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Abstract. We apply the theory of optimal transport to study mathematical properties of mean field variational
Bayesian approximation. It turns out that if K +C > 0 where C is the convexity coefficient of − log p and K
is a lower bound for the Ricci curvature of the underlying parameter space, then the corresponding system of
equations of variational Bayesian approximation admits a unique solution. The uniqueness property in presence
of symmetry leads to preservation of mode. As an explicit application we correct Bayesian Gaussian Mixture
model in such a way that it turns into a convex model while its (unique) maximum likelihood solution coincides
asymptotically with the true solution. Using convexity it is possible to prove asymptotic accuracy of the mode
obtained by mean field variational Bayesian approximation. This seems to be the first rigorous proof for this
fundamental fact which was expected based on several experimental computations.
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1. INTRODUCTION

Let M (H ) denote the space of Borel probability measures associated to a given Polish space H . If
H = ΠK

i=1Hi where Hi for i = 1, ...,K are Polish spaces the minimization problem

arg min
ν∈A

DKL(ν ||µ) (1)

where
A := Π

K
i=1M (Hi)

is called Mean Field Variational Bayesian Approximation (MFVBA) of µ by a factorized probability measure
ν . Here DKL is the Kullback-Leibler Divergence (KLD) defined on M (H ) as follows:

DKL(ν ||µ) =
∫

H
log(

dν

dµ
(x))

dν

dµ
(x)µ(dx) = Eµ [log(

dν

dµ
(x))

dν

dµ
(x)].

The KLD for not absolutely continuous measures is set to be equal to ∞. The existence of solution to this
variational problem can simply be established by weak convergence approach [3] but the solution in general is
not unique.

MFVBA has been applied as a powerful tool for parameter estimation in graphical models in analyzing
large scale data such as Dimensionality Reduction (DR), Principle Component Analysis (PCA), Independent
Component Analysis (ICA), Clustering and Classification using mixture models [6], meanwhile we do not yet
know any mathematically rigorous framework justifying, measuring and estimating the range of applicability
and error bounds of this Approximate Bayesian Method (see e.g. [2] and [1]). In this note we apply the
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connection established by Lott-Villani-Sturm [4] and [5] between the theory of optimal transport and Ricci
curvature to study convexity properties of the relative entropy in order to find conditions under which MFVBA
admits a unique solution. We then apply this observation to correct Gaussian mixture model in such a way that
the convergence of the corresponding maximum likelihood solution towards the right solution (with growth of
data) is preserved and moreover the new model turns into a convex one. This will guarantee the convergence of
MFVBA towards the expected solution in appropriate asymptotic parameter regimes.

We recall that, using variational method, the solution of the optimization problem (1) can be described by
the following system of integral equations:

log(
dνi

dωi
(xi)) = Eν\i(log

dµ

dω
) (2)

where ω = Πiωi ∈M (H ) is an appropriate reference measure for some ωi ∈M (Hi) and ν\i = Π j 6=iν j. The
existence of solutions for this system of mean field type equations can be established under weak constrains on
A although the uniqueness does not hold in general at all.

2. CONVEXITY OF KULLBACK-LEIBLER FUNCTIONAL:
CONTINUOUS VERSUS DISCRETE CASE

2.1. Continuous parameter space

Assume that the Polish space H is a complete Riemannian manifold which admits a splitting as (H =
ΠN

i=1Hi,g = ΠN
i=1gi) into a finite number of complete Riemannian sub-manifolds (Hi,gi) for i = 1, ..,N where

gi, i = 1, ...,N is a Riemannian metric on Hi. We also assume that there exists a lower bound K for the Ricci
curvature of all the spaces (Hi,gi).

Let P2(H ) be the space of probability measures on H which are absolutely continuous with respect to
ωg and such that dµ

dωg
∈ L2(H ,ωg). Here ωg denotes the volume form associated to g. Consider a probability

measure µ ∈P2(H ) defined as
dµ

dω
(x) =

1
Zµ

exp(−Φ(x)), (3)

where Φ : H → R denotes a map on H and where and Zµ is the normalization constant.
The application Φ : H → R is assumed to be a C-convex function with respect to the geometry of H

induced by g, where C is a real constant.
The proof of the following proposition is straightforward:

PROPOSITION 1. Let µ ∈P2(H ) be a measure with all the above mentioned properties and let A =
ΠiHi. Let ν1 and ν2 be two separable measures with compact support belonging to A , such that DKL(ν1||µ)<
∞ and DKL(ν2||µ) < ∞. Consider an interpolating measure ν1→2

t = Πiν
t
i ∈ A , for 0 ≤ t ≤ 1 which is a

Wasserstein geodesic on each component ν t
i ∈M (Hi). Then we have

DKL(ν
1→2
t ||µ)≤ (1− t)DKL(ν1||µ)+ tDKL(ν1||µ)−

t(1− t)
2

(K +C)W2(ν0,ν1)
2, (4)

where K is the common lower bound for Ricci curvature of all the spaces Hi and C is the coefficient of convexity
of Φ. In particular if C+K > 0 then DKL is convex on A and thus the solution of the optimization problem
argminν∈A DKL(ν ||µ) is unique.

COROLLARY 1. In the case where a group G acts on each of the factors Hi’s with a single fixed point
occurring at the unique maximum of dµ

dω
then the mode of MFVBA of µ coincides with the mode of µ .

Example. In the case where µ is a Gaussian measure on Euclidean space Rn the maximum of its MFVBA
is the same of the maximum of µ .
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In many applications of the MFVBA, like its application for the GMM, the splitting of the space of random
variables H is of the form H1×H2, where one of the factors for instance H1 is a Riemannian manifold, but
the other factor H2 is a discrete space. We study the convexity of this case in the following section.

2.2. A mixed discrete-continuous version

Let the Polish space H be written as a product H = H1×H2 in which H1 is a complete Riemannian
manifold equipped with a Riemannian metric g while H2 is a possibly finite set. This case occurs in the
MFVBA of Gaussian Mixture Model which is the model we want to study using theory of optimal transport.

Let (H1,λ ,gλ ), for λ > 0, denote the Riemannian manifold obtained from H1 through a rescaling of the
metric g as gλ := 1

λ
g.

Then we can prove the following theorem:

THEOREM 1. Let K denote a lower bound for the Ricci curvature of (H1,g) and let Φ = −log( dµ

dωg
) be

C-convex when restricted to each connectivity component H i := H1×{i} for i ∈H2 where C is independent
of i. Also assume that K +C > 0. Then for large values of λ the Kullback-Leibler functional ν → DKL(ν ||µ)
will be a convex functional over A and thus the solution to the optimization problem argminν∈A DKL(ν ||µ) is
unique. Here A is the subspace of factorized probability measures on H as in VBA.

Proof. First we have to explain in what sense we are talking about the convexity here. More precisely what
are the class of geodesics we are considering on the space of probability measures on P2(H1)×M (H2).

We consider a separable geodesic path of probability measures ν1→2
t,λg := ν1

t,λg×ν2
t on P2(H1)×M (H2)

as being the product of a geodesic ν1
t over P2(H1) in the sense of its natural Wasserstein structure as dis-

cussed before, and a path ν2
t (i1, ..., iK) := ΠK

j=1((1− t)ai j + tbi j) joining two probability measures ν2
0 and ν2

1
on M (H2). In fact we are assuming that H2 = {i1, ..., iK} and

(ν2
0 (i1), ...,ν

2
0 (iK)) = (ai1 , ...,aiK ) (ν2

1 (i1), ...,ν
2
1 (iK)) = (bi1 , ...,biK ).

Now if we rescale the metric g on the underlying space H1 as gλ := 1
λ

g the impact will appear on the
geodesic ν1→2

t like ν1→2
t, 1

λ
g
= ν1→2

λ t,g . Also the curvature tensor and in the case of metric measure spaces the lower

Ricci bound will scale like Ricci( 1
λ

g) = λ 2Ricci(g).
It is not difficult to see that we can restrict the above mentioned geodesic paths to those with compact

support on H1. Now we can write:

d2

dt2E
ν1→2

t,λg (Φ(x)) =
d2

dt2

∫
y
(∑

z
ν

2
t (z)Φ(z,y))ν1

t,λg(y)

=
∫

y
(∑

z

d2
ν2

t (z)
dt2 Φ(z,y))ν1

t,λg(y)+
∫

y
(∑

z
ν

2
t (z)Φ(z,y))

d2
ν1

t,λg(y)

dt2

+
∫

y
(∑

z

dν2
t (z)
dt

Φ(z,y))
dν1

t,λg(y)

dt

=
∫

y
(∑

z

d2
ν2

t (z)
dt2 Φ(z,y))ν1

t,λg(y)+
∫

y
(∑

z
ν

2
t (z)

d2

dt2 Φ(z,Gt,λg(y)))ν
1
0,λg(y)

+
∫

y
(∑

z

dν2
t (z)
dt

d
dt

Φ(z,Gt,λg(y))))ν
1
0,λg(y)

=
∫

y
(∑

z

d2
ν2

t (z)
dt2 Φ(z,y))ν1

t,λg(y)+
∫

y
(∑

z
ν

2
t (z)

d2

dt2 Φ(z,G t
λ
,g(y)))ν

1
0,λg(y)

+
∫

y
(∑

z

dν2
t (z)
dt

d
dt

Φ(z,G t
λ
,g(y))))ν

1
0,λg(y)
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=
∫

y
(∑

z

d2
ν2

t (z)
dt2 Φ(z,y))ν1

t,λg(y)+
1

λ 2

∫
y
(∑

z
ν

2
t (z)

d2
Φ(z,Gt,g(y))

dt2 )| t
λ

ν
1
0,λg(y)

+
1
λ

∫
y
(∑

z

dν2
t (z)
dt

dΦ(z,Gt,g(y)))
dt

)| t
λ

ν
1
0,λg(y)

Gt,λg(y) = expλg{−t∇λgF}.

Then since ∇λgF = 1
λ

∇gF and expλg = expg we get

Gt,λg(y) = G t
λ
,g(y).

According to the hypothesis on C convexity of Φ we obtain

d2

dt2E
ν1→2

t,λg (Φ(x)) =
A
λ 2 +

B
λ
,

where A =
∫

y(∑z ν2
t (z)

d2
Φ(z,Gt,g(y))

dt2 )| t
λ

ν1
0,λg(y) and B :=

∫
y(∑z

dν2
t (z)
dt

dΦ(z,Gt,g(y)))
dt )| t

λ

ν1
0,λg(y).

d2
Φ(z,Gt,g(y))

dt2 =
d
dt

< ∇
g
yΦ(z,Gt,g(y)),

dGt,g(y)
dt

>=

=
dGt,g(y)

dt

T

Hessg,y(Φ)
dGt,g(y)

dt

It follows that

A =
∫

y
∑

z
ν

2
t (z)(

dGt,g(y)
dt

T

Hessg,y(Φ(z,Gt,g(y)))
dGt,g(y)

dt
)| t

λ

ν
1
0,λg(y)

B =
∫

y
(∑

z

dν2
t (z)
dt

< ∇
g
yΦ(z,Gt,g(y)),

dGt,g(y)
dt

>)| t
λ

ν
1
0,λg(y)

A≥C
∫

y
(|

dGt,g(y)
dt

|2)| t
λ

ν
1
0,λg(y) =C

∫
y
(|

dGt,g(y)
dt

|2)|t=0 ν
1
0,λg(y).

The last equality holds because Gt is a geodesic and so its velocity has a constant norm.

|B| ≥−
∫

y
(∑

z

dν2
t (z)
dt
|∇g

yΦ(z,Gt,g(y))|2|
dGt,g(y)

dt
)|2| t

λ

ν
1
0,λg(y)

=−
∫

y
(∑

z

dν2
t (z)
dt
|∇g

yΦ(z,Gt,g(y))|2|
dGt,g(y)

dt
)|2|t=0ν

1
0,λg(y)

≥C′
∫

y
(|

dGt,g(y)
dt

|2)|t=0ν
1
0,λg(y)

where C′ depends on Φ and H .
For the entropy functional H(ν1→2

t,λg ) of the path of separable probability measure ν1→2
t,λg we have

d2

dt2 H(ν1→2
t,λg )≥

1
λ 2 K +C′′

which is due to the fact that after change of scale in metric as g → λg the Ricci curvature scales as
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Ricci(λg) = 1
λ 2 Ricci(g), thus we get

d2

dt2 DKL(ν
1→2
t,λg ||µ) =

d2

dt2E
ν1→2

t,λg (Φ(x))+
d2

dt2 H(ν1→2
t,λg )≥ (C+K)

1
λ 2 +C′

1
λ
+C′′

since we know that K +C > 0 then for small enough λ the right hand side of the above inequality will become
positive hence convexity of DKL along these geodesics follows.

Example (Correction to GMM). We introduce the probability density PN,new,λ whose logarithm is defined
by

− logPN,new,λ = λ (− logPN +∑
k

θk‖µk− x̄k‖4 +
1
2 ∑

k
∑

i
ηkzik(xi− x̄k)

T
Λk(xi− x̄k)−

1
2

ηk log |Λk|)+ const.

in which x̄k := ∑i zikxi
Nk

, and the log posterior logPN is given by

logPN(z,µ,π,Λ|x) = ∑
N
n=1 ∑

K
k=1 znk(logπk)− 1

2(xn−µk)
T Λk(xn−µk)+

1
2 log |Λk|)+

+∑
K
k=1 log p(µk)+∑

K
k=1 log p(Λk)+ log p(π)+C

(5)

(see page 6 of [1] for details of notations).
Here the space H1 contains the continuous parameters µk,Λk,πk and H2 = {1, ...,K}N where N is the

number of data points and K the number of classes of the data.
There exists a natural Riemannian metric on H1 such that this metric and the probability PN,new,λ for large

values of λ satisfy the hypothesis of theorem (1). Thus for large values of λ , − logPN,new,λ admits a unique
minimum. Also the minimum of − logPN,new,λ tends to the absolute minimum of − logPN as N → +∞. The
convergence of the unique mode of the MFVBA of PN,new,λ to the mode of PN,ew,λ results from these two ob-
servations.
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