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Abstract. The aim of the work is to optimize the representation of the fundamental solution of the 

equilibrium equations of the linear spatial theory of elasticity (Lamé equations) in the form of 

Papkovich-Neuber through scalar and vector harmonic functions. For the first time, a method of 

variation of the Lagrange functional is applied to obtain the corresponding connections for the above-

mentioned harmonic functions on the lateral surface of a body. The result is the concretization of the 

connections on harmonic potentials. This, in turn, makes it possible to find and extend a set of exact 

analytical solutions of boundary value problems of the spatial theory of elasticity, which describe the 

distribution of stresses and corresponding external loads on the lateral surface of a given isotropic 

elastic body. The application of the described technique is illustrated by the example of a prismatic 

elastic body and the structure of the external load is analyzed. 
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1. INTRODUCTION. THE ANALYSIS OF PREVIOUS RESEARCHES  

AND PROBLEM STATEMENT 

Spatial problems of the theory of elasticity are one of the defining directions and the basis of scientific 

research of boundary value problems in the mechanics of a deformable solid. Therefore, the topic of research 

of spatial problems of the theory of elasticity is relevant for both basic and applied research. The integration 

of the equilibrium equation of the linear theory of elasticity as well as finding the displacement vector in an 

elastic body for the general case of loading are some of the most important tasks. 

One of the effective approaches to solving boundary value problems in the mechanics of a deformable 

solid, which would allow constructing solutions of a number of problems significant from both theoretical 

and applied points of view, is the method of potential functions. In particular, G. Airy first proposed an 

approach for solving а two-dimensional problem of plane theory of elasticity by reducing it to a biharmonic 

equation for stress functions; E. Beltrami derived the corresponding equation of continuity in terms of 

stresses. In the case of a plane static problem of the theory of elasticity of the isotropic body, Kolosoff and 

Muskhelishvili gave the general integral of the equilibrium equations through a biharmonic function. This, in 
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turn, made it possible to obtain expressions for the components of the stress tensor and the displacement 

vector through two analytical functions of a complex variable and to apply the apparatus of p- and (p,q)- 

analytical functions to solve the above-mentioned boundary value problems. 

The application of this approach in three-dimensional problems of the elasticity theory requires the 

reduction of the original system of equations to a larger number of key equations (harmonic or biharmonic), 

for which it would be convenient to construct sets of general solutions in certain coordinate systems. In 

addition, the application of such general solutions to the solution of boundary value problems for solids of 

revolution requires that they have a sufficient number of degrees of freedom that would fully satisfy the 

boundary conditions on the entire lateral surface of the studied body. 

However, the application of this approach in the space of three variables proved to be much more 

complicated in comparison with the two-dimensional case. 

From the classical fundamental works [1, 2], some images of the general solution of equilibrium 

equations that use from two to four independent harmonic functions are known. However, it has not been 

proved yet that a general fundamental solution has been found, and there is a large class of problems that 

cannot be solved with the help of known displacement vector images. 

One of the most common images of the general solution of Lamé’s equations is the representation of 

the displacement vector u  in the form of Papkovich-Neuber [3, 4] through the spatial vector   and scalar 0  

harmonic functions 

( )0 4(1 ν)u r=  +  − −  , (1) 

where  is the Poisson’s ratio, r  is radius vector of an arbitrarily selected point of the body. 

In particular, the authors showed that one of the four functions can be equated to zero with certain 

restrictions on the geometry of the body and the coefficients that describe the elastic characteristics of the 

body. 

Analysis of the completeness of fundamental solutions depending on the connectivity of the region was 

carried out.In [5], the author constructed a general image of the solution of the Lamé equation of the three-

dimensional theory of elasticity in vector form in a curvilinear coordinate system, which is expressed only 

through three harmonic functions, and proposed one of the options for optimizing the representation of the 

fundamental solution in Papkovich-Neuber form. The expression of the vector of elastic displacements in 

cylindrical and elliptical coordinate systems is given and the stress-strain state is found both for an arbitrarily 

loaded finite elastic cylinder and for bodies of rotation [6-9]. 

The general representation of the fundamental solution of the Lamé equation through harmonic and 

biharmonic potentials made it possible to develop and apply the theory of holomorphic functions of many 

complex variables to construct analytical solutions of boundary value problems of the spatial theory of 

elasticity [10]. 

Important technical applications of the methods of two-dimensional theory of elasticity and the 

apparatus of holomorphic functions to describe the stress-strain state of elements of mine equipment are 

given in [11]. 

In this paper, using the method of variation of the Lagrange functional of an elastic body, we propose 

to obtain the bonds between scalar and vector harmonic functions in the representation of the fundamental 

solution of the Lame equilibrium equations in the form of Papkovich-Neuber. This technique will 

substantiate the correctness of the main boundary value problems, as well as build and expand the set of 

exact analytical solutions of individual classes of static boundary value problems of spatial elasticity theory, 

which describe the distribution of stresses and corresponding external loads on the side surface of a given 

single-connected elastic body. 

2. BASIC RELATIONS AND FORMULATION OF BOUNDARY VALUE PROBLEMS  

OF LINEAR SPATIAL THEORY OF ELASTICITY IN HARMONIC POTENTIALS 

A single-connected isotropic elastic body is considered, which occupies a domain X of Euclidean space 

bounded by a surface X . The body is under the action of a stationary force load,which is applied to the 

lateral surface X . 
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The linear problem of the theory of elasticity in a static formulation is reduced to the construction of 

the solution of equilibrium equations (Lame equations): 

( )μΔ (λ μ) 0u u+ +   = . (2) 

The stress tensor ̂  is presented through the displacement vector u  by the ratio 

( ) ( )μˆσ̂ λ u I u u=   +  +  , (3) 

and satisfies the boundary condition on the side surface   X  

( ) ( ) ( )
X X

ˆˆσ σ λ μ σn nn n u I u u +

 

       +  +  =
 

, (4) 

where Î  is unit tensor; n  is vector of the external normal; ( )1 2 3, ,i iu u x x x=   is vector of displacements 

( )1,3i = ;  ix  are coordinates of an arbitrarily selected material point x X ; i  are basic orts of an 

arbitrary orthogonal coordinate system; i

ir x

 
  =

 
 is the Hamilton differential operator ( )  1,3i = ; 

2

2
Δ

ix


  =


 is the Laplace operator; ( )1 2 3, , i ir x x x x=   is radius vector of an arbitrarily selected point of 

the body;   is the operation of the dyadic product; λ, μ  are the elastic Lame constants; ( )1 2 3σ , ,n x x x  is the 

stress vector; ( )1 2 3σ , ,n x x x+  is a given vector of surface forces that satisfies the integral conditions of self-

equilibrium of the external load on the lateral surface of the body   X : 

σ d 0n
X

+


 = ,     ( )σ d 0n

X
r +


  = . (5) 

In the basis of constructing the solution of the boundary value problem of the theory of elasticity we 

use the representation of the displacement vector in the form of Papkovich-Neuber (1) through scalar and 

vector harmonic functions. 

Then taking into account the relationship (1), the stress tensor (4) takes the form: 

( )

( )( ) ( )

1 2 3 0 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

σ( , , ) 2μ , , ( , , ) ( , , )  

                   1 2ν ( , , ) ( , , ) 2ν ( , , ) .

ˆ ( )

ˆ

x x x x x x x x x r x x x

x x x x x x x x x I

=  +   −


− −  +   −  


 

Thus, the boundary value problem (2)–(5) is reduced to finding the harmonic functions 0 1 2 3, ,( )x x x , 

1 2 3( , , )x x x  satisfying the corresponding boundary conditions: 

( ) ( ) ( ) ( ) 0σ σ 2μ (1 2ν) 2ν σˆˆ
n nX x

n n r I +

 

      +   − − +  −  =


. 

Note that the representation of the desired solution of the initial boundary value problem through the 

displacement vector u  in the form of Papkovich-Neuber (1) ensures the fulfillment of the first of the integral 

conditions (5), namely the zero equality of the main vector of external load. 

3. FINDING CONNECTIONS ON HARMONIC POTENTIALS  

IN THE FORM OF PAPKOVICH-NEUBER 

This paper investigates the establishment of additional natural connections on the above-mentioned 

harmonic functions (1), which do not contain additional restrictions on the input characteristics of the 

boundary value problem. 

Consider the functional 

   ( )0 0 1 1 0 2 2 3 0Φ , , Φ α Φ Φ α Φ , ,u u u       = +  +  +        . (6) 
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Here 

    ( ) ( )0 1 0 0 0

1
Φ σ d d ,     Φ d ,

2
n

X X X
u u U V V+


=   −  = −       

( ) ( )2

1
Φ d

2

T

X
V  = −   

   ,    ( )( )3 0 0Φ , , λ d
X

u u r C V   =  −  +  + 
   , 

where ( )
1

σ ε
2

ˆˆU =   is the internal energy of a deformable solid; ( )( )ˆ
1

ε
2

T

u u=  +   is the deformation 

tensor; λ  is the Lagrange multiplier; 4(1 ν)C = − , 1 2α ,α const= , " "   is the operation of double convolution. 

Write the condition of functional (6) stationarity: 

0δΦ , , 0u   =  . 

Consider a variation of the functional  0Φ u . This functional coincides with the Lagrange functional 

of the original boundary value problem: 

  ( )0δΦ δ σ d δ dn
X X

u u U V+


=   −  . 

Write the variation of the energy functional 

( ) ( )
1 1

δ δ σ ε δ εˆ ˆ ˆˆ σ ε σ
2

ˆ
2

ˆ δU =  =   +   . (7) 

Let us convert the expression 

δσ ε ε δσ ε δ λ 2με εˆ ˆˆ ˆ ˆ ˆ ˆˆ ε λδ 2μ ˆε̂ˆ δIe Ie     =   =   + =  +  
   

, (8) 

where iie e=  is the main invariant of the deformation tensor ( )1,3i =  is the summation index. 

Since ε̂ Î e  = , then 

ε δ ε δ δ δ ε δεˆ ˆ ˆ ˆˆ ˆ ˆ ˆIe I e e e e I eI     =   = =  =  
   

. 

Therefore, the relation (8) takes the form 

( )δσ ε ε λδ 2με δε λ δε 2με δε λ 2με δε σ δεˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆIe eI eI   =   +   =   +   = +  =  
 

. 

Thus 

( )
1

δ σ δε σ δε σ δεˆ
2

ˆ ˆ ˆˆ ˆU =  +   =    

and, accordingly, the variation of the functional (7) is presented as 

  ( ) ( )0δΦ σ δu d σ δε dˆˆ
n

X X
u V+


=   −   . 

Using the Ostrogradsky-Gauss formula 

( ) ( )σ δ dˆ σ̂ δ d
X X

n u u V


   =      

and the relation 

( ) ( ) ε̂ˆ ˆ ˆσ δ σ δ σ δu u   =    +   , 

we obtain 

  ( ) ( )0δΦ σ σ δ d σ δ dˆ
n n

X X
u u u V+


= −   +     , (9) 

where ˆσ : σn n=   is the vector of external surface forces. 

Note that the functional  0Φ u  is a Lagrange functional of the initial boundary value problem, and 

from the necessary conditions of the extremum of this functional we obtain both the equilibrium equation 

σ 0 ˆ  = and the boundary conditions  σ σn n
+= . 
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Consider a variation of the functional  1 0Φ  : 

  ( ) ( )1 0 0 0

1
δΦ δ d

2 X
V  = −   

  . 

Since 

( ) ( ) ( ) ( )0 0 0 0δ 2 δ    =    
 

, 

then using the Ostrogradsky-Gauss formula and the relation 

( ) ( ) ( )0 0 0 0 0 0δ δ δ        =     +      
, 

we get: 

  0
1 0 0 0 0δΦ δ d Δ δ d

X X
V

n

 
 = −   +    

 
   (10) 

where  
 

n
n


= 


. 

Consider a variation of the functional 2Φ    : 

( ) ( )2

1
δΦ δ d

2

T

X
V   = −   

     . (11) 

Since 

( ) ( ) ( ) ( )δ 2 δ
T    =   

  
, 

then using the relation 

( ) ( ) ( ) ( )δ δ Δ δ      =    +   
 

, 

the expression (11) takes the form: 

2δΦ δ d Δ δ d .
X X

V
n

 
  = −    +      

   (12) 

Thus, from the necessary conditions of the extremum of functionals, we obtain the conditions of 

harmony of functions and the corresponding (zero) boundary conditions for these functions. 

Consider a variation of the functional 3 0Φ , ,u    : 

( )( )3 0 0δΦ , , λ δ d λ δ δ d λ δ d .
X X X

u u V r V C V   =  −   +  +        (13) 

Using the following relation 

( ) ( ) ( )0 0 0λ δ δ λ δ   =      +    , 

the variation of the functional 3 0 δΦ , ,u     (13) takes the form: 

                         ( ) ( )( )3 0 0 0δΦ , , λ δ d δ λ δ d
X X

u u V V   =  −      −    −     

                                                      ( )( ) ( )( )( )δ λ δ d λ δ d
X X

r r V C V−      −     +   =   

                                                 ( ) ( )( )0λ δ λ δ λ δ λ δ d
X

u C r V =  +   +    +      −
   

                                                      ( ) ( )( )0λ δ λ δ d
X

n n r


 −    +    
  . 

(14) 

Thus, based on the relations (9), (10), (12), (14), the variation of the original functional (6) is written as 

follows: 
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   ( )0 0 1 1 0 2 2 3 0δΦ , , δΦ δΦ Φ Φ , ,u u u       = +   +   +     =       

( ) ( )( ) 0
1 0 0 0σ σ δ d σ δ d δ d Δ δˆ dn n

X X X X
u u V V

n

+

 

  
= −   +    +  −   +    +  

  
     

                       1 δ d Δ δ d
X X

V
n

  
+ −    +   +     

   

                       ( ) ( )( )2 0α λ δ λ δ λ δ λ δ d
X

u C r V +  +   +    +      −
    

                       ( )( ) ( )( )2 0α δ λ λ δ d
X

n n r


 −    +    
   . 

(15) 

Find the minimum of the basic variation ratio (15) 

( ) ( )( )0 2 1 0 2 0Φ , , σ α λ δ α Δ α λ δˆ
X

u u    =   + +  +     +
   ( )( )1 2 2α Δ α λ α λ δ dr C V +    +   +


 

( ) ( )1 2σ σ δ α α λ δn n
X

u n r
n

+



   
+ −  + − −     +       
 ( )0

1 2 0α α λ δ d 0n
n

  
− −     =  
   

. 

As a result, we obtain the following boundary value problem for finding the displacement vector u , 

harmonic functions 0 0 1 2 3  , ,( )x x x =  , 1 2 3( , , )x x x =   and λ : 

- in the domain X  

2σ α λ 0ˆ  + = , 

( )1 0 2α Δ α λ 0 +   = ,     ( )1 2 2α Δ α λ α λ 0r C +   + = ; 
(16) 

- on the surface X  

σ σ 0n n
+ − = , 

0
1 2α α λ 0n

n


+  =


,     ( )1 2α α λ 0n r

n


+  =


. 

(17) 

From the system of equations (16), we find the vector 

2

1
λ σ̂

α
= −   . 

In this regard, the boundary value problem (16) – (17) can be presented as follows: 

– in the domain X  

( )1 0 2α Δ α σ̂ =     ,     ( )( ) ( )1α Δ σ σˆ ˆr C =     +   ; (18) 

– on the surface X  

σ σn n
+ = , 

( )0
1α σ̂n

n


=   


,     ( )( )1α σ̂n r

n


=   


. 

(19) 

Note that from the systems of equations (18), by fulfilling the conditions of harmony of functions 0   and   

0Δ 0 = ,     Δ 0 =  

we obtain, as a consequence, the equation of equilibrium (2), given in terms of stresses. 
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From the analysis of the boundary conditions (19) on the surface, we establish that 

σ σ ,n n
+ =  

    0 r
n n


=

 
. 

(20) 

Thus, according to the representation of the displacement vector in the form of Papkovich-Neuber (1), 

the problem is reduced to finding harmonic functions and which must satisfy the conditions (20). The second 

condition is the desired (in a sense “natural”) condition for harmonic functions, which specifies the 

relationship between them. 

4. ANALYSIS OF THE STRUCTURE OF THE EXTERNAL LOAD  

FOR A PRISMATIC ELASTIC BODY 

Consider a prismatic elastic body  i i ia x a−    bounded by the surfaces :i i iX x a =  ( )1,3i = , 

where  ix  are the Cartesian coordinates of an arbitrarily chosen material point x X . 

Write the relation (20) in the Cartesian coordinate system 

( )
3

1 2 3

1

, ,( )i j j

ii

n x x x e
n x=

 
= 

 
   ( )1,3j = , 

3
0 0 1 2 3

1

, ),(
i j j

ii

x x x
r n x e

n x=

  
=  

  
 , 

where 0 1 2 3, ,( )x x x , 1 2 3( , ),i ix x x e =   are vector and scalar harmonic functions; ie  are the basic orts of the 

Cartesian system; 1 2 3( , , ) i ir x x x x e=  is the radius-vector of point x X ;  
3

1

i

ii

n n
n x=

 
  =

 
 . 

We obtain a system of equations: 

• for everyone ( )1,3j =  

1 2 3 1 2 3 1 2 3

1 2 3

1 2 3

,( ) ( ) (, , ), , ,j j jx x x x x x x x x
n n n

x x x

  
+ + =

  
 

                             0 1 2 3 0 1 2 3 0 1 2 3
1 2 3

1 2 3

( ) ( ) ( ), , , , , ,
j

x x x x x x x x x
x n n n

x x x

   
= + + 

   
. 

We can get the corresponding relations on the surfaces of a given elastic body: 

– on the surface jX : j jx a=  , 1 jn =  for every one ( )  1,3j =  

( ) ( )1 1 2 3 0 1 2 3

1

, , , ,

j j
j jx a

x x x x x x
x

x x
=

   
  =  
     

, 

( ) ( )2 1 2 3 0 1 2 3

2

, , , ,

j j
j jx a

x x x x x x
x

x x
=

   
  =  
     

, 

( ) ( )3 1 2 3 0 1 2 3

3

, , , ,

j j
j jx a

x x x x x x
x

x x
=

   
  =  
     

. 

(21) 
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From the systems of relations (21) we obtain the required connections for harmonic functions 

( )1 2 3, , 1,3( ) i x x x i = : 

- on the surface iX : ( ),    1   1,3i i ix a n i=  =  =  

1 1 2 3 2 1 2 3 3 1 2 3

1 2 3

( ) ( ), , , , , ,1 )1 (1

i i i
i ix a

x x x x x x x x x

x x x x x x
=

   
 =  =  

   
. (22) 

5. COMPARATIVE ANALYSIS OF THE RESULTS AND DISCUSSION 

The application of the apparatus of harmonic functions proved to be effective in solving a wide class 

of boundary value problems in the mechanics of a deformable body. However, the application of this 

approach in the three-dimensional formulation of linear elasticity theory requires reducing the basic system 

of equations to a number of key equations for which it would be possible to build "catalogs" [8] of general 

solutions in certain coordinate systems. The main issue is that there are a sufficient number of degrees of 

freedom of the general solution. It is necessary to fully satisfy the boundary conditions on the entire lateral 

surface of the studied body. 

For example, in [8] the authors used two representations of J. Dugall’s fundamental solution of equilibrium 

equations through harmonic functions ( ),( ) (, , ,  ,  , ,  , 1,2) ( )i i ir z r z r z i      =  to construct a general solution of 

the problem of the theory of elasticity for a continuous cylinder of finite length. The solution is presented as 

a superposition of two components in a cylindrical coordinate system ( ), ,r z . 

The first of these is determined by the ratios 

2
1 1 1

2

1
rU r

r rz

   
= + +

 
,    1 11

U
r r



 
= −

 
,    1 1

14(1 )zU r r
z r z

   
= − + −   + 

   
 

and allows to satisfy boundary conditions on a cylindrical surface. The second component, which is 

determined by the ratios 
2

2 2 2 22
2 (3 4 )rU z

r z r r r

    
= + −  + +

    
, 

2
2 2 2 22 (3 4 ) 1

2
z

U
r z r r r



    − 
= + + −

   
, 

2
2 2 2

2
2 (3 4 )zU z

z zz

   
= − −  +

 
 

satisfies the boundary conditions at the ends of the cylinder. The solutions obtained by the authors in the 

form of potential harmonic functions contain sets of unknown coefficients, which are sufficient to satisfy the 

corresponding boundary conditions. This example indicates the importance of the number of degrees of 

freedom in the representations of the fundamental solution of equilibrium equations through harmonic 

potentials. In contrast to [8], this paper shows that the representation in form (1) should not ignore the 

degrees of freedom in the image of fundamental solutions due to harmonic potentials (see formulas (1), 

(20)). 

In [6], the general solution of the Lame equilibrium equations in the Papkovich-Neuber form for a class 

of boundary value problems was presented through three harmonic functions , ,R Q  in the form: 

( )333grad (3 4 ) grad rotu z R Re Qe= − −  +  + . 

In this case, the number of degrees of freedom in the general solution was reduced by one. In contrast to the 

results obtained there, the analogical representation of the fundamental solution (1) was optimized in this 
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paper without losing the degrees of freedom (number of functions) to satisfy the boundary conditions of the 

elastic isotropic body. In particular, the vector condition of the bonds between given harmonic vector and 

scalar functions is given by relation (20). 

Based on the fundamental solution (1) in [10], the authors presented a complex displacement vector 

1 2 3( , , )w z z z  and a complex stress tensor 1 2 3)ˆ ( , ,P z z z  through holomorphic functions of two complex 

variables ( )1 2z ,z , namely 

( )* *
1 2 3 0 1 2 1 2 1 2 3 1 2( , , ) , ( , ) ( , , ) (3 4 ) ( , )( )w z z z z z z z r z z z z z=  +    − −   ; 

( )* * * *
1 2 3 0 1 2 1 2 1 2 3, , 2 , ( , ) ( ,ˆ ( ) ( , ))z z z z z z z rP z z z=     +     −


 

( ) ( )* * *
1 2 1 2 1 2(1 2 ) ( , ) ( , ) 2 ) ˆ( ,z z z z z z I − −    +  −   


, 

and formulated the main complex-conjugate problem of the spatial theory of elasticity for the corresponding 

holomorphic functions. Based on the structure of the displacement vector 1 2 3( , , )w z z z  and the stress tensor 

1 2 3 ,ˆ ( , , )P z z z complex basic solutions ( )ˆ nP  of order n  were obtained. The starting point for them is the scalar 

holomorphic function 0 1 2( )Φ ,z z  in the form of a homogeneous polynomial ( )
0 1 2( ),nQ z z  of power 2n +  and 

the holomorphic vector function 1 2Φ( , )z z  in the form of a vector homogeneous polynomial ( )
1 2( , )nQ z z  

degree 1n + : 

( ) ( )( 2)0 0( 2)( 2) ( 2) 2 2
0 1 2 0 1 2 1 2Φ (, ,( ) )

n nn n n nz z Q z z a z a z
+ ++ + + + = + ; 

( ) ( )( 1)0 0( 1)( 1) ( 1) 1 1
1 2 1 2 1 2( ) ( )Φ , ,

n nn n n nz z Q z z b z b z
+ ++ + + + = + . 

The obtained basic solutions ( )ˆ kP  of order k  according to the proposed schematic scheme were the 

basis for formulating the corresponding structure of boundary conditions on the surface of the body X . As 

a result of such a holistic approach, natural connections (20) between scalar and vector harmonic potentials 

were obtained with the help of the methodology developed in this article. This made it possible to 

constructively clarify the structure of the real and imaginary parts of the basic solutions 
( )ˆ kP  of order k  and, 

accordingly, the structure of the real and imaginary parts of the external load vector. The approach developed 

in this paper made it possible to find a subset of exact analytical solutions of spatial boundary value 

problems, in particular, for an elastic prismatic body (22). 

The effectiveness of this approach lies in the ability to obtain accurate analytical solutions of three-

dimensional boundary value problems of linear elasticity theory in contrast to other approaches that involve 

obtaining a solution in the form of series. 

6. CONCLUSIONS 

Using the method of variation of the Lagrange functional of an elastic body, the natural connections 

between the scalar and vector harmonic potentials in the representation of the fundamental solution of the 

Lame equilibrium equations in the form of Papkovich-Neuber are obtained. 

The proposed technique made it possible to construct and extend the set of exact analytical solutions of 

individual classes of static boundary value problems of the spatial theory of elasticity, which describe the 

stress distribution. The structure of the corresponding external loads on the lateral surface of a given single-

connected elastic body is specified. The correctness of the corresponding main boundary value problems for 

the spatial body is substantiated. 

As an example of the application of the described technique, the prismatic elastic body is considered. 

The analysis of the structure of the external load is carried out. This illustration of the application of the 

results obtained in this work is important for describing the stress-strain state of structural elements of 

industrial equipment in order to synthesize and optimize the parameters of their reliable operation. 
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