
 THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A,

 OF THE ROMANIAN ACADEMY Volume 23, Number 1/2022, pp. 79–88

A SAMPLING ALGORITHM BASED ON SUPERVISED LEARNING FOR A DYNAMIC

TRAVELING SALESMAN PROBLEM

Jiahao JIANG, Jian GAO

Dalian Maritime University, College of Information Science and Technology, Dalian, China
Corresponding author: Jian GAO, E-mail: gaojian@dlmu.edu.cn

Abstract. The Traveling Salesman Problem (TSP) plays an important role in modern logistics, and

heuristic algorithms were intensively investigated to solve the problem and its variants. The TSP is

always dynamic in real-life applications, and a static TSP cannot be used to model dynamic cases.

Therefore, in this paper, we consider a TSP with dynamic customers and propose a sampling

algorithm. To solve the dynamic problem, we transform a TSP solution to actions, and propose a

novel supervised learning mechanism with a Multilayer Perceptron (MLP) to predict the actions in

real time. We also propose to encode travel states and train the model by sampling dynamic cases.

Thereafter, a sampling algorithm based on the trained model is proposed to make decisions so as to

deal with online dynamic requests. We carried out extensive experiments on TSP instances. From the

results, we conclude that the proposed approach outperforms existing TSP heuristic algorithms

including 2-OPT, LKH, and Google OR-Tools. We also show the average runtime of our method for

producing a path is better than comparative algorithms.

Key words: Traveling salesman problem, supervised learning, combinatorial optimization problem,

sampling algorithm.

1. INTRODUCTION

The Traveling Salesman Problem (TSP) is a fundamental combinatorial optimization problem in both
artificial intelligence community and operations research community [1]. Given a set of customers (nodes)
and costs of all pairs of nodes, the task of solving the TSP is to find a tour with minimum cost ensuring each
node is visited exactly once. The TSP is one of the most widely studied problems and is widely used in
logistics and manufacturing [2, 3]. Solving a TSP has to find the optimal solution. The TSP is easy to
describe, but it is quite difficult to solve. The problem is NP-hard in the general case, because the
Hamiltonian cycle problem is proved to be NP-complete [4].

There have been many publications on studying the classical TSP and various algorithms to solve this
problem have been proposed. To solve the TSP exactly, we always use integer programming solvers or
constraint programming solvers [5]. It is likely that the runtime for those exact algorithms increases
exponentially with the number of nodes, and they cannot be solved in a reasonable computation time for
large-scale problems. Since exact approaches usually fail to deal with real-world problems, many researchers
concentrate on approximation algorithms or heuristic approaches. Those approaches can find a near-optimal
solution in a reasonable time. One of the most widely used approximation algorithms is Christofides
algorithm [6]. Approximation algorithms run in polynomial time, but they often fail to find an optimal
solution, and solution quality is not satisfactory. In practical applications, we always employ heuristic or
local search algorithms. A basic heuristic algorithm is the 2-OPT technique. As a generalization, Lin-
Kernighan (LKH) is one of the best heuristics for solving the symmetric TSP [7,8]. Meta-heuristic
algorithms based on local search and swarm intelligence show good computational results of TSP solutions,
and modified metaheuristic algorithms have also been proposed to solve many extensions of the TSP [9–11].
Besides, the Concorde TSP solver is a well-known solver that employs the cutting-plane-based approach
[12]. Moreover, Google OR-Tools [13], combining local search algorithms and meta-heuristics can solve a
large range of TSPs and vehicle routing problems. It is noted that machine learning-based approaches have
received great success on solving the TSP. For instance, reinforcement learning was studied for algorithm
selection [14]. Recently, many machine learning-based approaches have been proposed to solve various
routing problems, where constraints and data of a problem are fixed and known before solving it [15–20].

80 J. JIANG, J.GAO 2

The classic TSP supposes nodes and all costs are all known before solving. Actually, in real-world
applications of logistics, the problem is dynamic, so the traditional static TSP model cannot model those
logistics problems. Therefore, a number of dynamic models of the TSP were investigated. Dynamic

customers and demands were introduced [10, 21−26]. As we discussed above, the problems from real-life
applications usually have dynamic changes, and some constraints are stochastic. Machine learning-based
approaches have a better ability to produce robust solutions in dynamic situations. However, there is few
machine learning based approach to dealing with dynamic TSPs. In this paper, we study a traveling salesman
problem with dynamic customers. We propose a sampling algorithm based on machine learning for the
dynamic TSP with the case that the set of customers changes every day and allow online requests, i.e., each
day the set is different from other days, so we shall solve similar problems with the same road network but
different customer sets. Different from existing dynamic TSP algorithms that are mainly based on
metaheuristic algorithms, our method is a hybrid approach combining machine learning and sampling
methods. It first employs machine learning techniques to train an MLP model by sampling tours of TSPs. To
train model, we present an encoding method to transform travel states into feature vectors, and employ the
current location and unvisited customer set to specify a state in a tour. After that, based on the trained model,
we introduce how to construct a route to the problem and present an online sampling algorithm to deal with
the situation that customers emerge during travel, where sampling of routes is performed based on the
prediction by the trained model. We carried out extensive experiments to test our approaches on both
randomly generated TSP instances and benchmarks from TSPLIB [27]. We analyzed comparative results of
experiments intensively and showed that the proposed algorithm is able to produce much better solutions
than the existing heuristics. Moreover, the results of runtimes also indicate that our approach is more
efficient than other heuristic algorithms.

The remainder of this paper is organized as follows. The next section introduces notations and
definitions used in the paper. Section 3 introduces our model based on MLP and the training method. In
Section 4, we propose the prediction algorithm based on the trained model and the sampling algorithm for
online dynamic TSP. Section 5 analyzes experimental results. Finally, we give some conclusions.

2. DYNAMIC TSP

In this section, we describe the TSP and dynamic TSP models we study in this paper. First, a TSP can
be modeled by an undirected weighted graph P = (V, E, W), where V = {1, 2, ..., n} is a set nodes of the given
graph, and E is a set of edges, and W is a weight matrix. We always use a positive integer to denote a node in
V. Given a pair of nodes i and j, we use (i, j)  E to denote the edge whose two ends are i and j respectively,
and w(i,j)  W is the weight of the edge (i, j). The graph P is a complete graph, where each pair of nodes is
connected by an edge. We only consider symmetry situations in this paper, i.e., w(i, j) = w(j, i). The weights
can be distances of nodes, travel time, or travel cost. In this paper, we regard the weights as travel time.

In the classic TSP, the salesman starts from node 1 (depot), visits each other node in V exactly once,
and returns back to the depot. A tour (solution) is a sequence of nodes in the order that the salesman visits.
We use S = <v1, v2, ..., vn, v1> to denote a tour, where v1 = 1 and vi  V \{1} (i = 2,3,...,n). The task of solving a
TSP is to find a tour minimizing the sum of weights of all edges in the tour. Formally, the objective is
defined by the following optimization problem:

min () . . cost S s t S SolSet (1)

where
(,)

()= (,)
i j

i jv v S
cost S w v v

 is the cost function, (vi, vj) is an ordered pair of adjacent nodes in the

variable S = <v1, v2, ..., vn, v1>, and SolSet is the feasible solution set. We shall find a sequence of nodes for the
variable S minimizing cost(S).

Consider business in a retail logistics company, customers (nodes) may not be visited every day, so the
customer set to serve is different in each day. We shall solve TSP instances with a subset of nodes repeatedly
rather than the whole node set. Those TSP instances have the same road network data but node sets are
different. Furthermore, customers’ requests are sometimes online. They are unknown at the beginning of
delivery in a day. In this context, we should re-plan the routing to serve as many requests as possible within a
deadline. Based on the above discussion, we present dynamic TSP models. Two dynamic cases are described.
The first one concerns dynamic customers, but the customers to be visited are known before solving it. We
call this problem TSP with Dynamic Customers (TSPDC). We modify the description of classic TSPs and
give the following definition.

3 A sampling algorithm based on supervised learning for a dynamic traveling salesman problem 81

Definition 1. Given a base TSP P = (V, E, W) and a collection of node sets C = {V1, V2, ...,Vm} such that

1  Vi (Vi  V, 1≤ i ≤ m), a TSPDC case w.r.t. Vi is a subproblem of the base TSP P to find a tour S that starts

from and ends at the node 1, and visits each other node in Vi exactly once.

All cases of the dynamic TSP compose a TSPDC. The task of solving the TSPDC is to solve all

subproblems w.r.t. the node sets in C respectively and find the best solutions minimizing the sum of weights

of all edges in the tours. Each set in the collection C can be regarded as a set of nodes that should be visited

in each day. Vi may be different from others in C, so similar TSP instances should be solved repeatedly with

the same road network but different node sets.

The second one is defined to deal with online requests. We only know a part of customers before

starting delivery, and other customers emerge randomly, so the node set to be visited is divided into

2 subsets: Vo is revealed before service and Vd is revealed during the tour. When a node in Vd is revealed

during tour, the solution should be recomputed to add the new node into the tour. We assume recomputation

is only performed when the vehicle arrives at a node, and thus an online case is defined as follow.

Definition 2. An online TSPDC case is defined by a 5-tuple (P, vc, Tc, Vr, T), where P is the base TSP,

vc is the current location (node), Tc is the current time, Vr is a remaining node set including unvisited nodes in

Vo and new nodes in Vd, and T is a limitation time.

The task of solving an online case is to find a tour S=<vc, v1,…,vt,1> (v1,…,vtVr) such that the vehicle

arrives at the depot before T and maximizing the number of nodes in S. Suppose SolSet is the feasible

solution set, the goal can be formally expressed as

max| | + ()cS s.t. T cost S T , (2)

where .S SolSet

3. THE MODEL

3.1. The network structure

The MLP [28] is used and trained in our model. The structure of MLP is shown in Fig. 1. Though the

structure of MLP is relatively simple and straightforward, it can achieve good training speed and good

performance for dealing with the TSP. Our MLP consists of four layers: an input layer, an output layer, and

two hidden layers. Since MLPs are fully connected, each node in a layer connects to every node in the

following layer. The number of neurons in the input layer and output layer is the problem size, i.e. the

number of total nodes in the given TSP instance. We employ the rectifier linear unit (ReLU) as the activation

function for neurons in the hidden layers, and the softmax function in the output layer to map output values

to the interval of (0,1). The cumulative sum of all output values after activation is 1.

Fig. 1 – The structure of the MLP with an input layer, two hidden layers and an output layer.

In forward propagation, each neuron is linearly transformed as follow:

-1l l l l
i ij j i

j

z w x b= + , (3)

82 J. JIANG, J.GAO 4

where l
ijw is the weight from the j-th neuron in the (l − 1)-th layer to the i-th neuron in the l-th layer, -1l

jx is

the input of the j-th neuron in the (l − 1)-th layer, and l
ib represents the bias of the i-th neuron in the l-th

layer. After the linear transformation is computed, in the hidden layers, the ReLU function is applied to z for

nonlinear transformation. ReLU activation function is computed as:

() max(0,)i if z z= . (4)

In the output layer, we use the softmax function to map output values to the interval (0,1), which

represents the probability of each node selected. The softmax function is computed as:

() exp() / exp()i i k

k

f z z z=  . (5)

Loss function. We use the cross-entropy loss function to calculate loss of the model, which is often

used for training classification problems. The loss function of one batch is calculated as:

1 1

() 1/ () log(())
B K

ik ik

i k

L X B q x p x
= =

= −  , (6)

where ()ikq x is the true probability, and ()ikp x is the model predicted probability of the sample xi belonging

to the category k. K is the number of categories which equal to the problem size, and B is the batch size.

According to the loss function L(X), we can calculate the update gradient of neural network parameter θ,

where the update gradient of zi is calculated as:

1 1

(())()
()= = 1 ()

B K
ik

ik

i ii k

log p xL X
L X B q x

z z= =


 −

 
 . (7)

According to ()L X , the network parameter θ is updated based on the mini-batch gradient descent method,

and the parameter θ is updated as follow:

()L X− , (8)

where α is the parameter of update step. Suppose the number of nodes of a TSP instance is 20. The input

vector x is transformed through two full connection layers to obtain the vector z, and then the vector z is

input to the output layer. The selection probability p for each node is calculated through softmax activation.

3.2. Model training

Given a TSP P = (V, E, W), we train the model based on supervised learning. We generate dynamic

cases based on P and solve them by the state-of-the-art solver of the TSP (i.e., Concorde TSP solver), and

then convert the solutions (tours) into records in the training dataset. To generate a dynamic TSP instance,

we choose a subset of nodes and solve the problem to obtain the best tour. Based on the selected nodes and

the tour, we can produce a group of records. First, we choose a random integer s in the interval of [n/2, n] as

the number of nodes to be selected, where n = |V | is the total number of nodes. Moreover, we select s−1

nodes randomly from V \{1}. The selected nodes and the depot node 1 compose a node set, denoted as V ′.

After that, using Concorde TSP solver, we solve the TSP P = (G, V, W) with the subset V ′ to obtain the best

tour, denoted by S. We repeat the above steps to pick out 50000 dynamic cases and solve them. After

obtaining the best tours, we convert those tours to a training dataset. For each tour S, we can produce | S |−2

records as follows. Pick up the first element vc in S, and remove it from S. Thus, vc is the current location,

and S is the remaining node set to be visited. We then encode the pair (S, vc) into a feature vector x with n

length as input of our model, and the vector y as the label, which is a 0−1 vector with n length. The vector x

is defined as x = (x1, x2, ..., xn), where xi = 0 if the node i is not in S \{1} (i ≠ vc, i = 1, ..., n); xi = 1 if the node i

is in S \{1} (i = 1, ..., n); and xvc = −1. The vector y = (y1, ..., yn) is defined as follows: yi = 1, if i is the first

element in S, i = 1, ..., n; yi = 0, otherwise. Thus, a record (x, y) is produced. We repeat picking up the first

element from S until | S | < 2, and thus | S |−2 records can be produced. We provide an example to indicate the

encoding method. Suppose we have a subset V0 and its tour S, where 1 is the depot and 2, 3, 4, 5, 6 are the

customer nodes. Suppose the best tour is S = < 1, 4, 3, 2, 6, 5, 1 >, we can construct | S |−2 feature vectors shown

in Table 1. Also, the labels are listed in the table.

5 A sampling algorithm based on supervised learning for a dynamic traveling salesman problem 83

Training process is performed as the following steps: (1) First, we shuffle the sample data randomly,

and divide it into batches, where the batch size is 32; (2) For each batch, data is put into the model, and the

loss is calculated according to the output values and labels; (3) With the loss value, the gradient descent

method is used to update the parameters in the network; (4) Repeat steps (2)−(4) for 200 epochs to make the

loss value converge, and the resultant parameters are saved. During training process, the dropout mechanism

is employed to avoid overfitting.

Table 1

An example of feature vectors and labels with S = < 1, 4, 3, 2, 6, 5, 1 >

x (-1,1,1,1,1,1) (0,1,1,-1,1,1) (0,1,-1,0,1,1) (0,-1,0,0,1,1) (0,0,0,0,1,-1)

y (0,0,0,1,0,0) (0,0,1,0,0,0) (0,1,0,0,0,0) (0,0,0,0,0,1) (0,0,0,0,1,0)

4. ALGORITHMS FOR DYNAMIC TSP

In this section, we present algorithms to solve dynamic TSPs with the model we train. First, we discuss

our prediction algorithm to construct a solution based on the MLP model, and then present our sampling

algorithm to solve online dynamic TSPs.

4.1. The prediction algorithm for the TSPDC

We first discuss the prediction algorithm for the TSPDC. Based on the model, we present how to make

decision and produce a solution to the TSPDC. Given P = (V, E, W) and a subset V ′, the algorithm constructs

a sequence of nodes by predicting each successor node iteratively. Decisions are made based on the trained

model. In each step, it encodes the remaining unvisited nodes and the current location into an input vector of

our model, and then it predicts the next node to be visited by the output vector. The next node will be

assigned as the current location and added into the solution tour, so a solution is constructed by repeating

prediction of successor visited nodes. Algorithm 1 indicates the procedure of solution construction.

Algorithm 1: The prediction algorithm for the TSPDC

Input: A TSP G = (V, E, W), a subset V ′, and the trained model M
Output: a solution S

1 S ← ∅; let vc ← 1 be the depot, remove vc from V′ and append vc to S ;

2 while |V ′| > 1 do

3 x ← encode(vc, V ′); mask ← maskvector(vc, V ′);
4 y ← M(x); // predict the next node

5 vnext ← argmax(y·mask);

6 remove vnext from V ′; append vnext to S; vc ← vnext ;

7 append the element in V ′ to S ; append v1 to S ;

8 return S ;

In Algorithm 1, the tour S is initialized by assigning the depot, and then it begins prediction. We define

the function encode(vc, V ′) to calculate the input vector x. Similar with the previous section does, xi = 0 if the

node i ∉ V ′ except for xvc = −1, and xi = 1 if i ∈V ′. The function maskvector(vc, V ′) returns a mask vector

mask ∈{0, 1}n, where 1 means the existence in V ′ and 0 means the node is not included in V ′ (line 3). The

function M(x) returns the output vector of the model according to the input vector x (line 4). The output

vector y is masked by the vector mask, and the node v with the maximum value of y·mask is picked out as the

next one vnext to be visited (line 5). After the next node vnext to be visited is selected, it removes vnext from V ′
and appends vnext to the tour S, so the current location is changed to vnext. Prediction and selection of the next

node will be repeated until there is only one node in V ′, and the node can be appended to the tour directly.

Finally, the algorithm adds the depot as the last node in the tour.

84 J. JIANG, J.GAO 6

4.2. The algorithm for online decision

Our algorithm for the online TSPDC constructs an initial solution by Algorithm 1, and then waits for

new nodes and solves each online case to revise the current path repeatedly until the current time reaches the

limitation. The online decision will be triggered to decide the next node when the vehicle arrives at a node,

and update the next visited node if new requests emerged. Algorithm 2 indicates the main procedure of

online decisions. Given a subset V ′= Vo Vd, where Vd is known at the beginning but Vo emerges randomly

within T. It calculates an initial tour by Algorithm 1 with Vd as input of our trained model, and then initializes

the current time Tc by 0 and vc = 1. When the vehicle arrives at a node, it comes to a decision point, and the

algorithm employs the current node vc and the remaining node set Vr including all unvisited nodes currently

known to compute the next node. If new nodes are added to Vr (line 6), the algorithm calls the function

sampling_solutions to replan the path with nodes in Vr and obtains a new tour to update S (line 7). The

function sampling_solutions will be introduced in Algorithm 3. The first node of S is taken as the next node

(line 8). After the next node vnext is picked out, the algorithm moves the vehicle to vnext and updates the

current time (lines 9−11). The algorithm terminates until Tc ≥ T.

In Algorithm 3, the function sample_solutions samples solutions and finds the best tour as the resultant

value. The algorithm samples solutions near the tour S calculated at the beginning, and selects the best

solution as a new tour. We suppose the current location is the node vc. Then, prediction is performed with the

node set Vr′ and the current location vc (line 5). With a high probability (90%) it selects the successor of vc in

the original route where rand() returns a random number in [0,1], otherwise it takes the node predicted by the

trained model as the next node. Then the current node is set to the next node to replan other remaining nodes

so that a solution is constructed. After sampling H times (line 12), we get a set of solutions and pick out the

best solution that can serve the most number of customers within the deadline T, and if there is more than

one best solution, we choose the one with the smallest total travel time. In our experiment, H is set to 100.

Algorithm 2: The sampling algorithm for online TSPDC Algorithm 3: sample_solutions(S, Vr, vc, T)

Input: A dynamic TSP P = (V, E, W) a subset V ′ (Vo  V′,

Vd =V ′ \Vo) and deadline T

Output: null

1 let Sinit be the predicted tour by Algorithm 1;

2 S ←Sinit ; Vr ←Vd ; Tc ← 0;

3 let vc be the depot in V; remove vc from Vr and S ;

4 while Tc < T do

5 if Vr is not an empty set then

6 if a new node in Vo is added to Vr after the last

departure then

7 S ← sample_solutions(Sinit, Vr, vc, T);

8 let vnext be the first node in S ;

9 vc ← vnext;

10 update Tc as the time arriving at vnext ;

11 remove vnext from Vr and S ;

12 else

13 vc ← 1, and move the vehicle to vc ;

14 update Tc as the time arriving at vc ;

15 wait for a new customer;

Input: the original tour S, the remaining unvisited set Vr ,

the current location vc and time limitation T

Output: the new best tour Sbest

1 SolSet ← ∅;

2 repeat

3 S′ ← ∅; Vr′ ←Vr ; vc′ ← vc ;

4 while Vr′ is not empty do

5 let vnext be the node predicted by Algorithm 1;

6 if rand() > 0.9 then

7 if successor of vc′ in Vr′ then

8 let vnext be the successor of vc′ in S ;

9 append vnext to S′, and remove vnext from Vr′;

10 vc′ ← vnext;

11 add S′ to SolSet ;

12 until sample H times;

13 select the tour Sbest that serves the most number of

customers from SolSet within T, tie breaking with the

smallest travel time;

14 return Sbest.

5. EXPERIMENTS

To evaluate the proposed model and algorithms for dynamic TSPs, we use a workstation with an
Intel(R) Xeon(R) W-2145 CPU @ 3.70GHz and two RTX 2080 Ti GPUs, running Linux operating systems
to test them. Our model and algorithms are implemented by Python 3.6.9 and Torch 1.7.1, and the model is
trained based on Cuda 11.0.

We use two sets of benchmarks to test our model and algorithms. The first set is randomly generated
instances, whose generation method was also used in testing existing machine learning-based approaches.
We follow the method used in previous experiments to generate instances [15]. Locations of customers and

7 A sampling algorithm based on supervised learning for a dynamic traveling salesman problem 85

the depot are randomly generated. For each customer and the depot, we generate a coordinate in the unit
square [0, 1]×[0, 1] uniformly, and the weight of an edge is Euclidean distance. We set n = 30, 50, 100,
respectively. For each value of n, we generate 5 TSP instances. The second benchmark is from TSPLIB,
where 6 instances are chosen and tested: att48, berlin52, st70, pr76, gr96, and rd100. Those instances contain
48 to 100 nodes. We take 2-OPT, Christofides, LKH heuristic, and Google OR-tools to compare with our
model. As we stated, LKH heuristic and Google Or-tools are efficient heuristics that can find a good solution
in a short time. We use the Concorde TSP solver to find the best solutions for those benchmarks.

5.1. Comparative results of TSPDC

We first analyze convergence of training process. For each TSP instance, we train the model with 200
epochs. We select 4 instances (n = 30, 50, 100, respectively, and rd100) to show the training details and
convergence. Figure 2 depicts the convergence curves of the 4 instances. From it, we can see that training
almost converges after 40 epochs, and only a tiny improvement can be made on the loss value when the
epoch is up to 200, so the training can be terminated. For the instance with n = 30, training process converges
faster than others, and the convergence speed slightly declines with the size of instance growing.

Based on the trained model for each instance, we can predict solutions for the TSPDC by Algorithm 1.
In the followings, we evaluate the prediction results for the TSPDC. For each instance, we select 1000
subsets for evaluating our approach, and also solve those subsets by the state-of-the-art algorithms, including
heuristics and approximate algorithms. We select a subset of nodes randomly, whose size is a random integer
in the interval [n /2, n]. The subset is the nodes to be visited, simulating daily requests of a retail logistics
company. We compare the average travel time of tours produced by each algorithm and our model.

Table 2 indicates the results. The average travel time of 1000 dynamic cases for each algorithm is
listed, and the solutions obtained by the Concorde TSP solver are listed as optimal results. The column
“Model” is results of our approach. Gaps between our approach and the optimal solution are also listed.
Moreover, results of instances from TSPLIB are included in the table. From it, we can see that our approach
can give a very close result to the best solution, and it is far better than 2-OPT and Christofides. It is also
easy to see that our approach can produce better results than the solutions of heuristics (i.e., LKH and OR-
tools) for each instance. The gaps between solutions of LKH and Google OR-tools and the optimal results
are 1.88% and 2.42% on average, respectively. Those gaps are much bigger than ours. It is noted that most
gaps of our approach do not exceed 1%, and our gap is 0.36% on average.

Table 2

Average travel time of 1000 dynamic cases

 Dataset
Method

2-OPT Christofides OR-Tools LKH Model gap(%) optimal

n = 30

S1 3.9726 4.1528 3.869 3.8867 3.8478 0.02% 3.847

S2 4.1714 4.3192 3.9829 3.9696 3.9429 0.14% 3.9374

S3 4.4455 4.6153 4.3002 4.4037 4.2857 0.03% 4.2846

S4 3.7868 3.9888 3.6464 3.6816 3.6268 0.05% 3.6251

S5 4.2586 4.4648 4.1265 4.1334 4.1008 0.04% 4.099

mean 4.127 4.3082 3.985 4.015 3.9608 0.06% 3.9586

n = 50

S1 5.5711 5.6291 5.2008 5.169 5.1188 0.44% 5.0966

S2 5.2509 5.2289 4.8918 4.904 4.829 0.21% 4.8191

S3 5.5362 5.5725 5.219 5.1991 5.1076 0.35% 5.0898

S4 5.1258 5.2464 4.8807 4.8047 4.7337 0.20% 4.7244

S5 5.7437 5.7856 5.3309 5.3317 5.2558 0.22% 5.2444

mean 5.4455 5.4925 5.1046 5.0817 5.009 0.28% 4.9949

n = 100

S1 8.3464 7.7313 7.1419 6.9489 6.9434 1.03% 6.8728

S2 8.2329 7.4866 7.0546 6.8881 6.8633 0.80% 6.8086

S3 7.815 7.2268 6.77 6.5635 6.5025 0.54% 6.4678

S4 7.871 7.1583 6.7448 6.5895 6.4801 0.25% 6.4638

S5 7.6995 7.099 6.5495 6.3972 6.3698 0.59% 6.3322

mean 7.993 7.3404 6.8522 6.6774 6.6318 0.65% 6.589

TSPLIB

att48 30328 31772 29002 29675 28645 0.19% 28590

berlin52 7157.6 7264.8 6755.1 6649.3 6566.7 0.32% 6546

st70 664.2 647.6 602.3 599.7 588.3 0.35% 586.3

pr76 107574 104575 97801 100316 95467 0.45% 95038

gr96 526.8 482.4 455 451.4 445.2 0.92% 441.1

rd100 8330 7686.3 7140 6961.7 6935.8 0.61% 6894

86 J. JIANG, J.GAO 8

Furthermore, we draw box plots of the results to visualize summary statistics. We take TSP30-S1 as an
example. For the instance, there are 1000 cases, and for each case, we calculate the best result among all
algorithms and calculate the gaps between the best and the result of each algorithm. We draw box plots to
show the distribution of those gaps. Figure 3 depicts the results, from which we can see that Model has the
smallest gaps among heuristics, and the differences between our algorithm and others are significant. For a
large part of cases, our method can produce the best solutions or high quantity solutions very close to the
best obtained by the exact solver. Also, LKH can make near-optimal solutions, but the average is not as good
as ours and the distribution interval is slightly larger than ours. It is obvious that OR-Tools is not
comparative with our method, because the average result is worse and the distribution interval is larger
compared with our method. It is also obvious that 2-OPT and Christofides got worse results than others.

Besides, we compare runtimes of those algorithms. Total runtimes of 1000 runs for each TSP instance
are counted. Table 3 lists the comparative results in seconds. From it, we can see that it is the fastest one
among all the comparative algorithms. It is about 11.0 times faster than LKH in total, and about 3.7 times
than Concorde. The runtime of our approach grows linearly with the problem size increasing. Additionally,
the runtime of constructing a solution by our approach is below 0.1s, and this runtime is short enough for
practical applications.

Fig. 2 – Convergence trend of loss function during model training,

where n = 30, n = 50, n = 100 are randomly generated instances and

rd100 is an instance with 100 nodes in TSPLIB.

Fig. 3 – The box plot of 1000 cases in the instance TSP30-S1.

Table 3

Total runtimes of solving 1000 dynamic cases in seconds

Dataset 2-OPT Christofides OR-Tools LKH Model Concorde

TSP-30 48 5 6 18 5 6

TSP-50 114 14 18 70 11 23

TSP-100 376 69 86 365 23 61

TSPLIB 1416 247 280 1294 106 591

5.2. Comparative results of online TSPDC

In this subsection, we test our sampling algorithm (Algorithm 2) for solving the online TSPDC, and
show the computational results. We take the same instances as the experiment in Section 5.1 to test
algorithms. To simulate the daily business, we generate 1000 cases randomly for each instance. The method
used here is similar with the generation of the TSPDC. We first select the number of nodes s varying from
n /2 to n, where n is the total number of nodes in the instance, and then choose s customers from the node set,
denoted as V ′. After that, we divide V ′ into two sets Vd and Vo . Vd is the node set in which nodes are known
at the beginning and nodes in Vo emerge after it starts. In the following experiment, the nodes from V ′ are put
into Vo with the proportion of p. We also generate an emerging time for each customer in Vo , denoted by t,
and t is a random number from interval [0, T], where T is the complete time of the best solution obtained by
Concorde.

We compare our sampling approach (denoted by Model-Sampling) with LKH, since LKH is the best
one among heuristic algorithms. It is noted that LKH cannot solve the online TSP problems directly.
Therefore, we modify it to be able to solve the online version. LKH is triggered to re-plan the path if there is
a new customer emerged. Moreover, OR-Tools is modified using the same approach as LKH. Christofides,
2-OPT and OR-Tools are not considered in solving online cases because they perform worse than LKH. We

9 A sampling algorithm based on supervised learning for a dynamic traveling salesman problem 87

also compare the sampling approach with a greedy approach based on the trained model (denoted by Model-
Greedy), where at each node it replans the tour by predicting the action directly. Besides, we compute the
posterior solution and list the average result. We suppose all nodes in Vo are known at the beginning and
solve the problem by Concorde. It is clear that a solution to the online case cannot be better than the best
solution to the case knowing all nodes at the beginning. The posterior solution is used as time limitation T to
evaluate results produced by our sampling approach and calculate the proportion of customers that can be
served as well as the average travel time within the limitation.

Table 4 gives the average results when p = 20%. We list the ratio of served customers to total customers
and the average travel time of each instance over 1000 cases. It is clear that our sampling algorithm is better
than Model-Greedy, since more customers can be served within the limitation. It is also noted that Model-
Sampling performs much better than LKH and OR-Tools, though the travel time of Model-Sampling is
slightly larger than the two heuristic algorithms. Within the limitation of travel time, Model-Sampling has
better results on both random instances and TSPLIB benchmarks. In addition, the average runtime of our
approach is within 3s for all cases, and each decision costs less than 1s though it requires more solving time
than LKH and Model-Greedy in total. Therefore, our approach is effective for practical purposes.

Table 4

Average completion rate on solving online TSPDC cases (p = 20%)

 LKH Model-Greedy Model-Sample

 Dataset ratio travel time ratio travel time ratio travel time limitation

n = 30

S1 0.85 3.3992 0.81 3.3366 0.89 3.3595 3.562

S2 0.9 3.4575 0.87 3.4552 0.91 3.4376 3.665

S3 0.83 3.8069 0.8 3.8038 0.88 3.8163 4.0134

S4 0.75 3.1281 0.8 3.1473 0.88 3.1634 3.333

S5 0.8 3.6671 0.79 3.6313 0.87 3.679 3.8294

mean 0.83 3.4918 0.81 3.4749 0.89 3.4912 3.6806

n = 50

S1 0.79 4.5152 0.81 4.5236 0.86 4.5737 4.6831

S2 0.85 4.2761 0.77 4.2077 0.86 4.272 4.4075

S3 0.77 4.4282 0.74 4.4242 0.85 4.4948 4.6154

S4 0.82 4.231 0.76 4.1803 0.86 4.2288 4.3563

S5 0.8 4.6762 0.79 4.6577 0.86 4.707 4.8364

mean 0.8 4.4254 0.78 4.3987 0.86 4.4553 4.5798

n = 100

S1 0.75 6.088 0.72 6.0814 0.82 6.1585 6.235

S2 0.76 6.0423 0.67 5.9411 0.8 6.0883 6.1597

S3 0.74 5.8105 0.68 5.7485 0.82 5.8571 5.9363

S4 0.72 5.735 0.64 5.6435 0.81 5.7952 5.876

S5 0.74 5.6907 0.65 5.6238 0.8 5.7567 5.8293

mean 0.74 5.8733 0.67 5.8076 0.81 5.9312 6.0073

TSPLIB

att48 0.76 25089.7 0.71 24820.9 0.84 25502.3 26189.3

berlin52 0.81 5741.5 0.77 5768.4 0.85 5837.6 5973.4

st70 0.75 510 0.68 504.4 0.82 517.6 525.2

pr76 0.77 84074.8 0.75 83504.1 0.84 84652.8 86634.9

gr96 0.79 391.7 0.68 387.8 0.81 395.5 401.7

rd100 0.72 6076.2 0.62 6015.7 0.8 6156.8 6234.6

6. CONCLUSION

The traveling salesman problem is a fundamental combinatorial optimization problem. It is an
important tool for modeling various routing problems. In this paper, we investigate a dynamic TSP in a retail
logistics company. It delivers or picks up cargoes of customers, and the road network is static in a period, but
the node set to be visited in a day is different from other days. We proposed a machine learning-based
method to solve the dynamic TSP. Moreover, we study the online version of the dynamic TSP, where a part
of customers are allowed to submit their requests during service. We propose a sampling algorithm on the
base of the trained model, to find a solution that can visit as many customers as possible in a limited time.
We test our approaches on both randomly generated TSP instances and benchmarks from TSPLIB, and
compare our approaches with existing well-known heuristic algorithms. The results demonstrate our
approach has a good ability to solve the dynamic TSP and produce high-quality solutions. Also, the results
show that the efficiency of our approach is comparable with highly optimized TSP solvers.

88 J. JIANG, J.GAO 10

ACKNOWLEDGEMENTS

We would like to thank anonymous reviewers for useful suggestions. This work was supported by the

National Natural Science Foundation of China (No. 61972063).

REFERENCES

1. M. BELLMORE, G.L. NEMHAUSER, The traveling salesman problem: A survey, Operations Research, 16, 3, pp. 538–558, 1968.

2. C.E. DODU, M. ANCĂU, An efficient algorithm for lot permutation flow shop scheduling problem, Proceedings of the

Romanian Academy, Series A, 22, 3, pp. 231–238, 2021.

3. J. GAO, R. CHEN, W. DENG, An efficient tabu search algorithm for the distributed permutation flowshop scheduling problem,

International Journal of Production Research, 51, 3, pp. 641–651, 2013.

4. R.M. KARP, Reducibility among combinatorial problems, In: Complexity of Computer Computations (eds. R.E. Miller, J.W.

Thatcher, J.D. Bohlinger), pp. 85–103, Springer, 1972.

5. F. FOCACCI, A. LODI, M. MILANO, D. VIGO, Solving TSP through the integration of or and CP techniques, Electronic

Notes in Discrete Mathematics, 1, pp. 13–25, 1999.

6. N. CHRISTOFIDES, Worst-case analysis of a new heuristic for the travelling salesman problem, Technical Report, Carnegie-

Mellon Univ Pittsburgh Pa Management Sciences Research Group, 1976.

7. S. LIN, B.W. KERNIGHAN, An effective heuristic algorithm for the traveling-salesman problem, Operations Research, 21, 2,

pp. 498–516, 1973.

8. D. KARAPETYAN, G. GUTIN, Lin–kernighan heuristic adaptations for the generalized traveling salesman problem, European

Journal of Operational Research, 208, 3, pp. 221–232, 2011.

9. M. YOUSEFIKHOSHBAKHT, Solving the traveling salesman problem: A modified metaheuristic algorithm, Complexity,

Art. 6668345, 2021.

10. P. STODOLA, K. MICHENKA, J. NOHEL, M. RYBANSKY, Hybrid algorithm based on ant colony optimization and

simulated annealing applied to the dynamic traveling salesman problem, Entropy, 22, 8, Art. 884, 2020.

11. E. BARTOLINI, D. GOEKE, M. SCHNEIDER, M. YE, The robust traveling salesman problem with time windows under

knapsack-constrained travel time uncertainty, Transportation Science, 55, 2, pp. 371–394, 2021.

12. D. APPLEGATE, R. BIXBY, V. CHVÁTAL, W. COOK, TSP cuts which do not conform to the template paradigm, in:

Computational Combinatorial Optimization (eds. M. Jünger, D. Naddef), Springer, 2001, pp. 261–303.

13. L. PERRON, Operations research and constraint programming at Google, in: International Conference on Principles and

Practice of Constraint Programming (ed. J. Lee), p. 2, Lecture Notes in Computer Science, Vol. 6876, Springer, 2011.

14. I. BELLO, H. PHAM, Q.V. LE, M. NOROUZI, S. BENGIO, Neural combinatorial optimization with reinforcement learning,

5th International Conference on Learning Representations, 2017.

15. M. NAZARI, A. OROOJLOOY, L.V. SNYDER, M. TAKÁC, Reinforcement learning for solving the vehicle routing problem,

Annual Conference on Neural Information Processing Systems 2018, pp. 9861–9871, 2018.

16. J.J.Q. YU , W. YU, J. GU, Online vehicle routing with neural combinatorial optimization and deep reinforcement learning,

IEEE Transactions on Intelligent Transportation Systems, 20, 10, pp. 3806–3817, 2019.

17. Y. HU, Y. YAO, W.S. LEE, A reinforcement learning approach for optimizing multiple traveling salesman problems over

graphs, Knowledge-Based Systems, 204, art. 106244, 2020.

18. M.O.R. Prates, P.H.C. Avelar, H. Lemos, L.C. Lamb, M. Vardi, Learning to solve NP-complete problems: A graph neural network for

decision TSP, The Thirty-Third AAAI Conference on Artificial Intelligence, pp. 4731–4738, AAAI Press, 2019.

19. P.R. de Costa, J. Rhuggenaath, Y. Zhang, A. Akcay, Learning 2-opt heuristics for the traveling salesman problem via deep

reinforcement learning, Proceedings of The 12th Asian Conference on Machine Learning, 129, pp. 465–480, 2020.

20. Y. HU, Z. ZHANG, Y. YAO, X. HUYAN, X. ZHOU, W.S. LEE, A bidirectional graph neural network for traveling salesman

problems on arbitrary symmetric graphs, Engineering Applications of Artificial Intelligence, 97, Art. 104061, 2021.

21. A. GUPTA, V. NAGARAJAN, R. RAVI, Approximation algorithms for VRP with stochastic demands, Operations Research, 60,

1, pp. 123–127, 2012.

22. R. TADEI, G. PERBOLI, F. PERFETTI, The multi-path traveling salesman problem with stochastic travel costs, EURO Journal

on Transportation and Logistics, 6, 1, pp. 3–23, 2017.

23. A. TORIELLO, W.B. HASKELL, M. POREMBA, A dynamic traveling salesman problem with stochastic arc costs, Operations

Research, 62, 5, pp. 1107–1125, 2014.

24. C. ARCHETTI, D. FEILLET, A. MOR, M.G. SPERANZA, Dynamic traveling salesman problem with stochastic release dates,

European Journal of Operational Research, 280, 3, pp. 832–844, 2020.

25. S. CHEN, R. CHEN, G.-G. WANG, J. GAO, A.K. SANGAIAH, An adaptive large neighborhood search heuristic for dynamic

vehicle routing problems, Computers & Electrical Engineering, 67, pp. 596–607, 2018.

26. S. CHEN, R. CHEN, J. GAO, A modified harmony search algorithm for solving the dynamic vehicle routing problem with time

windows, Scientific Programming, Art. 1021432, 2017.

27. G. REINELT, TSPLIB – a traveling salesman problem library, ORSA Journal on Computing, 3, 4, pp. 376–384, 1991.
28. F. MURTAGH, Multilayer perceptrons for classification and regression, Neurocomputing, 2, 5, pp. 183–197, 1991.

Received November 10, 2021

