y+ z)> (a2 +b2 + c2)(x+ y+ z).

Hence at least one of the following inequalities must hold:

na2b2c2x > a2(x+ y+ z),

na2b2c2y > b2(x+ y+ z),

na2b2c2z > c2(x+ y+ z).

Without loss of generality, we assume na2b2c2z > c2(x+ y+ z). Therefore,

(na2b2 −1)z > x+ y. (5)

Since x,y,z satisfy (3), (x : y : z) is a point on the projective curve

C : (X +Y +Z)(a2Y Z +b2ZX + c2XY )−na2b2c2XY Z = 0.

Since C has a rational point (1 : −1 : 0), it is bi-rationally equivalent to the curve

E : V 2 =U(U2 +AU +B),

where

A = n2a4b4c4 −2na2b2c2(a2 +b2 + c2)+a4 +b4 + c4 −2a2b2 −2a2c2 −2b2c2,

B = 16na4b4c4,

via the map φ : C → E defined by

φ(X ,Y,Z)=
(
−4na2b2c2(b2X +a2Y )
(na2b2 −1)Z −X −Y

,
4na2b2c2(b2X +a2Y )(c2(na2b2 −1)(X −Y )− (a2 −b2)(X +Y +2Z))

(X +Y )((na2b2 −1)Z −X −Y )

)
.

(6)
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We also have
A2 −4B = DEFG,

where
D = (a+b+ c)2 −na2b2c2, E = (a+b− c)2 −na2b2c2,

F = (a−b+ c)2 −na2b2c2, G = (−a+b+ c)2 −na2b2c2.

All of the above computations could be checked by MAGMA [1].

LEMMA 1. D,E,F,G < 0.

Proof. Since na2b2c2 ̸= (|a|+ |b|+ |c|)2, (4) is a strict inequality. Thus na2b2c2 > (|a|+ |b|+ |c|)2. Then
it easily follows that D,E,F,G < 0.

The above lemma shows that curve E is non-singular, hence is an elliptic curve.

LEMMA 2. Let (u,v) = φ(x,y,z). Then u < 0.

Proof. From (6), we have

u =
−4na2b2c2(b2x+a2y)
(na2b2 −1)z− x− y

.

Since x,y,z,a2,b2,c2 > 0 and (na2b2 −1)z− x− y > 0 (see (5)), we have u < 0.

Note that u and v satisfy
v2 = u(u2 +Au+B). (7)

LEMMA 3. Let p be an odd prime. Then (D,u)p = 1.

Proof. Let u = prs, where r,s ∈ Z, and p ∤ s.

Case 1 : r < 0. From (7) we have

v2 = p3rs(s2 + p−rAs+ p−2rB). (8)

Since −r > 0 and p ∤ s, from (8) we have 3r = vp(v2). Hence, 2|r. Let v = p3r/2t, where p ∤ t. From (8) we
have

t2 = s(s2 + p−rAs+ p−2rB).

Thus s3 ≡ t2 (mod p), so s is a square mod p. Therefore, s ∈ Z2
p. Thus u = prs ∈Q2

p. Hence, (D,u)p = 1.
Case 2 : r = 0.
Case 2.1 : p ∤ D. Then u and D are units in Zp. Hence, (D,u)p = 1.
Case 2.2 : p|D. Since D|A2 −4B, we have p|A2 −4B. Therefore,

u2 +Au+B = (u+
A
2
)2 +

4B−A2

4
≡ (u+

A
2
)2 (mod p). (9)

• p ∤ u+ 1
2 A. From (9) we have u2 +Au+B ∈ Z2

p −{0}. Thus,

u =
v2

u2 +Au+B
∈Q2

p.

Therefore, (D,u)p = 1.
This is a blank text in white.

• p|u+ 1
2 A. Then

u ≡−A
2

(mod p). (10)
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Since p|D = 1−na2b2c2, we have na2b2c2 ≡ 1 (mod p). Therefore,

A = n2a4b4c4 −2na2b2c2(a2 +b2 + c2)+a4 +b4 + c4 −2a2b2 −2a2c2 −2b2c2

= (na2b2c2 −a2 −b2 − c2)2 −4(a2b2 +b2c2 + c2a2)

≡ (1−a2 −b2 − c2)2 −4(a2b2 +b2c2 + c2a2) (mod p)

≡ ((a+b+ c)2 −a2 −b2 − c2)2 −4(a2b2 +b2c2 + c2a2) (mod p) ( since a+b+ c =−1)

≡ (2(ab+bc+ ca))2 −4(a2b2 +b2c2 + c2a2) (mod p)

≡ 8abc(a+b+ c) (mod p)

≡−8abc (mod p).

(11)

From (10) and (11) we have u ≡ 4abc (mod p). Since abc is a square and p ∤ u, we have u ∈ Z2
p. Therefore,

(D,u)p = 1.
Case 3 : r > 0. From (7) we have

v2 = prs(p2rs2 + prAs+B). (12)

Case 3.1 : p|B. Then p|nabc. Therefore,

D = 1−na2b2c2 ≡ 1 (mod p).

Hence, D ∈ Z2
p. Thus (D,u)p = 1.

Case 3.2 : p ∤ B. From (12) we have r = v2(v2). Thus 2|r.
• p ∤ D. Since s and D are units in Zp, we have (D,s)p = 1. Therefore,

(D,u)p = (D, prs)p = (D,s)p = 1.

• p|D. Then na2b2c2 ≡ 1 (mod p). Therefore,

B = 16na4b4c4 ≡ 16a2b2c2 (mod p).

Similar to (11) we have A ≡−8abc (mod p). Therefore,

u2 +Au+B ≡ u2−8abcu+16a2b2c2 ≡ (u−4abc)2 (mod p). (13)

Since p|u and p ∤ B, we have p ∤ u2 +Au+B. Therefore, from (13) we have u2 +Au+B ∈ Z2
p −{0}. Thus

u =
v2

u2 +Au+B
∈Q2

p.

Therefore, (D,u)p = 1.

LEMMA 4. If 4|n then (D,u)2 = 1.

Proof. If 8|nabc, then D ≡ 1(mod 8). Hence, D ∈ Z2
2, so (D,u)2 = 1. We consider the case 8 ∤ nabc. Then

8 ∤ n and 2 ∤ abc. Let n = 4k, where k ∈ Z, 2 ∤ k. Let u = 2rs, where r,s ∈ Z, 2 ∤ s. From (7) we have

v2 = 2rs(22rs2 +2rAs+B). (14)

Case 1 : 2|r. Since 4|D−1, we have

(D,u)2 = (D,2rs)2 = (D,s)2 = (−1)(D−1)(s−1)/4 = 1.
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Case 2 : 2 ∤ r.
Case 2.1 : r < 0. From (14) we have

v2 = 23rs(s2 +2−rAs+22−rB).

Therefore, 3r = v2(v2), impossible since 2 ∤ r.
Case 2.2 : r > 0. Since 4|n and 2 ∤ abc, we have

A = n2a4b4c4 −2na2b2c2(a2 +b2 + c2)+a4 +b4 + c4 −2a2b2 −2a2c2 −2b2c2 ≡ 5 (mod 8).

Thus v2(A) = 0. Let B1 = ka4b4c4. Then 2 ∤ B1 and B = 26B1.
• r > 6. From (14) we have

v2 = 2r+6s(22r−6s2 +2r−6As+B1).

Therefore, r+6 = v2(v2), impossible since 2 ∤ r.
• r < 6. From (14) we have

v2 = 22rs(2rs2 +As+26−rB1). (15)

Thus v2(v) = r. Let v = 2rt, where 2 ∤ t. From (15) we have

t2 = s(2rs2 +As+26−rB1). (16)

Note that in (16) we have A ≡ 5 (mod 8), 2 ∤ r, 0 < r < 6, 2 ∤ B1, 2 ∤ s.

(i) r = 1. Reducing (16) mod 4 gives

1 ≡ s(2+ s)≡ 2s+1 (mod 4).

impossible since 2 ∤ s.

(ii) r = 3. Reducing (16) mod 8 gives
1 ≡ 5s2 (mod 8),

impossible.

(iii) r = 5. Reducing (16) mod 4 gives

1 ≡ s(s+2)≡ 1+2s (mod 4),

impossible since 2 ∤ s.

LEMMA 5. If 8|n−5 then (D,u)2 = 1.

Proof. If 2|abc, since a+ b+ c = −1, two of a,b,c are even and the remaining number is odd. Hence,
8|a2b2c2. Thus

D = 1−na2b2c2 ≡ 1 (mod 8).

Therefore, D ∈ Z2
2. So (D,u)2 = 1. We consider the case 2 ∤ abc. Since, n ≡ 5 (mod 8), we have

D = 1−na2b2c2 ≡ 4 (mod 8).
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Let D = 4D1, where D1 ∈ Z, 2 ∤ D1. Then

A = n2a4b4c4 −2na2b2c2(a2 +b2 + c2)+a4 +b4 + c4 −2a2b2 −2a2c2 −2b2c2

= (na2b2c2 −a2 −b2 − c2)2 −4(a2b2 +b2c2 + c2a2)

= ((a+b+ c)2 −D−a2 −b2 − c2)2 −4(a2b2 +b2c2 + c2a2)

= (2(ab+bc+ ca)−D)2 −4(a2b2 +b2c2 + c2a2)

= D2 −4D(ab+bc+ ca)+8abc(a+b+ c)

= 16D2
1 −16D1(ab+bc+ ca)−8abc

= 8A1.

where
A1 = 2D2

1 −2D1(ab+bc+ ca)−abc. (17)

Since abc is an odd square, we have abc ≡ 1 (mod 8). Therefore,

2(ab+bc+ ca) = 1−a2 −b2 − c2 ≡−2 (mod 8).

Thus in (17) we have
A1 ≡ 1+2D1 (mod 8). (18)

In particular,
A1 ≡−1 (mod 4). (19)

Let u = 2rs, where r,s ∈ Z and 2 ∤ s. Let B1 = na4b4c4. From (7) we have

v2 = 2rs(22rs2 +2r+3A1s+24B1). (20)

Case 1 : r < 0. From (20) we have

v2 = 23rs(s2 +23−rA1s+24−2rB1). (21)

Therefore, v2(v2) = 3r. Thus 2|r, so r ≤−2. Let v = 23r/2t, where 2 ∤ t. From (21) we have

t2 = s(s2 +23−rA1s+24−2rB1). (22)

Reducing (22) mod 8 gives s ≡ 1 (mod 8). Therefore, s ∈ Z2
2. Thus u = 2rs ∈Q2

2. Therefore, (D,u)2 = 1.

Case 2 : r = 0. Reducing (20) mod 8 gives s ≡ 1 (mod 8). Thus u = s ∈ Z2
2. Therefore, (D,u)2 = 1.

Case 3 : r = 1. From (20) we have

v2 = 23s(s2 +4A1s+4B1).

Hence, v2(v2) = 3, impossible.

Case 4 : r = 2. From (20) we have

v2 = 26s(s2 +2A1s+B1) (23)

Case 4.1 : A1s ≡ 1 (mod 4). Combining with (19) gives s ≡−1 (mod 4). Let A1 + s = 4e+2, where e ∈ Z.
Since abc is an odd square, a2b2c2 ≡ 1 (mod 16), there are two cases to consider:

• n ≡ 5 (mod 16). Then na4b4c4 ≡ 5 (mod 16). Let na4b4c4 = 16 f +5, where f ∈ Z. We have

D = 1−na2b2c2 ≡−4 (mod 16).
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Therefore, D = 4D1 with D1 ≡−1 (mod 4). From (18) we have

A1 ≡−1 (mod 8).

Let A1 = 8d −1, where d ∈ Z. Then

s2 +2A1s+B1 = (s+A1)
2 +na4b4c4 −A2

1

= (4e+2)2 +16 f +5− (8d −1)2

= 8(2e2 +2e+2 f −8d2 +2d +1).

Hence, v2(s2 +2A1s+B1) = 3. From (23) we have v2(v2) = 9, impossible.
• n ≡ 13 (mod 16). Then

D = 1−na2b2c2 ≡ 4 (mod 16).

Therefore, D = 4D1 with D1 ≡ 1 (mod 4). Thus,

(D,u)2 = (4D1,4s)2 = (D1,s)2 = (−1)(D1−1)(s−1)/4.= 1.

Case 4.2 : A1s ≡ 3 (mod 4). Combining with (19) gives s ≡ 1 (mod 4). Therefore,

(D,u)2 = (D,4s)2 = (D,s)2 = (−1)(s−1)(D−1)/4 = 1.

Case 5 : r > 2. From (20) we have

v2 = 2r+4s(22r−4s2 +2r−1A1s+B1). (24)

Hence, v2(v2) = r+4, so 2|r. Since r > 2, we have r ≥ 4. Let v = 22+r/2t, where 2 ∤ t. From (24) we have

t2 = s(22r−4s2 +2r−1A1s+B1). (25)

Since B1 ≡ 1 (mod 4) and r ≥ 4, reducing (25) mod 4 gives s ≡ 1 (mod 4). Therefore,

(D,u)2 = (4D1,2rs)2 = (D1,s)2 = (−1)(D1−1)(s−1)/4 = 1.

LEMMA 6. We have (D,u)∞ = 1.
Proof. Since (D,u)p = 1 for all prime numbers p and

(D,u)∞ ∏
p prime

(D,u)p = 1,

we have (D,u)∞ = 1.

From Lemmas 1 and 6 we have u > 0, contradicting Lemma 2.
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